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Abstract. The anticipation game framework is an extension of attack graphs
based on game theory. It is used to anticipate and analyze intruder and admin-
istrator concurrent interactions with the network. Like attack-graph-based model
checking, the goal of an anticipation game is to prove that a safety property holds.
However using this kind of goal is tedious and error prone on large networks be-
cause it assumes that the analyst has prior and complete knowledge of critical
network services.

In this paper we address this issue by introducing a new kind of goal called “strat-
egy objectives”. Strategy objectives mixes logical constraints and numerical ones.
In order to achieve these strategy objectives, we have extended the anticipation
games framework with cost and reward. Additionally this extension allows us to
take into account the financial dimension of attacks during the analysis. We prove
that finding the optimal strategy is decidable and only requires linear space. Fi-
nally we show that anticipation games with strategy objectives can be used in
practice even on large networks by evaluating the performance of our prototype.

1 Introduction

With the increasing size and complexity of networks, attack modeling is now
recognized as a key part of constructing an accurate network security for in-
trusion analysis, prevention, and forensic. Anticipation games (AG) [7] are an
evolution of attack graphs based on game theory. More specifically, an antici-
pation game is a simultaneous game played between a network attacker and a
network defender on a game-board consisting of a dependency graph. The de-
pendency graph defines which services exist on the network and how they are
related. The moves of the game do not change this dependency graph, but they
do change the attributes, such as the compromise attribute which is associated
with the nodes to reflect players action.



Typically an anticipation game is used to analyze how the network will be
impacted by various attacks and how administrator actions can counter them.
Using Anticipation games instead of attack graphs offers the following advan-
tages:

First it allows us to model the concurrent interaction of the intruder and
the administrator with the network. For example it is possible to model a case
wheres that the intruder is trying to exploit a vulnerability while the administra-
tor is trying to patch it.

Secondly, player interactions with the network are described by timed rules
that use precondition and postcondition written in a modal logic. Describing the
model only with the network initial state and a set of rules relieves the admin-
istrator from the tedious and error prone burden of explicitly describing each
network states and the transitions between them. In AG the model-checking al-
gorithm uses the set of rules to infer automatically every transition and network
state reachable from the network initial state. As a result it is possible to express
very large and complex models in a very compact form which is handy while
working on large networks and complex attacks. Additionally modeling player
action by rules allows us to capture security expert reasoning in an intuitive
manner.

Thirdly the use of timed rules allows us to model the temporal dimension
of the attack. It captures the fact that each interaction with the network requires
a different time. For instance, developing and launching an exploit is somewhat
slower than downloading and launching a publicly available one. Modeling the
time also models the so called "element of surprise” [12], which occurs when
one player takes the other by surprise because he is faster. For example, when the
administrator is patching a service she can be taken by surprise by the intruder
if the intruder is able to exploit the vulnerability before the patch is complete.
Finally since AG have been designed for network security analysis, they takes
into account network topological information such as dependency between net-
work services, which allow to model collateral effects. For example that when a
DNS server is unavailable by collateral effect, the web server is merely available
because the DNS resolution failed.



1.1 Motivation

Although using AG to analyze attacks provides a substantial improvement over
standard attack graphs, there is still one side of attack analysis that remains
tedious and error-prone: how to define the analysis goal As in standard attack
graph based on model checking [32], the current AG analysis goal is to prove
that a given safety property holds for a given model. For example one proves
that whatever an intruder does, a given service will never be compromised for
a given model. However network analysis, especially when working on large
networks, makes the expression of security goal in term of reachability very
hard because it is difficult to assert which services/hosts should be considered as
primary security objective. Furthermore, this type of goal can’t address natural
questions that arise while dealing with network security. For example ~”What
is the most devastating attack against my network”, or "In the worst case how
many services will be compromised ?” are example of such natural questions.

To answer these questions, one need to be able to express quantitative goals
which is not possible when the analysis goal is a safety property. Therefore in
this paper we introduce a new kind of analysis goal called ”Strategy objec-
tives”. Intuitively the idea is to combine a symbolic objective (logical formula)
with numerical ones (time, cost, and reward).

