
Norm Compliance in Business Process Modeling

Guido Governatori1 and Antonino Rotolo2

1 NICTA Queensland Research Lab., Australia, guido.governatori@nicta.com.au
2 CIRSFID, University of Bologna, Italy, antonino.rotolo@unibo.it

Abstract. We investigate the concept of norm compliance in business process
modeling. In particular we propose an extension of Formal Contract Logic (FCL),
a combination of defeasible logic and a logic of violation, with a richer deontic
language capable of capture many different facets of normative requirements. The
resulting logic, called Process Compliance Logic (PCL), is able to capture both
semantic compliance and structural compliance. This paper focuses on structural
compliance, that is we show how PCL can capture obligations concerning the
structure of a business process.

1 Introduction

Recent works in business process modeling focus on the concept of norm compliance
(see the literature in Section 6). Norm compliance is aimed at ensuring that business
processes are in accordance with a prescribed set of norms. More specifically by norm
compliance we understand a relationship between two sets of specifications describing
the alignment of formal specifications for business processes and formal specifications
relevant law and regulations. In other terms compliance is the certification that a process
is executed correctly does not result in a breach of the rules governing it. Compliance
requirements may stem from legislation and regulatory bodies, standards and codes of
practice, and business partner contracts. However, some research issues are still under-
developed. We focus here on three of them, which are related to the three sources of
complexities.

A first source of complexities resides in the fact that norms often regulate processes
by specifying obligatory actions to be taken in case of breaches of some of the norms,
actions which can vary from penalties to the termination of an interaction itself. Obli-
gations in force after some other obligations have been violated correspond to contrary-
to-duty obligations (CTDs) [1]. Among them, we have the reparative obligations, which
are meant to ‘repair’ or ‘compensate’ violations of primary obligations [2]. These con-
structions identify situations that are not ideal but still acceptable. The ability to deal
with violations is an essential requirement for processes where some failures can occur,
but they do not necessarily mean that the whole process has to fail. However, these con-
structions can give rise to very complex rule dependencies, because we can have that
the violation of a single rule can activate other (reparative) rules, which, in case of their
violation, refer to other rules, and so forth [3].

A second source of complexities depends on the fact that processes may be regulated
by different types of obligations (see Section 2). We may have obligations requiring (1)
to be always fulfilled during the execution of the entire process or of some subpaths of

M. Dean at al. (eds)
RuleML 2010, The 4th International Web Rule Symposium
LNCS 6403, pp. 194–209
c© Springer 2010.

The original publication is available at www.springerlink.com.

http://www.springerlink.com

it, (2) that a certain condition must occur at least once before the execution of a certain
task A of the process and such that the obligations may, or may not, persist after A if
they are not complied with, (3) that something is done in a single task [4]. These types
of obligation make things more complex when we deal with the compliance of a process
with respect to chains of reparative obligations. For example, if the primary obligation
is persistent and states to pay before task A, and the secondary (reparative) obligation
is to pay a fine in the task B successive to A, the process is compliant not only when
we pay before A, but also when we do not meet this deadline, pay later and pay the
fine at B. If the secondary obligation rather requires to be always fulfilled for all tasks
successive to A, compliance conditions will change.

The third source of complexities arises from different types of conditions we have
for business processes. We can have normative requirements about the artifacts of a
business process, over the activities (tasks) to be performed and over the order on which
they are executed, as well as their combinations.

Most of the approaches to business process compliance address only one of these
aspects. We propose an approach able to capture compliance requirements through a
generic requirements modeling framework, and subsequently facilitate the propagation
of these requirements into business process models and enterprise applications, thus
achieving compliance by design. To achieve this objective we show how to use the
language and the algorithm we have proposed in [5] to capture normative conditions on
the tasks of a process.

Ensuring automated detection and/or enforcement of compliance requires in this
paper to address the following related research tasks. First, we have to define in Sec-
tion 3 a language to represent, and reason about, chains of reparative obligations of the
types discussed in Section 2. Second, we need a mechanism for normalising a system
of norms, namely, identify formal loopholes, deadlocks and inconsistencies in it, and
to make hidden conditions explicit; without this, we do not have any guarantee that a
given process is compliant, because we do not know if all relevant norms have been con-
sidered (Section 3). Third, we have to specify a suitable language for business process
modeling able to automate and optimise business procedures and to embed normative
constraints (Section 4).

2 Normative Constraints: Violations and Types of Obligation

We can distinguish achievement obligations from maintenance obligations [4]. For an
achievement obligation, a certain condition must occur at least once before a deadline:

Example 1. Customers must pay before the delivery of the good, after receiving the
invoice.

The deadline (before the delivery of the good)—which of course meaningfully applies
if the customer is informed about the the maximum timespan within which the good can
be delivered—refers to an obligation triggered by receipt of the invoice: such an obli-
gation is persistent. After that the customer is obliged to pay. The obligation terminates
only when it is complied with. Note that the obligation persists after the deadline, until
it is achieved. But we may have cases where achievement obligations do not persist
after the deadline:

Example 2. Once the submissions to RuleML 2010 are made available to RuleML-
2010 PC members, the reviewers must send their reports before the notifications are
delivered to the authors

Indeed, the obligation to deliver a review does not persist after the deadline, since after
the review result has been notified to the authors, the paper has been accepted or rejected
on the basis of the other reports delivered in time.

