Fal Y

’;‘“‘%Q HOKKAIDO UNIVERSITY

N

Title Training Parse Trees for Efficient VF Coding
Author(s) Uemura, Takashi; Yoshida, Satoshi; Kida, Takuya; Asai, Tatsuya; Okamoto, Seishi
https://doi.org/10.1007/978-3-642-16321-0_17
Citation String Processing and Information Retrieval : 17th International Symposium, SPIRE 2010, Los Cabos, Mexico, October
11-13, 2010. Proceedings (Lecture Notes in Computer Science; 6393), 2010, pp.179-184, ISBN: 978-3-642-16320-3,
ISSN: 0302-9743, E-ISSN: 1611-3349
Issue Date 2010
Doc URL http://hdl.handle.net/2115/50054
Rights The original publication is available at www.springerlink.com
Type bookchapter (author version)

File Information

SPIR6393_179-184.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Training Parse Trees for Efficient VF Coding

Takashi Uemura!, Satoshi Yoshida', Takuya Kida!,
Tatsuya Asai?, and Seishi Okamoto?

! Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
2 Fujitsu Laboratories Ltd., 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki
211-8588, Japan

Abstract. We address the problem of improving variable-length-to-fixed-
length codes (VF codes), which have favourable properties for fast com-
pressed pattern matching but moderate compression ratios. Compression
ratio of VF codes depends on the parse tree that is used as a dictionary.
We propose a method that trains a parse tree by scanning an input text
repeatedly, and we show experimentally that it improves the compres-
sion ratio of VF codes rapidly to the level of state-of-the-art compression
methods.

1 Introduction

From the viewpoint of speeding up pattern matching on compressed texts,
variable-length-to-fized-length codes (VF codes for short) have been reevaluated
lately [3,4]. A VF code is a coding scheme that parses an input text into a
consecutive sequence of substrings (called blocks) with a dictionary tree, which
is called a parse tree, and then assigns a fixed length codeword to each sub-
string. It is quite hard to construct the optimal parse tree that gives the best
compression ratio for the input text, since it is equal to or more difficult than
NP-complete [4].

Our concern is how to construct parse trees that approximate the optimal tree
better. In most VF codes, a frequency of each substring of 7" is often used as a
clue for the approximation, since it could be related to the number of occurrences
in a sequence of parsed blocks. This gives a chicken and egg problem as Klein
and Shapira stated in [4]; that is, to construct a better dictionary, which decides
the partition of T, one has to estimate the number of entries that occurs in the
partition.

In this paper we discuss about a method for training a parse tree of a VF code
to improve its compression ratio. We propose an algorithm of reconstructing a
parse tree based on the merit of each node. We employ a heuristic approach:
scanning the input text for estimating the parse tree and then reconstructing it
many times. We can control the number of repetition and also we can employ a
random sampling technique to reduce the training time. We show experimentally
that our method improves VF codes comparable to gzip and the others with a
moderate sacrifice of compression time.

2 Variable-length-to-Fixed-length codes

Let X be a finite alphabet. A VF code is a source coding that parses an input
text T € X into a consecutive sequence of variable-length substrings and then
assigns a fixed length codeword to each substring. We will describe the brief
sketches of two VF codes below.

Tunstall code [7] is an optimal VF code (see also [6]) for a memory-less
information source. It uses a parse tree called Tunstall tree, which is the optimal
tree in the sense of maximizing the average block length. Tunstall tree is an
ordered complete k-ary tree that each edge is labelled with a different symbol
in X, where k = |¥|. Let Pr(a) be an occurrence probability for source symbol
a € Y. The probability of string x, € X+, which is represented by the path
from the root to leaf p, is Pr(z,) =[], cc Pr(n), where ¢ is the label sequence on
the path from the root to g (from now on we identify a node in 7 and a string
represented by the node if no confusion occurs). Then, Tunstall tree 7* can be
constructed as follows:

1. Initialize 7 as the ordered k-ary tree whose depth is 1, which consists of
the root and its children; it has k + 1 nodes.

2. Repeat the following while the number of leaves in 7* is less than 2*
(a) Select a leaf v that has a maximum probability among all leaves in T*.
(b) Make v be an internal node by adding & children onto v.

A Suffiz Tree based VF code [3,4] (STVF code for short®) is a coding that
constructs a suitable parse tree for the input text by using a suffix tree [8], which
is a well-known index structure that stores all substrings and their frequencies
in the target text compactly. In STVF codes, a suffix tree for the input text
is constructed at first, and then the frequencies of all nodes are precomputed.
Since the suffix tree for the input text includes the text itself, the whole tree
can not be used as a parse tree. We have to prune it with some frequency-based
heuristics to make a compact and efficient parse tree.

We outline the algorithm of constructing the parse tree. The algorithm starts
with the initial parse tree that contains the root and its k£ children in the suffix
tree. Then, it repeats choosing a node whose frequency is the highest in the
suffix tree but not yet in the parse tree, and putting it into the parse tree. The
construction algorithm extends the parse tree on a node-by-node basis.