The logical formula is used to select all the plays that are valid strategies,

and the numerical objectives are used to refine the analysis by selecting among
these possible strategies, the one that is the most relevant to the player according
to his quantitative objectives.
To the best of our knowledge this is the first time that symbolic and numerical
objectives are combined to express player goals. Note that being able to select
among all the valid candidates the most relevant one is a central issue in network
security as the number of possible candidates (e.g different attacks) to achieve
a given goal is usually very large. The expressiveness offered by strategy ob-
jectives allows anticipation games to be used to a brand new range of question
that match more closely administrator and security analysts needs. For example
using strategy objective it is possible to answer the question: ”What is the most
effective patching strategy in term of cost or time ?”.

Moreover the introduction of action cost and reward takes into account the
financial dimension of attacks which is a central concern of network attack.
Taking into account action cost allow to reason about the cost required to launch
an attack, the loss induced by it, and the investment required to prevent it.



1.2 Contribution

Our main contribution is the extension of AG with strategy objectives. This ex-
tension allows the analysis to answer network security key questions. Further-
more it captures the financial dimension of the attack.

As far as we know, with this extension the AG framework is the first attack
model that covers both the financial and temporal aspect of attacks. Addition-
ally we prove that the model-checking of AG with strategy objectives is decid-
able, and that deciding if a play is a valid strategy can be done in linear time.
We also prove that using strategy objectives instead of a safety property adds
only a linear space complexity to the analysis. Finally we demonstrate with our
prototype, that in practice this framework can be used to find strategy for large
network (Thousands of nodes), and that practical results are consistent with the
theoretical bounds.

The reminder of this paper is organized as follow. In Sect. 2, we will survey
related work and in Sect. 3 we recall what an anticipation game is and present
how we have extended it to take into account cost and reward. We also present
the game example that is used as a guideline for the rest of the paper. Sect. 4
details how strategies objectives are expressed and contains the strategy decid-
ability and space complexity proofs. In sect. 5 we evaluate with our prototype
the impact of using strategy in term of speed and memory. We show that exper-
iments are consistent with the theory and that strategies can be used in practice.

2 Related Work

Attack graphs are a very active field pioneered by Schneier [34,35] and Kuang
and al [42]. Model checking for attack graphs was introduced by Ammann and
Ritchey [32]. They are used to harden security [26]. Various methods have
been proposed for finding attack paths, i.e., sequences of exploit state transi-
tions, including logic-based approaches [30,38,30,38,16,37], and graph-based
approaches [42,39,25]. Researchs has also been conducted on formal languages
to describe actions and states in attack graphs [10], Some rely on grammars
[40], some have a more practical focus [9], or specialize on IDS alert correla-
tion [23]. Some authors propose techniques that allow attack graphs to scale to
large networks [15]. Security metrics [28] have been developed, and supporting
tools such as NetSPA [3] or Sheyner’s tool [38] now exist.

The SIR model, which is similar to the compromising recovery cycle, is
used to study the propagation of epidemics in biology [8]. Biological models for
computer security were proposed recently [33]. As in computer virus propaga-
tion research [5,4 1], biological models are an inspiration of anticipation games.