For maintenance obligations, a certain condition must obtain during all instants
before the deadline:

Example 3. After opening a bank account, customers must keep a positive balance until
bank charges are taken out.

By definition, maintenance obligations do not persist after the deadline. In Example 3,
the deadline only signals that the obligation is terminated. A violation occurs when the
obliged state does not obtain at some point before the deadline.

Finally, puctual obligations only apply to single tasks or instants:

Example 4. When banks proceed with any wire transfer, they must transmit a message,
via SWIFT, to the receiving bank requesting that the payment is made according to the
instructions given.

Punctual obligations apply only to single instants or tasks; mathematically they can be
thought as either maintenance obligations or achievement obligations in force in time
intervals where the endpoints are equal. Typically punctual obligations must occur at
the same time of their triggering conditions, as shown in the above example.

Many norms can be associated with an explicit sanction. Consider

Example 5. Customers must pay before the delivery of the good, after receiving the
invoice. Otherwise, an additional fine must be paid.

Example 6. After opening a bank account, customers must keep a positive balance until
bank charges are taken out. Otherwise, their account is blocked.

An explicit sanction is often implemented through a separate obligation, which is
triggered by a detected violation. Thus, further deadlines can be introduced to enforce
the sanctions, leading to a chain of obligations. For instance, the payment of a fine
mentioned in Example 5 could be due before the execution of a subsequent task.

We can also distinguish preemptive obligations from non-preemptive obligations.
Suppose that, in Example 1, the price is 200$, and the customer, by mistake, transferred
an amount of 200$ to the bank account of the seller before the date of the invoice. In
this case, the early transfer may count as a payment and the customer could claim that
her obligation to pay the seller is already fulfilled. This is an example of preemptive
obligation. Non-preemptive obligations do not work as above. Consider this example:

Example 7. Executors and administrators of a decedent’s estate will be required to give
notice to each beneficiary named in the Will within 60 days after the date X of an order
admitting a will to probate has been signed.

If an executor gives a notice to the beneficiaries before X , she will have to resend the
notification after that. Note that the distinction between preemptive and non-premptive
obligations applies only to achievement obligations, while it does not make sense with
the maintenance and punctual ones.

What happens if the above types of obligations are combined into chains of repar-
ative obligations? The expression of violation conditions and the reparations is an im-
portant requirement for designing subsequent processes to minimise or deal with such
violations and also to determine the compliance of a process with the relevant norms.
The violation expression consists of the primary obligation, its violation conditions, an
obligation generated upon the violation condition occurs, and this can recursively be
iterated, until the final condition is reached. We introduced in [3,6] the non-boolean
connective ⊗: a formula like OA⊗OB means that A is obligatory, but if the obligation
OA is not fulfilled (i.e., when ¬A is the case), then the obligation OB is activated and
becomes in force until it is satisfied or violated. However, the violation condition of an
obligation varies depending on the types of obligations used. In the next section, we
will extend the approach of [3,6] to cover these cases.

3 Process Compliance Language (PCL)

We now provide a formal account of the ideas presented above. Our formalism, called
Process Compliance Language (PCL), is a combination of Defeasible Logic (DL) [7]
and a deontic logic of violations [6]. PCL significantly extends the logic of [3] with
types of obligations discussed in Section 2 and preserves the linear complexity of DL.

PCL formal language consists of a numerable set of propositional letters p,q,r, . . . ,
intended to represent the state variables and the tasks of a process. Formulas are con-
structed using the negation ¬, the non-boolean connective ⊗ (for the reparative opera-
tor), and the deontic operators Ox

y, for obligation (where y can be empty). Based on the
discussion in Section 2 we have three main classes of deontic operators: punctual obli-
gations (Op), maintenance obligations (Om) and achievement obligations (Oa); achieve-
ment obligations in turn can be classified based on two orthogonal distinctions: persis-
tent (Oa,π) vs non-persistent (Oa,τ), and preemptive (Oa,x

pr) vs non-preemptive (Oa,x
n−pr).

The formulas of PCL are constructed in two steps according to the following forma-
tion rules: (i) every propositional letter is a literal; (ii) the negation of a literal is a literal;
(iii) if X is a deontic operator and l is a literal then Xl and ¬Xl are deontic literals.

After we have defined the notions of literal and deontic literal we can use the follow-
ing set of formation rules to introduce ⊗-expressions, i.e., the formulas used to encode
chains of obligations and violations: (a) every deontic literal is an ⊗-expression; (b) if
Xl1, . . . ,Xln are deontic literals, then Xl1⊗ . . .⊗Xln is an ⊗-expression.

The connective⊗ permits combining primary and reparative obligations into unique
regulations. The meaning of an expression like Oa,π

pr A⊗OpB⊗OmC is that the primary
provision is an achievement, persistent, preemptive obligation to do A, but if A is not
done, then we have a punctual obligation to do B. If B fails to be realised, then we
obtain a maintenance obligation to do C. Thus B is the reparation of the violation of the
obligation Oa,π

pr A. Similarly C is the reparation of the obligation OpB, which is in force
when the violation of A occurs.