An internal node u in the parse tree is said to be complete if the parse tree
contains all the children of u in the suffix tree. We do not need to assign a code-
word to any complete node, since the encoding process never fail its traversals at
a complete node. In Tunstall codes and the original STVF codes, all the internal
nodes are complete; only leaves are assigned codewords. An idea of improving
VF codes is to include incomplete nodes in the parse tree, but we have to mod-
ify the coding process so that it works in a non-instantaneous way. We omit the
detail of the modified coding process for lack of space.

3 Strictly, the methods of [3] and [4] are slightly different in detail. However, we call
them the same name here since the key idea is the same.

/

1. Find the longest prefix p ,' 4. Increment 4 (p)

in the parse tree 4 and F(p-T[j+1])
2. Failedfor T [j +1]
. A(p) —A(p)+1
S T[j+1]
/ .\\ﬁ 3. Output S S F(pe T —
’ ! " codeword C(p) ‘ ! F(p-T[j+1D+1

Fig. 1. An example of computing accept counts and failure counts.

3 Training parse trees

In this section, we present a reconstruction algorithm for a ready-made parse tree
to improve the compression ratio. The basic idea is to exchange useless strings
in the current parse tree as a result for the other strings that are expected to be
frequently used.

We define two measures for evaluating strings. For any string s in the parse
tree, the accept count of s, denoted by A(s), is defined as the number of that s
was used in the encoding. For any string ¢ that is not assigned a codeword, the
failure count of t, denoted by F'(t), is defined as the number of that the prefix
t[1..]t| — 1] of t was used but the codeword traversal failed at the last character
of t. That is, F(t) suggests how often ¢ likely be used if ¢ is in the parse tree. We
can embed the computations of A(s) and F(¢) in the encoding procedure. When
p = Ti..j] is parsed in the encoding, A(p) and F(p- T[j + 1]) are incremented
by one. Figure 1 shows an example of computing these measures.

Comparing the minimum of A(s) and the maximum of F(¢), the reconstruc-
tion algorithm repeats to exchange s and t if the former is less than the latter;
it removes s from the parse tree and enter ¢ instead.

To train a parse tree we apply the algorithm many times. For each iteration,
it first encodes the input text with the current parse tree. Next, it evaluates the
contribution of each string in the parse tree, and then exchanges some infrequent
strings for the other promising strings.

4 Experimental Results

We have implemented Tunstall coding and STVF coding with training ap-
proach that we stated in Sec. 3, and compared them with BPEX [5]*, ETDC
[2], SCDC [1], gzip, and bzip2. Although ETDC/SCDC are variable-to-variable
length codes, their codewords are byte-oriented and designed for compressed
pattern matching. We chose 16 as the codeword lengths of both STVF coding
and Tunstall coding. Our programs are written in C++ and compiled by g+-+
of GNU, version 3.4. We ran our experiments on an Intel Xeon (R) 3 GHz and
12 GB of RAM, running Red Hat Enterprise Linux ES Release 4.

* This name comes from the program implemented by Maruyama.

Table 1. About text files to be used.

Texts size(byte) |X| Contents
GBHTG119 87,173,787 4 DNA sequences
DBLP2003 90,510,236 97 XML data
Reuters-21578 18,805,335 103 English texts
Mainichil991 78,911,178 256 Japanese texts (encoded by UTF-16)

100
90 ® GBHTG119

c %0 l DBLP2003 " B
= " Reuters21578 l l
-g B Mainichil991 I I
E H
1
£ E
]
=]
O

¢ L

Fig. 2. Compression ratios.

We used DNA data, XML data, English texts, and Japanese texts to be com-
pressed (see Table 1). GBHTG119 is a collection of DNA sequences from Gen-
Bank®, which is eliminated all meta data, spaces, and line feeds. DBLP2003 con-
sists of all the data in 2003 from dblp20040213.xml%. Reuters-21578(distribution
1.0)7 is a test collection of English texts. Mainichi19918 is from Japanese news
paper, Mainichi-Shinbun, in 1991.

4.1 Compression ratios and speeds

The methods we tested are the following nine: Tunstall (Tunstall codes without
training), STVF (STVF codes without training), Tunstall-100 (Tunstall codes
with 100 times training), STVF-100 (STVF codes with 100 times training),
BPEX, ETDC, SCDC, gzip, and bzip2. Figure 2 shows the results of compres-
sion ratios, where every compression ratio includes dictionary informations. We
measured the averages of ten executions for Tunstall-100 and STVF-100.