The antibody (administrator) fights the disease (Intruder) to maintain the body
alive (the network). Following this intuition, using games to capture this fight
interaction appears natural. Games have become a central modeling paradigm
in computer science. In synthesis and control, it is natural to view a system and
its environment as players of a game that pursue different objectives [29]. In
our model, the intruder attempts at causing the greatest impact on the network
whereas the administrator tries to reduce it. Such a game proceeds for an infi-
nite sequence of rounds. At each round, the players choose actions to play, e.g.,
patching a service, and the chosen actions determine the successor state. For our
anticipation games we need, as in any real-time system, to use games where time
elapses between actions [21]. Anticipation game are based on timed automata,
timed games, and timed alternating-time temporal logic (TATL) [14], a timed
extension to alternating-time Kripke structures and temporal logic (ATL) [2].
The TATL framework was specifically introduced in [12]. Timed games differ
from their untimed counterpart in two essential ways. First, players have to be
prevented from winning by stopping time. More important to us is that players
can take each other by surprise: imagine that the administrator attempts to patch
a vulnerable service, and this will take 5 minutes, it may happen that intruder
is in fact currently conducting an attack, which will succeed in 5 seconds, nul-
lifying administrator action. Second (this is allegedly more technical), a player
cannot win by preventing time from diverging, i.e., from eventually tending to
infinity [36]. Average reward games considered in TATL framework are consid-
ered in [1], but with the time move duration restricted to either 0 or 1. ATL was
also extended to simply timed concurrent game structure [17]. Game strategies
have been used to predict players actions in numerous domains ranging from
economy to war [4,31]. The notion of cost for attack appears in [11]. The use of
games for network security was introduced by Lye and Wing [19]. The anticipa-
tion game framework was introduced in [7]. Finally Mahimkar and Shmatikov
used the game theory to model denial of service in [20].

3 Anticipation Games with Cost and Rewards

This section briefly recalls what an anticipation game is and explains the ex-
tension made to introduce strategy in the model. Intuitively, an Anticipation
Game (AG) can be represented as a graph. Each node of the graph describes the
network state at a given moment, e.g, each state describes which services are
compromised at this moment. The transitions represent the set of actions that
both players, the administrator and the intruder, can perform to alter the net-
work state. For example an edge may represent the action of removing a service
from the vulnerable set by patching it.



3.1 Network State

The network state is represented by a graph called Dependency graph (DG) and
a finite set of states. DG are meant to remain fixed over time and describe the
relation between services and files. Figure 3.1 presents the DG used as an ex-
ample in this paper. DG vertices are services and files present on the network
and the set of directed edges is used to express the set of dependency between
them. In the example, the direct edge that links the vertex Email server (5) to
the vertex User database (6) is used to denote that the email server depends on
the user database to identify its clients.

User Database
Server

Intranet web
server

Email
Server

States 112]|3]|4(|5|6
p(Muln) | L|L|L|T|T|L
p(Public) |L|L|L|T|T|L ° a
p(Compr) |L|L|L|L|L|L
p(NeedPub) LI LITITL Client 1 Client 2 Client 3

Fig. 1. The intial network state (left) and the dependency graph (right)

The set of variables (figure 1) is used to model information that does evolve
over time. Intuitively this set describes which services and files are currently
public, vulnerable, compromised, and so on. More formally, let A be a finite set
of so-called atomic propositions A1, ..., A,, ..., denoting each base property.
Thus each atomic proposition is true or false for each DG vertex. The complete
initial mapping used in the example is detailed in figure 1. This mapping indi-
cates that the email server and the web server need to be public, are vulnerable,
and are public because (p(NeedPub)), p(Vuln), and (p(Vuln)) return true (T)
for both of them. It also indicates that no vertex is compromised as p(Compr)
returns false (L) for every vertex. Finally the set p(NeedPub) is used by the
Unfirewall rules to know which vertex should be made public.

3.2 Players Actions

To describe which actions are legal for each player a set of timed rules is as-

sociated to the AG. Each rule is of the form Pre F Aﬂ»’c P where F' is the



precondition, stating when the rule applies, A is the amount of time needed to
fire the rule, p is the name of the player that originates the rule, a is an action
name, c is the rule cost, and P is a command, stating the effects of the rule. It
is required for the precondition F' to hold not just when the rule is selected, but
during the whole time it takes the rule to actually complete (A time units). For
example consider the following rule :
Pre Vuln A Public (30,1, Compromise,500) Compr

It says that the intruder can compromise a vertex if it is vulnerable (Vuln)
and public (Public) in 30 units of time. Compromise means here that the
targeted vertex will be added to the state Compzr. If the intruder chooses to
apply it to the Email server then it is required that the preconditions are fulfilled
when he chooses to apply the rule but also after the 30 units of time required to
execute it because the network state might have changed due to administrator
action. For example the administrator can firewall the targeted vertex. In this
case, the vertex is not public anymore, the intruder is taken by surprise, and the
compromise rule fails. An AG play is a path (a sequence of action and states)
p i Sorosiri... where Vj : sj —" sj11, sj and s¢j + 1) are network states, and
r; 1s the rule used to make the transition.