Each norm is represented by a rule in PCL like r : A1, . . . ,An⇒C, where r is the id
of the norm, A1, . . . ,An is the set of the premises of the rule, and C is the conclusion of
the rule. Each Ai is either a literal or a deontic literal and C is an ⊗-expression.

PCL is also equipped with another type of rules, called defeaters (marked with arrow
) and a superiority relation (a binary relation) over the rule set.

In DL, the superiority relation (≺) determines the relative strength of two rules, and
it is used when rules have potentially conflicting conclusions. For example, given the
rules r1 : a⇒ Omb⊗Oa,π

n−prc and r2 : d ⇒¬Oa,π
pr c, r1 ≺ r2 means that rule r1 prevails

over rule r2 in situations where both fire and they are in conflict.
Defeaters play a peculiar role, as they cannot lead to any conclusion but are used to

defeat some rules by producing evidence to the contrary. Thus, defeaters are suitable to
model the termination of the persistence of obligations [8]. Consider Example 5:

invinit : invoice⇒ Oa,π
pr pay⊗Oppay_fine invterm : pay ¬Oa,π

pr pay

Here, compliance is the only condition that terminates the obligation to pay: if not
complied with, the obligation in fact persists beyond the deadline (we have still to pay),
so failing to meet the deadline is used to signal a violation and trigger a sanction.

Normal Forms We introduce transformations of a PCL representation of a normative
system to produce a normal form of the same (NPCL). The purpose of a normal form
is to “clean up” the PCL representation of a normative system, to identify formal prop-
erties, e.g., loopholes, inconsistencies, . . . , and to make hidden conditions explicit. We
first describe a mechanism, based on [6], to derive new conditions by merging together
existing normative clauses. Then, we examine the problem of redundancies, and we
give a condition to identify and remove redundancies from the formal normative speci-
fication. Finally, we discuss how to solve possible conflicts between deontic provisions.

Merging Norms One of the features of the logic of violations is to take two rules, or
norms, and merge them into a new clause.

Consider a norm like (Γ and ∆ are sets of premises) Γ ⇒ OmA. If we have that the
violation of OmA is part of the premises of another norm, for example, ∆ ,¬A⇒ OpC,
then the latter must be a good candidate as reparative obligation of the former:

Γ ⇒ OmA ∆ ,¬A⇒ OpC
Γ ,∆ ⇒ OmA⊗OpC

This reads as follows: given two policies such that one is a conditional obligation (Γ ⇒
OmA) and the antecedent of second contains the negation of the propositional content
of the consequent of the first (∆ ,¬A⇒OpC), then the latter is a reparative obligation of
the former. Their interplay makes them two related norms so that they cannot be viewed
anymore as independent. Therefore we can combine them to obtain an expression (i.e.,
Γ ,∆ ⇒OmA⊗OpC) that exhibits the explicit reparative obligation of the second norm
with respect to the first.

Let X ,Y,Z be deontic operators. The following is the general rule for merging norms
based on [6,2]:

Γ ⇒ Xa⊗ (
⊗n

i=1 Y bi)⊗Zc ∆ ,¬b1, . . . ,¬bn⇒ Zd
Γ ,∆ ⇒ Xa⊗ (

⊗n
i=1 Y bi)⊗Zd

(1)

Removing Redundancies It is possible to combine rules in slightly different ways, and
in some cases the meaning of the rules resulting from such operations is already cov-
ered by other rules. In other cases the rules resulting from the merging operation are
generalisations of the rules used to produce them, consequently, the original rules are
no longer needed in the specifications. To deal with this issue we introduce the notion
of subsumption between rules. A rule subsumes a second rule when the behaviour of
the second rule is implied by the first rule. For example, let us consider the rules

r : Invoice⇒ Oa,π
pr Pay7Days⊗OpPayInterest r′ : Invoice,¬Pay7Days⇒ Oa,π

n−prPayInterest.

The first rule says that after the seller sends the invoice the buyer has the achievement,
persistent and preemptive obligation to pay within one week, otherwise immediately
after the violation the buyer has to pay the principal plus the interest. Thus we have the
primary obligation Oa,π

pr Pay7Days, whose violation is repaired by the secondary obliga-
tion OpPayInterest. According to the second rule, given the same set of circumstances
Invoice and ¬Pay7Days we have the achievement, persistent and non-preemptive obli-
gation Oa,π

n−prPayInterest. However, (a) the primary obligation of r′ obtains when we
have a violation of the primary obligation of r; (b) after the obligation Oa,π

pr Pay7Days is
violated, complying with the secondary obligation OpPayInterest of r entails comply-
ing with the primary obligation Oa,π

n−prPayInterest of r′ (but not vice versa); (c) hence, r
is more general than r′, and so the latter can be discarded.

In what follows, Definition 4 characterizes subsumption (which refers to Definitions
1, 2, and 3 to establish when the compliance conditions for an ⊗-expression cover the
compliance conditions of another ⊗-expression).