For GBHTG119, STVF, Tunstall-100, and STVF-100 were the best in the
compression ratio comparisons. Since ETDC and SCDC are word-based com-
pression, they could not work well for the data that are hard to parse, such
as DNA sequences and Unicode texts. Note that, while Tunstall had no advan-

5 http://www.ncbi.nlm.nih.gov/genbank/

6 http://www.informatik.uni-trier.de/~ley/db/

" nttp://www.daviddlewis.com/resources/testcollections/reuters21578/
8 http://www.nichigai.co.jp/sales/corpus.html

10000

= GBHTG119 6
= 1000 2DBLP2003 | " GBHTGI19
2 " Reuters21578| g 5 1= pBLP2003
E ¥ Mainichil991 N H Reuters21578
£ 100 - — ,54 T = Mainichi1991
5 2
% g3
g 10 4 g
E £ 2 A
&} 1 7 §
ald
0.1 - .
D QP L LY A
FOPT N LE &R N N S R R
F oL Y s © S AN N I S A G
IS &Q&\ ES & S & & PPN GRNOUIE NG

&QQ S
Fig. 3. Compression times. Note that the

vertical axis is logarithmic scale. Fig. 4. Decoding times.

70 Tunstall [~
— - N
S (R oo STVF SR
2 60 = sample size = 5%
s g 38
= =
=]
2 50 Z 3 N
é £ e amplesize-10%
s
5]
40 3 ~ sample size = 15%
5 . \ SR sample size = 20%
T sample size = 25%
30 T T T T 1 32 . . . T)
0 20 40 60 80 100 0 20 40 60 80 100
Number of iterations Number of pieces

Fig. 5. The effects of training. Fig. 6. Training with sampling.
tage to STVF, Tunstall-100 gave almost the same performance with STVF-100.
Moreover, those were between gzip and bzip2.

Figure 3 shows the results of compression times. STVF was much slower
than Tunstall and ETDC/SCDC since it takes much time for constructing a
suffix tree. As Tunstall-100 and STVF-100 took extra time for training, they
were the slowest among all for any dataset.

Figure 4 shows the results of decompression times. Tunstall and STVF were

between BPEX and ETDC/SCDC in all the data. Tunstall-100 and STVF-100
became slightly slow.

4.2 Effects of training

We examined how many times we should apply the reconstruction algorithm for
sufficient training. We chose Reuter21578 as the test data in the experiments.
Figure 5 shows the results of the effect of training for STVF and Tunstall. We
can see that both compression ratios were improved rapidly as the number k of
iterations increases. We can also see that they seem to come close asymptotically
to the same limit, which is about 32%.

4.3 Speeding-up by sampling

In this experiment, we introduce a random sampling technique to save the train-
ing time.

Let T be the input text, m be the number of pieces, and B be the length of
a piece. For given m > 1 and B > 1, we generate a sample text S from 7T at
every iteration as S = sy - sy (sg = T'[ig..ix + B — 1] for 1 < k < m), where
1 <i <|T|— B+ 1is a start position of a piece s that we select in a uniform
random manner for each k. Then, |S| = mB.

Figure 6 shows the compression ratios for Tunstall codes with 20 times train-
ing. We measured the average of 100 executions for each result. We observed
that the compression ratio achieves almost the same limit when the sampling
size |S| is 256% of the text and the number m of pieces is 100. Compared with
BPEX, Tunstall codes with training overcome in compression ratios when |S| is
20% and m = 40. The average compression time at that point was 30.97 sec-
onds, while that of BPEX was 58.77 seconds. Although STVF codes are better
than Tunstall codes in compression ratios, it revealed that Tunstall codes with
training are also useful from the viewpoint of compression time.

Acknowledgements

This work was partly supported by a Grant-in-Aid for JSPS Fellows (KAK-
ENHI:21002025) and a Grant-in-Aid for Young Scientists (KAKENHI:20700001)
of JSPS.

References

1. Brisaboa, N.R., Farifia, A., Navarro, G., Esteller, M.F.: (s, c)-dense coding: An
optimized compression code for natural language text databases. In: SPIRE 2003.
LNCS, vol. 2857, pp. 122-136. Springer, Heidelberg (2003)

2. Brisaboa, N.R., Iglesias, E.L., Navarro, G., Paramd, J.R.: An efficient compression
code for text databases. In: ECIR 2003. LNCS, vol. 2633, pp. 468-481. Springer,
Heidelberg (2003)

3. Kida, T.: Suffix tree based VF-coding for compressed pattern matching. In: Data
Compression Conference 2009. p. 449. IEEE Computer Society, Los Alamitos, CA
(Mar 2009)

4. Klein, S.T., Shapira, D.: Improved variable-to-fixed length codes. In: SPIRE 2008.
LNCS, vol. 5280, pp. 39-50. Springer, Heidelberg (2008)

5. Maruyama, S., Tanaka, Y., Sakamoto, H., Takeda, M.: Context-sensitive grammar
transform: Compression and pattern matching. In: SPIRE 2008. LNCS, vol. 5280,
pp. 27-38. Springer, Heidelberg (2008)

6. Savari, S.A.: Variable-to-fixed length codes for predictable sources. In: Data Com-
pression Conference 1998. pp. 481-490. IEEE Computer Society, Los Alamitos, CA
(1998)

7. Tunstall, B.P.: Synthesis of noiseless compression codes. Ph.D. thesis, Georgia Inst.
Technol., Atlanta, GA (1967)

8. Weiner, P.: Linear pattern matching algorithms. In: 14th IEEE Symposium on
Switching and Automata Theory. pp. 1-11 (1973)