3.3 Extending Anticipation Game for Strategy

Using strategy and analyzing the financial dimension of the attack requires, that
we extend the framework. The natural way is to add an action cost to rules and
an action reward to each DG vertex:

Cost are added to rules because it is obvious that some action are more costly
than others. For example coding an exploit is more costly than using an existing
one. Similarly, Rewards are bound to DG vertices because some services and
files are more valuable than others. In our example (figure 3.1), it is obvious
that the user database is more important than any client. Formally we have
a function Value(z) — y/y € N that returns the value y associated to the DG
vertex x. Costs are naturally added to rules because a rule execution is equivalent
to a player action on the network. To take into account that not all the rules grant
areward we use two types of rules: regular rules that have an execution cost and
granting rules that have an execution cost and grant a reward. For example if
the administrator objective is to secure her network, then firewalling a service
(removing it from the Public set) will prevent it from being compromised
but it is a temporary measure, and therefore should not grant a reward. At the
opposite, patching the service (removing it from the Vuln set) is a permanent
measure and grants a reward.



3.4 Player Rules

The set of rules used for the example focuses on intrusion and is meant to be
very general. It is just an example to give the flavor of what is possible. It fol-
lows that the cost and time associated with each rules are meant to be in order
of magnitude of what is commonly accepted but not necessarily accurate. The
seven rules used in the example are shown in Figure 2.

1) Pre : Vuln A Public A =-Compr
— 2, I, Compromise Oday, 20000
Effect : Compr

2) Pre : Vuln A Public A ~Compr
— (7, I, Compromise public, 5000)
Effect : Compr

3) Pre : ~Compr A OCompr
— (4, I, Compromise backward, 5000)
Effect : Compr

4) Pre : Compr A O—Compr
— (4, I, Compromise forward, 5000)
Effect : 0Compr

5) Pre Public A Vuln
— (1, A, Firewall, 10000)
Effect —Public
6) Pre —~Public A =V uln A Need Pub
— (1, A, UnFirewall,0)
Effect Public
7) Pre Vuln A =Compr
— (3, A, Patch, 500)
Effect -Vuln A =Compr

Fig. 2. Set of rules

We take the convention thata granting rule uses the = double arrow
and that a regular rule uses the — single arrow. Rules Compromise
Oday(l) and Compromise Public(2)say thatifa vertex is vulnerable (Vuln),
public (Public) and not compromised (Compr) then it can be compromised.
The difference between the two is the time required to compromise the service
(2 or 7 units) and the cost required (20000 or 5000). The use of these two rules
allows to express that using a 0 day exploit over a public exploit provides an
advantage in terms of time and a disadvantage in terms of cost. Accordingly the
administrator patch rule (7) is slower than the compromise 0day rule and
faster than the compromise public one. Theses three rules model the win-
dows of vulnerability [18]. The rule Compromise backward says that the
intruder can take advantage of a dependency relation to compromise a vertex
that depends on a compromised one. The CTL modal operator [6] ¢ allows to
speak about successor. Accordingly ¢Compr means it exist a successor that
is compromised’. This rule models attacks that exploit trust relationship. For
example when a DNS server is compromised the intruder can use it to redirect
clients to spoofed sites. Similarly the rule Compromise forward (4) says
that the intruder can take advantage of a dependency relation to compromise the



successor of a compromised vertex. In our DG example (figure 3.1) if the in-
truder is able to compromise the intranet server, he can look in its configuration
files to steal database credential. The rule Firewall (5) says that if a service
is vulnerable (Vuln) and Public (Public) it can be firewalled. The cost of the
rule is very high (10000) compared to the patch rule cost (500) because fire-
walling a public service will indeed prevent the intruder to access it but also
forbids legitimate access. Thus this action induces an activity disturbance and
a possible financial loss. Notice the — arrow of this rule that denotes that no
reward is granted. Finally the rule Unfirewall (6) is used to make public
services that are not vulnerable and need to be public (NeedPub).