Definition 1. Let X ,Y ∈ {Oa,π
pr ,O

a,π
n−pr,O

a,τ
pr ,O

a,τ
n−pr,O

m,Op}. Then, Y v X iff

(i) if Y = Oa,π
pr , then X ∈ {Oa,π

pr ,O
a,π
n−pr,O

a,τ
pr ,O

a,τ
n−pr,O

m,Op};
(ii) if Y = Oa,π

n−pr, then X ∈ {Oa,π
n−pr,O

a,τ
n−pr,O

m,Op};
(iii) if Y = Oa,τ

pr , then X ∈ {Oa,π
pr ,O

a,π
n−pr,O

a,τ
pr ,O

a,τ
n−pr,O

m,Op};
(iv) if Y = Oa,τ

n−pr, then X ∈ {Oa,π
n−pr,O

a,τ
n−pr,O

m,Op};
(v) if Y = Om, then X = Om;

(vi) if Y = Op, then X ∈ {Op,Om}.

Definition 2. Let Xa be a deontic literal and Y any deontic operator. If X = ¬Y , X is a
negative operator; if X = Y , it is a positive operator.

Definition 3. Let A =
⊗m

i=1 Xai and B =
⊗n

i=1 Y bi be two ⊗-expressions. Then, A de-
ontically includes B iff m = n, and for each Xai, Y bi (1) ai = bi, and (2) if X and Y are
positive operators, then Y v X.

Definition 4. Let r1 : Γ ⇒ A⊗B⊗C and r2 : ∆ ⇒D be two rules, where A=
⊗m

i=1 Xai,
B =

⊗n
i=1 Y bi and C =

⊗p
i=1 Zci. Then r1 subsumes r2 iff

1. Γ = ∆ and A deontically includes D; or
2. Γ ∪{¬a1, . . . ,¬am}= ∆ and B deontically includes D; or
3. Γ ∪{¬b1, . . . ,¬bn}= ∆ and A⊗

⊗k≤p
i=0 ci deontically includes D.

Consider, e.g., the obligation B = Oa,τ
n−prb. If another obligation A is equal to B, com-

pliance conditions for both are trivially the same. If A is either Oa,π
n−prb, Omb, or Opb,

A deontically includes B, because, if both are in force, the compliance of A implies the
compliance of B. However, notice that if A is a preemptive achievement obligation, we
have no guarantee that its compliance supports the compliance of B: indeed, b could
have been obtained before A and B were in force, which is enough for fulfilling only A.

Solving Conflicts Conflicts often arise in normative systems. However, we have to de-
termine whether we have genuine conflicts between ⊗-expressions or whether such ⊗-
expressions admit states where all can be complied with. Suppose that A = Opa⊗Omb
and B = Oa,π

pr ¬a⊗Om¬b are in force. The secondary obligations of A and B are in
contradiction but their primary obligations do not necessarily lead to a joint non-
compliance: if it is now forbidden to pay, and it is obligatory to pay by tomorrow, I
can comply with both obligations by simply paying tomorrow.

Therefore, we have first to identify what⊗-expressions do conflict with one another.
First of all, let us define when two single obligations are in conflict:

Definition 5. Let l, Xl, and Y be a literal, a deontic literal, and a positive operator,
respectively. The complement ∼ l is ¬p if l = p, and p if l = ¬p. The complement ∼Xl
is defined as follows:

– If Xl = Y l, ∼Xl = {Zp|Z is positive, p =∼ l, either Z v Y or Y v Z}∪{¬Zq|Z =
Y, q = l};

– If Xl = ¬Y p, ∼Xl = {Zq|Z is positive, Z = Y, q = l}.

Definition 6 states under what conditions two ⊗-expressions are in conflict.

Definition 6. Let A =
⊗m

i=1 Xai be an ⊗-expression. Then, ∼A = {B =
⊗n

i=1 Y bi|m =
n, ∀Xai, Y bi : Xai =∼Y bi}.

Given a theory consisting of a set of rules R, a set S of facts (literals and deontic
literals), and a superiority relation, we can use the inference mechanism of Defeasible
Logic to compute, in time linear to the size of the theory, the set of its conclusions. This
implies to solve genuine conflicts by resorting to the superiority relation over the rules.
Once we have defined when two ⊗-expressions are in conflict (Definition 6), we can
simply use the same reasoning mechanism described in [2].

Normalisation Process The PCL normal form of a normative system provides a repre-
sentation of normative specifications in a format that can be used to check the compli-
ance of a process. This consists of the following steps:

1. Starting from a formal representation of the explicit clauses of a set of normative
specifications we generate all the implicit conditions that can be derived from the
normative system by applying the merging mechanism of PCL.

2. We can clean the resulting representation by throwing away all redundant rules
according to the notion of subsumption.

3. Finally we detect and solve normative conflicts.

In general the process at step 2 must be done several times in the appropriate order as
described above. The normal form of a set of rules in PCL is the fixed-point of the above
constructions. A normative system contains only finitely many rules and each rule has
finitely many elements. Notice that the operation on which the construction is defined
is monotonic [6], so by set theory results the fixed-point exists and is unique.

4 Process Modeling

A business process model (BPM) describes the tasks to be executed (and the order in
which they are executed) to fulfill some objectives of a business. A language for BPM
usually has two main elements: tasks and connectors. Tasks correspond to activities
to be performed by actors and connectors describe the relationships between tasks: a
minimal set of connectors consists of sequence (a task is performed after another task),
parallel –AND-split and AND-join– (tasks are to be executed in parallel), and choice –
(X)OR-split and (X)OR-join– (at least (most) one task in a set of task must be executed).