3.5 Play example

The play used as an example (figure 3) is an intruder strategy to compromise the
network. Due to space constraints, rules name have been truncated. Column T1
stands for time, P1 for players, Act for action, Ta for target, S for successor
node, Pa for payoff and C for cost. Furthermore I is for intruder and A is for
admin. Every strategy presented in this paper is the output result of our proto-
type using the DG, the initial mapping set, and the set of rules presented above
along with various strategy objectives. Even if this example seems simple, it
still cannot be analyzed by hand because this game configuration leads to 4011
distinct plays.

[Ti[PI] Act [Rule [Ta[S[Pa [ C

01 [choose [Comp 0 Day[4 L[ - R lTi\PI\ Act \Rule \Ta\S\ Pa \ C ‘
0|A | choose |Firewall 4L - - 8 | A |execute|Patch 5|L| 52 |11000
1 | A |execute|Firewall 41L] 0 |10000| [12|I| fail |Comp Back|2 |5[1382{50000
1 |A| choose |Patch 4111 - - 12| I | choose |Comp Back| 4 (6| - -
2|1| fail |{CompODay|4|L| 0 [20000| [16|1 |execute|Comp Back|4 |6{1403|55000
2|1 |choose |Comp 0 Day| 5 | L - 16| I | choose |Comp Back| 1 (4| - -
4|1 |execute|Comp 0 Day| 5 |L| 31 [40000| |20| I |execute|Comp Back| 1 |4 |1404|60000
4|1 |choose |CompFor |5|6| - - 20| I | choose [Comp Back|2 (4| - -
4 | A |execute|Patch 4111 21 |10500| |24| I |execute/Comp Back| 2 |4 [1405{65000
4 |A|choose |UnFirewall |4 |Ll| - - 24| 1 | choose [Comp For |2 5| - -

5 |A|execute|UnFirewall |4 |L| 21 [10500| |28| I |execute|Comp For |2 |5[1436|70000
5|A | choose |Patch S|4} - - 28| I | choose [Comp Back| 3 5| - -

8| I |execute|Comp For |5 |6[1382|45000| |32| I |execute/Comp Back| 3 |5 [1437{75000
8|1 |choose {Comp Back |2 5| - -

Fig. 3. Play example Intruder maximum payoff



The example is read as follow: At time O the intruder chooses to use an 0
day exploit against the Web server (Target 4). At the same time the administrator
start firewalling the Web server. Because firewalling is faster than exploiting the
0 Day vulnerability, the administrator is able to firewall the web server before
the Oday exploitation is successful (time /). The administrator starts to patch
the web server. At time 2 the intruder is taken by surprise by the administra-
tor because the web server is firewalled before his exploitation is successful,
hence the rule execution fails. He chooses to try another Oday exploit against
the email server (target 5, time 2). At time 4 the administrator has finished to
patch the web server and decides to unfirewall it since it is no longer vulnera-
ble. Meanwhile the intruder compromises the email server and decides to use
his newly gained access to compromise the user database (target 6). At time 5
the administrator decides to patch the email server (target 4). At time 8 the in-
truder has compromised the user database (target 6). At the same moment the
administrator has finished to patch the email server (node 5). Therefore at fime
12 the intruder fails to compromise the client 2 from the email server (Succ 4)
because the email server is no longer vulnerable and compromised. However
the intruder still has access to the database user server (node 6) and he uses this
access to compromise the web server (time 16). From there he compromises the
client 1 (time 20) and the client 2 (time 28). He uses his access on client 2 to
compromise again the web server (node 5, time 28) and finally owns the network
by compromising the client 3. As one can see the interaction between players
leads to very complex plays even for this simple example. This play emphases
that analyzing administrator and intruder interaction on the network cannot be
achieved by hand.

3.6 Vertex Value Computation

The first type of vertex pricing that deserves attention is when the same value
is used for every vertex. This is used to model the the question : "What is the
intrusion that will compromise the maximum number of services ?”” because in
this case each vertex have the same value,and therefore the intruder reward is
maximized when the number of host compromised is maximized as well.

The second type of vertex pricing used is the one where vertices values are
used to express which services are the most important for a given network. The-
ses values can be assigned by hand or can be inferred by an algorithm. While
very interesting, studying the effectiveness of the various algorithms that can be
used to compute theses values is out of the scope of this paper.

We currently use an algorithm inspired by the Google PageRank [27] one: each
vertex value is the sum of its predecessor values weighted by dependency values.



Dependency value is based on its frequency because we claim that the more a
dependency is solicited the more it is important for the network. While arguable
our algorithm provides interesting results. The algorithm use the following for-
mula to compute a vertex value:

value = Z vertexValue(i) x dependencyV alue(i)
1

where 7 is the number of vertex predecessor, vertexValue(i) is the func-
tion that return the value of the predecessor ¢ and dependencyV alue(i) is the
function that return the value of the dependency between the predecessor ¢ and
the vertex. This algorithm applied to our DG example (figure 3.1) with depen-
dency frequency detailed in figure 3.6 give the result presented in figure 3.6.
Frequency values were set by hand for example purpose only.

Dependency Value| |Vertex Value
Client 1 — Web server 10 Client 1 1
Client 2 — Web server 10 Client 2 1
Client 2 — Email server 15 Client 3 1
Client 3 — Email server 15 Web server 21
Web server — database server | 20 Email server 31
Email server — database server| 30 Database server| 1351

Fig. 4. Example of dependency values (left) and the resulting computed vertices
values (right)

4 Strategy objective

In game theory a strategy is the optimal succession of actions (play) that a
player can perfom to achieve his goal. As said previously, translating real world
network security goals into reachability property is not expressive enough and
error-prone . Therefore leveraging the cost and reward extension introduced in
the previous section we introduce a new kind of analysis goal called strategy
objectives, that combines symbolic and numerical objectives.

The logical formula is used to express which plays are acceptable strategies.
The numerical objectives are used to select among these potential candidate, the
one that fulfill the most players objectives. To the best of our knowledge this the



first time that symbolic and numerical objectives are combined to express anal-
ysis goal. Strategy objectives allows to express naturally many network security.
For example it allows to express that the goal of the administrator is to patch her
network (logical formula) in minimum amount of time and for the lowest cost
possible (numerical constraints). More formally we define strategy objectives
as:

Definition 1 (Strategy objectives) A set of strategy objectives is the tuple S :
(name, P, O, R, @) where name is the strategy name, P its owner, O is the set
of numerical objectives, R is the numerical objectives priority strict order and,
@ is the logical formula that a play needs to satisfy to be a valid strategy.

4.1 Objectives
Strategy objectives O are assigned on play outcomes ¢:

Definition 2 (Play outcomes) is the unordered set of natural numbers

¢ : {payoff, cost, opayoff,ocost, time} where payoff is the player pay-
off, cost is the player cost, opayoff is the player opponent payoff, ocost
is the opponent cost, and t ime is the play duration.

The players P payoff for the play p is the sum of all the rewards granted by
the successful execution of his granting rules. Rule reward is the value of the DG
vertex targeted by the rule execution. The players P cost for p is the sum of all
executed rule costs whether they are successful or not, because regardless of its
success the player has invest the same amount of resource in it. It is convenient
to describe numerical objectives by the concise language:

0:=0 Objective € ¢

|
| M AX(O) maximize the value of objective O
| MIN(O) minimize the value of objective O
| O<z =zeN
| O>x2 zxz€N

In this language, the patching strategy numerical objectives that seeks to
minimize the time and the cost are written M I N (Cost) AMIN (Time). where
the priority order can be either R : C'ost > Time or R : Time > Cost.



4.2 Objective logical formula

The objective logical formula is used to express which plays can be considered
as valid strategy. In the patch strategy example, valid plays are those in which
every vulnerable service is patched. An additional constraint can be that no ser-
vices are compromised.