Execution Semantics The execution semantics of the control flow aspect of a BPM is
defined using token-passing mechanisms, as in Petri Nets. The definitions used here
extend the execution semantics of [9] with semantic annotations in the form of effects
and their meaning.

A process model is seen as a graph with nodes of various types –a single start
and end node, task nodes, XOR split/join nodes, and parallel split/join nodes– and di-
rected edges (expressing sequentiality in execution). The number of incoming (outgo-
ing) edges are restricted as follows: start node 0 (1), end node 1 (0), task node 1 (1),
split node 1 (>1), and join node >1 (1). The location of all tokens, referred to as a
marking, manifests the state of a process execution. An execution of the process starts
with a token on the outgoing edge of the start node and no other tokens in the process,
and ends with one token on the incoming edge of the end node and no tokens elsewhere.
Task nodes are executed when a token on the incoming link is consumed and a token on
the outgoing link is produced. The execution of an XOR (Parallel) split node consumes
the token on its incoming edge and produces a token on one (all) of its outgoing edges,
whereas an XOR (Parallel) join node consumes a token on one (all) of its incoming
edges and produces a token on its outgoing edge.

Annotation of Processes The starting point of [5] was the methodology proposed by
[10] where the task of a process are annotated with the (i) the artifacts or effects of
executing and (ii) the rules describing the obligations for the process, where the rules
are expressed in PCL. As for the semantic annotations, the vocabulary is presented as
a set of predicates P. There is a set of process variables (x and y in Fig. 1), over which
logical statements can be made, in the form of literals involving these variables. The
task nodes can be annotated using effects which are conjunctions of literals using the
process variables. If executed, a task changes the state of the world according to its
effect: every literal mentioned by the effect is true in the resulting world; if a literal l
was true before, and is not contradicted by the effect, then it is still true. We assume that
effects in parallel tasks do not contradict each other.

A: Enter New
Customer

Information

B: Identity
Check

J: Notify
Customer and
Close Case

G: Accept initial
Deposit

F: Apply
Account Policy

E: Open
Account

D: Approve
Account
Opening

I: Initiate
Account

C: Login for
Existing

Customer

H: Accept
Empty Initial

Balance

Task Semantic Annotation
A newCustomer(x)
B checkIdentity(x)
C checkIdentity(x), recordIdentity(x)
D accountApproved(x)
E owner(x,y), account(y)
F accountType(y, type)
G positiveBalance(y)
H ¬positiveBalance(y)
I accountActive(y)
J notify(x,y)

Fig. 1. Example account opening process in private banking, and task annotations

An example of the rules for the process in Figure 1 is “All new customers must
be scanned against provided databases for identity checks” (this rule is taken from the
Australian Anti-Money Laundering and Counter-Terrorism Financing Act 2006)

r1 : newCustomer(x)⇒ Oa,τ
pr checkIdentity(x)

The predicate newCustomer(x) is such that if x is a new customer, we have the obli-
gation to check the data against provided databases. The resulting obligation is non-
persistent, i.e., the identity check must be made immediately after we discover that x is
a new customer. In addition the obligation is preemptive: if for some reasons the check
was already previously performed there is no need to perform it again.

Compliance Checking Our aim in the compliance checking is to figure out (a) which
obligations will definitely appear when executing the process, and (b) which of those
obligations may not be fulfilled. PCL constraint expressions for a normative system
define a behavioural and state space which can be used to analyse how well different
behaviour execution paths of a process comply with the PCL constraints. In [5] we have
shown how to adapt the algorithm to check compliance proposed in [3] to take into ac-
count the rich ontology of norm types we have discussed in the previous sections. The
introduction of the types of obligations allows us to model not only semantic compli-
ance (compliance of the effects of the tasks against a regulation) but also structural
compliance, that is, for example, to check the order in which the tasks in a process are
executed, and whether two tasks can be executed it the same process.

To check compliance we use the following procedure (for the details see [5]):

Step 1 We traverse the graph describing the process and we identify the sets of effects
(sets of literals) for all the tasks (nodes) in the process according to the execution
semantics outlined in Section 4.

Step 2 For each task we use the set of effects for that particular task to determine the
obligations triggered by the execution of the task. This means that effects of a task
are used as a set of facts, and we compute the conclusions of the defeasible theory
resulting from the effects and the PCL rules annotating the process. In the same

way we accumulate effects, we also accumulate (undischarged) obligations from
one task in the process to the task following it in the process.

Step 3 For each task we compare the effects of the tasks and the obligations accumu-
lated up to the task. If an obligation is fulfilled by a task, we discharge the obliga-
tion, if it is violated we signal this violation. Finally if an obligation is not fulfilled
nor violated, we keep the obligation in the stack of obligations and propagate the
obligation to the successive tasks.