This constraint has two possible interpretations that lead to two very differ-
ent results: first it can mean that at the end of the play no service is compromised
but that at some point a service could have been compromised and restored. Sec-
ondly it can mean that no service is ever compromised during the play. The dif-
ference between the two interpretations is illustrated on the following example:
The figure 5 is the strategy where at the end of the play no service is compro-
mised and figure 6 is the strategy in which no service is ever compromised. We
see that in the first strategy, during a brief moment the service 4 is compromised
whereas in the second one no service are ever compromised.

[Ti[Pl] Act | Rule [Ta[S[Pa] C |
0| I |choose [Comp O Day| 4 |L|-| -
0|A|choose Patch 41L1-1 -
2 | I |execute|Comp O Day| 4 | L |21{20000
2| I|choose |Comp O Day|5|L|-| -
3 |Alexecute| Patch 41121} 500
3 |A|choose Patch S5|L-1] -
4|1 |execute|Comp 0 Day| 5 | L|52]{40000
4|1 |choose| CompFor |5|6] - -
6 |Alexecute| Patch 5|L1{52| 1000
81| fail | Comp For |5 |6(52|45000

Fig. 5. A strategy where no service is Compromised at the end of the play

To express the second type of constraint the CTL [6] operator [ is needed.
This operator is used to express that a constraint needs to be true for every state
of the play. We also use the { operator to express that a constraint need to be
true at some point. This is handful for example in information leak intruder
strategy to express that we seek to find a play where at some point a service was
compromised. Thus the strategy formula is expressed in the following fragment



[Ti[PI] Act | Rule [Ta[S[Pa] C |
0|1 |choose |CompODay|4|L|-| -
0 |A|choose | Firewall |4 |L] - -
1 |Alexecute| Firewall |4 |1|0 [10000
1 |A|choose| Firewall |5|L]|- -
2|I| fail |Comp 0 Day|4 |L|0 {20000
2 | I |choose [Comp 0 Day| 5 | L -
2 | I'| choose |Comp 0 Day| 5 | L -
2 |Alexecute| Firewall |5 |L|0 (20000
2 | I |choose [Comp O Day| 5 | L] - -
2 |A| choose Patch 4111 - -
411| fail |Comp O Day|5 |L|0 40000
5 |A|execute Patch 4111]21{20500
5 |A| choose | UnFirewall | 4 | L] - -
6 | A|execute| UnFirewall | 4 |_L|21[20500
6 |A| choose Patch 5|Lf- -
9 | A|execute Patch 511(52|21000
9 |A| choose | UnFirewall | 5 | L] - -
10| A |execute| UnFirewall | 5 | 1|52|21000

Fig. 6. The administrator dominant strategy where services are never compro-
mised (right)

of CTL:
A Atomic proposition

T T
<C
N

<

We take the convention that if a constraint is specified without the ¢ and the [J
operator the the constraint has to be true only on the last state of the play. In
this fragment the patching strategy formula that ensures that no vertex is ever
compromised (belongs to the set Compr) and that every vertex is not vulnerable
at the end of the play is written:

O-Compr A =Vuln

4.3 Dominant Strategy

The natural question that arises is what class of strategy objectives should be
considered for network security. A naive idea would be to consider the class



of objectives that minimizes/maximizes player cost/reward only and ensures by
a set of constraints that the player goals are fulfilled. For example a patching
strategy that minimizes the cost and ensures that no vertex is ever compromised
and that every vertex is not vulnerable at the end of the play:

S : (patch, Admin, MIN (Cost), Cost,d=-Compr A =Vuln))

However this idea leads to find an incorrect strategy because the cost is
minimal when the opponent makes “’mistakes’:

TilPl] Act | Rule [Ta|S[Pa] C |
0| I|choose |Comp Public| 4 |L|-| -
0 |A| choose Patch S5|L|-| -
3 | A |execute Patch 51L|31] 500
3|A|choose Patch 411 -1 -
6 | A |execute Patch 4 11152{1000
71| fail |Comp Public|4 L]0 5000

Here the intruder could have been more effective. For example, he could
have used an 0 day exploit at the beginning.