5 From Processes to Rules

The aim of this section is twofold. First we want to show that PCL can be used to
express conditions on order of the tasks, the structure of the process, including thus
common process control flow patterns, as well as other complex conditions about re-
lationships among tasks in a process. In this way, we can use the same language to
express the conditions about the effects or artifacts of a process as well as its tasks
and we can combine the two to obtain a more expressive formalism able to capture
complex compliance requirements. Second, resorting to the same language to express
control flows and compliance requirements allows one to use an appropriate rule en-
gine for multiple functions; in particular, we can check the compliance of a process at
design-time, and monitoring compliance at run-time. Actually, we can push this one
step forward, as the process can be executed directly by the rule engine, thus the moni-
toring of compliance coincides with the execution of the process. The advantage of this
approach is that a business analyst can continue to model a process in familiar standard
graphical languages (e.g., BPMN, EPC, Petri-Nets, YAWL, . . .), and integrate it with
the compliance requirements, and then the combination of the two is executed directly
by one engine (the rule engine). This minimises risks of “lost in translation” issues
that occur when both the graphical model and the compliance model have to be trans-
lated into an execution language for the (common) execution of the two. The use of
executable specifications, as in PCL where the rules can be executed directly by a rule
engine like SPINdle [11], greatly reduces these risks. On the other hand the mapping
of control flow patterns and other complex constraints offers the opportunity for a fully
declarative language for business process modeling. In the remaining of this section we
illustrate this idea and we show how to capture the most common and basic control flow
patterns. Notice that the technique used does not relay on any specific business process
language.

To capture control flows and other complex relationships among the tasks in a pro-
cess we extend the language of PCL with a set of propositional letters to denote the
tasks; in what follows we will use t, t1, t2, . . . to refer to them, and these propositional
letters correspond to the names/ids of the tasks in a process. For the execution of the
process, these names can correspond to calls to the procedures that implement the tasks.
In addition, for the representation of OR-split, we need to introduce auxiliary proposi-
tional letters corresponding to structural nodes in a process model (i.e., connectors).

Sequence A sequence means that tasks are executed one after the other. The standard
execution pattern for a sequence operator in process language is that one task is executed
immediately after another. Thus the sequence connection in Figure 2 between tasks t1

t1 t2

Fig. 2. Sequence operator

and t2 is that task t2 is executed after task
t1. The relationship between the two task
can be modeled by the rule

t1⇒ Opt2

After task t1 has been executed, the literal t1 triggers the rule that puts the punctual
obligation Opt2 in the stack of obligations to be fulfilled at the next step. Thus, the
failure to perform task t2 in the step following the step in which t1 completed results in
a violation and thus we have a non-compliant execution trace.

After The pattern after, modeled by the rule schema

t1⇒ Oa,π
n−prt2,

is a variant of sequence. The idea is that after task t1 we have the obligation to achieve
task t2, but not necessarily in the step immediately after the step in which t1 has been
executed. It is worth noting that in this case we have to use a non-preemptive obligation
to avoid that an execution of t2 before t1 fulfils this obligation. Compare this with the
co-occurrence condition below.

Parallel tasks: AND-split, AND-join An AND-split starts several sub-processes to be
executed in parallel. The condition encoding this pattern is modeled by a set of rules,

t1

tn

t

...

t1

tn

t

...

Fig. 3. AND-split and AND-join

t⇒ Opt1 . . . t⇒ Optn

all of which have the same antecedent, the task t whose completed execution triggers
the split. The conclusions of such rules are punctual obligations for the tasks t1, . . . , tn
starting the sub-processes to be executed in parallel. This means that the tasks t1, . . . , tn
are inserted in the stack of obligations to be executed in the step after task t.

Similarly, an AND-join requires the synchronisation of a number of sub-processes
before proceeding to the next task. Accordingly, an AND-join is captured by the rule

t1, . . . , tn⇒ Opt

This rule needs all the antecedents to hold to fire, and to conclude the punctual obliga-
tion Opt. Hence, all last tasks t1, . . . , tn of the sub-processes to be synchronised have to
be completed before we move to the task after the merge of the sub-processes.

Choice: (X)OR split, OR join An OR-split is intended to capture sub-processes where
one has a choice on how to continue a process. For the representation of an OR-split

t1

tn

t

...

t1

tn

t

...

Fig. 4. (X)OR-split and OR-join

pattern in PCL, we have to use the auxiliary propositional letter. For each OR-split
connector in a diagram we establish a one-to-one mapping between the connector and
the auxiliary propositional letter. Then the set of rules required to model this pattern is

t⇒ Op(ORsplitID) t1⇒ ORsplitID . . . tn⇒ ORsplitID

The first rule on the left side tells us that the completion of task t trigger the obligation
to fulfill the obligation for ORsplitID, where ORsplitID is the propositional letter of
the corresponding OR-connector, and the obligation is in the stack of obligations to be
fulfilled in the step immediately after the step where we have t. The other rules do not
generate normative conclusion, but just factual conclusions. Thus, the meaning of the
first rule is that the completion of task t1 (which we assume to be the first task in one of
the outgoing sub-processes after the OR-split) fulfills the obligation, or in other terms
that ORsplitID holds.

For an XOR, in addition we need, the rules

ti⇒¬t j i 6= j,1≤ i, j ≤ n

which state that if ti holds then t j does not hold, thus it is not possible to have a sit-
uation where both ti and t j hold. As a consequence, only one of the alternative sub-
processes can be executed. This method requires to generate n2 additional rules for
each XOR-split. An alternative encoding of XOR-split, in particular when a default
choice is present, is to use a rule with reparative deontic conclusions, thus

t⇒ Opt1⊗Opt2⊗·· ·⊗Optn

According to the rule above, the best option after t is t1, but if t1 is not performed, then
the second best option is t2 and so on. Thus, the above rule determines a total order on
the preferences of the alternative choices in an XOR-split. In addition it is possible to
combine the above two techniques, so we can have a rule like t⇒Opti⊗OpORsplitID.
This gives a default choice over ti but no preferences over the others sub-processes:

t1⇒ Opt . . . tn⇒ Opt

Absence The absence is the condition that establishes that one task cannot be anymore
scheduled in the process if another task already happened in the process. This condition
can be represented by the rule

t1⇒ Om¬t2

that uses a maintenance prohibition (i.e., O¬) stating that the task t2 cannot happen after
the execution of task t1.

Co-occurrence This pattern is designed to check that two tasks, let us say ti and t j,
occur in the process. This can expressed as follows: if task ti happens in the process,
this should also include task t j. The idea is similar to the after pattern; the difference
is that in after the second task (for the sake of argument, t j) should occur in a step
successive to that including ti. For the co-occurrence pattern, this restriction is lifted so
task t j can appear anywhere in the process. To express this we use a non-preemptive
obligation. Accordingly, the pattern is modeled by

ti⇒ Oa,π
pr t j t j⇒ Oa,π

pr ti

The first rule on the left says that t j must occur when ti occurs, and the second that ti
must occur when t j does. Thus, depending on the situation, one can use either one of the
two rules or both. In case we have only the first rule, an execution trace is non compliant
when we have ti but not t j, but non-compliance does not occur when we only have t j
(similarly, for the second rule). If both rules are in force, then a trace is compliant if
either both tasks are in the trace or none is.

Conditional Occurence With the previous patters we have examined situations where
if one task is included in an execution trace so do other tasks. With this pattern we
consider a subtle difference: we consider the case where one task has to be included if
another one has to be included as well. This pattern is described by the rule

Oxt1⇒ Oxt2

The difference with the other patterns is that in the antecedent we have an obligation
instead of a factual premise. Most of the considerations regarding the co-occurrence
pattern apply to this patter as well; but there is one difference. Suppose that the rule
fires, thus we have the obligation of performing task t1. The obligation to perform task
t2 still exists even if for some reasons task t1 is not done (for example, let us say there
is a situation where it is possible not to execute t1 provided some compensatory actions
are taken).

In Between and Discharge The aim of this pattern is to model the condition that one
task must be executed after another one but before a third one, for example, that task t j
is executed between tasks ti and t j. In PCL this can be expressed as

ti⇒ Oa,π
n−trt j tk ¬Oa,π t j tk⇒¬t j

The first rule on the left side is just the rule for the after pattern. The second rule in
the middle terminates the obligation to achieve t j when tk is performed, in addition the

performance of tk signals that t j has not been executed. Thus if task t j is not executed
in between the other two task, we have an unfulfilled obligation resulting in a non-
compliant situation. Please compare the idea of this pattern with the discussion about
deadlines and whether obligations persist after the deadlines.

Loops, Hooks and Loop Termination Most BPM notations allow us to represent loops
(reoccurring sub-processes). PCL is able to represent loops as well, with rules like

ti⇒ Oa,τ
n−prti

or more in general with rules such as

ti⇒ Oxt j

where t j is in the dependence graph of ti.
To avoid infinite loops, a loop termination condition can be expressed by a rule

p ¬Oxti

where ti is a task involved in a loop (we avoid the discussion about fairness conditions
for p and fairness conditions for loop termination for tasks inside OR-split blocks inside
loop blocks).

An interesting rule is
t1⇒ Omt2

This rule requires task t2 to be execute in every step following a step where task t1
successfully completed; the obligation generated by the rule is a maintenance condition.
The intuition is that t2 is a hook task, that is a task that must be executed every time the
business process activates another task.

6 Summary and Related Work

Given two tasks t1, t2 of a process we can use the types of obligations defined in
Section 2 to describe relationships between these two tasks (the types of obliga-
tions provide a comprehensive classification of the possible obligations). In particular

ti⇒ Opt j sequence
ti⇒ Oa,π

n−prt j after
ti⇒ Oa,π

pr t j co-occurrence
ti⇒ Omt j process hook

Table 1. Flow patterns

we have seen that some of them give rise to nat-
ural and common control flow patterns in busi-
ness processes, in particular, even if we limit our-
selves to basic relationships, we can express pat-
terns like those in Table 1.

In addition we can represent many more pat-
terns including those that are difficult to express
in standard BPM languages, for example, condi-
tions using tasks from different branches of a process (e.g., in an OR-block), and we
can mix information about tasks (task literals) and data conditions. Thus, it seems to us
that PCL offers a rich, compact and holistic framework for business process compliance

in such a way as we also can use a rule engine for PCL as a process engine. To under-
stand the full extent of the proposed approach we plan a comprehensive comparison
with control flow patterns [12], data patterns [13], and the declarative patterns of [14].

A number of works have been devoted to compliance in control modelling. [15]
presents the logical language PENELOPE, that provides the ability to verify temporal
constraints arising from compliance requirements on effected business processes. [16]
develops a method to check compliance between object lifecycles that provide refer-
ence models for data artifacts e.g. insurance claims and business process models. [17]
provides temporal rule patterns for regulatory policies, although the objective of this
work is to facilitate event monitoring rather than the usage of the patterns for support
of design time activities. Furthermore, [18] presented an architecture for supporting
Sarbanes-Oxley Internal Controls, which include functions such as workflow model-
ing, active enforcement, workflow auditing, as well as anomaly detection. [19] studies
the performance of business contract based on their formal representation. [20] seeks to
provide support for assessing the correctness of business contracts represented formally
through a set of commitments. The reasoning is based on value of various states of com-
mitment as perceived by cooperative agents. Also, there have been recently some efforts
towards support for process modelling against compliance requirements. [10] proposes
an approach based on control tags to visualize internal controls on process models. [21]
takes a similar approach of annotating and checking process models against compliance
rules, although the visual rule language (BPSL) does not directly address the deontic
notions providing compliance requirements.

Many works proposed declarative languages to model business processes. [14,22]
used a language based on linear temporal logic to model processes to check confor-
mance by symbolic model checking, [23] show how to use Concurrent Transaction
Logic to represent the structure of of workflows, while [24] advance a prolog-like lan-
guage for the same scope. The use of logic and rule based languages to describe business
processes is not new. However, most works are restricted to limited patters of tasks, and
almost no work uses the same for data (artifact) requirements, nor it address deontic
concerns and is able to handle violations and possible compensations for violations.

Acknowledgement

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program and Queensland Government.

References

1. Carmo, J., Jones, A.: Deontic logic and contrary to duties. In Gabbay, D., Guenther, F., eds.:
Handbook of Philosophical Logic, 2nd Edition. Kluwer (2002) 265–343

2. Governatori, G.: Representing business contracts in RuleML. International Journal of Co-
operative Information Systems 14 (2005) 181–216

3. Governatori, G., Rotolo, A.: An algorithm for business process compliance. In Sartor, G.,
ed.: Jurix 2008, IOS Press (2008) 186–191

4. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising deadlines in temporal
modal defeasible logic. In Orgun, M.A., Thornton, J., eds.: Australian AI. LNCS 4830,
Berlin, Springer (2007) 486–496

5. Governatori, G., Rotolo, A.: A conceptually rich model of business process compliance. In
Link, S., Ghose, A., eds.: APCCM 2010. CRPIT, ACS (2010)

6. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning with
contrary-to-duty obligations. Australasian Journal of Logic 4 (2006) 193–215

7. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2 (2001) 255–287

8. Governatori, G., Rotolo, A.: Changing legal systems: Legal abrogations and annulments in
defeasible logic. The Logic Journal of IGPL 18 (2010) 157–194

9. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through sese decomposition. In Krämer, B.J., Lin, K.J.,
Narasimhan, P., eds.: ICSOC. LNCS 4749, Springer (2007) 43–55

10. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business process
compliance. [25] 149–164

11. Lam, H.P., Governatori, G.: The making of SPINdle. In Governatori, G., Hall, J., Paschke,
A., eds.: RuleML 2009. LNCS 5858, Berlin, Springer (2009) 315–322

12. van der Aalst, W.M., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow pat-
terns. Distributed and Parallel Databases 14 (2003) 5–51

13. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow data pat-
terns: Identification, representation and tool support. In Delcambre, L.M.L., Kop, C., Mayr,
H.C., Mylopoulos, J., Pastor, O., eds.: ER. LNCS 3716, Springer (2005) 353–368

14. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. [26] 169–180

15. Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and
permissions. [26] 5–14

16. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for object life
cycle compliance. [25] 165–181

17. Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring rules:
Towards model driven compliance automation. Technical report, IBM Zurich Lab. (2006)

18. Agrawal, R., Johnson, C.M., Kiernan, J., Leymann, F.: Taming compliance with Sarbanes-
Oxley internal controls using database technology. In Liu, L., Reuter, A., Whang, K.Y.,
Zhang, J., eds.: ICDE, IEEE Computer Society (2006) 92

19. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the event calculus for tracking
the normative state of contracts. International Journal of Cooperative Information Systems
14 (2005) 99–129

20. Desai, N., Narendra, N.C., Singh, M.P.: Checking correctness of business contracts via
commitments. In: Proc. AAMAS 2008. (2008) 787–794

21. Liu, Y., Müller, S., Xu, K.: A static compliance-checking framework for business process
models. IBM Systems Journal 46 (2007) 335–362

22. Rozinat, A., van Der Aalst, W.M.: Conformance checking of processes based on monitoring
real behavior. Information Systems 33 (2008) 64–95

23. Roman, D., Kifer, M.: Reasoning about the behaviour of semantic web services with con-
current transaction logic. In: VLDB. (2007) 627–638

24. Gregory, S., Paschali, M.: A prolog-based language for workflow programming. In Murphy,
A.L., Vitek, J., eds.: COORDINATION. LNCS 4467, Springer (2007) 56–75

25. Alonso, G., Dadam, P., Rosemann, M., eds.: BPM 2007. LNCS 4714, Springer (2007)
26. Eder, J., Dustdar, S., eds.: Business Process Management Workshops. LNCS 4103, Springer

(2006)