Thus a more interesting class of strategies to consider for network security
is the one that minimize/maximize the cost/reward and is successful whatever
the opponent does. They are the best set of actions against the worst case. Thus
in our patching strategy example the administrator wants to have the less costly
patching strategy that is effective even against the worst attack. This class of
strategies is founded by adding an objectives that maximize/minimize the oppo-
nent cost/reward. They are commonly called strictly dominant strategies [31].
Dominant strategies are effective against the worst case but also every less ef-
fective case. In other word it means that when a player have a strictly dominant
strategy and he performs it, he is ensured to fulfill his objective regardless of
what his opponent do. The notion of unbeatable strategy was introduced in biol-
ogy for evolution dynamic [13]. From the network security perspective it means
that when the administrator have a dominant strategy for a given set of goals
whatever the intruder knowledge of the network has and whatever mistake he
makes, this strategy ensure her that she will always accomplish her goals. In the
example a dominant strategy exists for the administrator (figure 6). When used
it ensure that the administrator, regardless of the intruder actions, will be able to
path the two vulnerable services before any services is compromised.

Dominant strategies does not always exists. For instance if the administrator
can’t firewall her public services then the intruder has a dominant strategy that



uses 0 day exploit (Figure 8). This means that regardless of administrator action,
the intruder can always compromise services, as long as he use Oday exploit.
On the other hand the administrator has a weakly dominant strategy that is able
to dominate every intruder strategy that does not use 0 day exploit (Figure 7).
This weakly dominant strategy is the best strategy that the administrator can
come up with in this situation. Its the strategy that will minimize the number of
her opponent successful strategies. In other word, this is the strategy that will
allow her to defeat intruder with partial knowledge of the network or that made
mistake.

[Ti[Pl] Act [Rule [Ta[S[Pa | C |
0 |I|choose |[Comp O Day| 4 |L| - -
0 |A| choose |Patch S|4 - -
2 | I |execute|Comp 0 Day| 4 | L| 21 {20000
2| I |choose |[Comp For [4|6| - -
3 |Alexecute|Patch 5|L| 31 | 500
3 |A| choose |Patch 411 - -
6 | I |execute|Comp For |4 |6 (1372{25000
6| I |choose [Comp Back | 1|4]| - -
6 | I | choose |Comp Back |1 (4| - -
6 | A |execute|Patch 4 11| 52 | 1000
10| 1| fail |Comp Back | 1 [4{1372|30000
10| I | choose |Comp Back (4 6| - -
14| I |execute|Comp Back | 4 |6{1393|35000
14| I | choose |Comp Back |1 [4]| - -
18| I |execute|Comp Back | 1 |4 |1394|40000
18| I | choose |Comp Back |2 (4| - -
22| I |execute|Comp Back | 2 |4[1395{45000
22| I | choose [Comp For |2 5] - -
26| I |execute|Comp For |2 |5(1426{50000
26| I | choose [Comp Back |3 |5| - -
30| I |execute|Comp Back | 3 |5(1427(55000

Fig. 7. Incident dominant strategy when the firewall rule is unavailable

4.4 Complexity

We now study the decidability of finding the best strategy for given set of strat-
egy objectives . The key issue is that plays can be infinite. However they are
ultimately periodic paths because an AG is finite and therefore even when a
game has an infinite play it is possible to decide which play is the best for a



[Ti[PI] Act | Rule [Ta[S[Pa] C |
0 | I'| choose |Comp Public|5 |L|-| -
0 |A| choose Patch 5|14 - -
4 | A |execute Patch 51L(31] 500
4 |A| choose Patch 4 (1] - -
71| £fail |Comp Public| 5 |L| 0| 5000
7|1 |choose [Comp ODay|4 |L]|- -
8 | Alexecute Patch 4 1152|1000
10/ I| fail |Comp O Day|4 |L| 0 |25000

Fig. 8. Administrator weakly dominant strategy when the firewall rule is un-
available

given set of objectives. To decide so , two things must be known: the play out-
come and if the play satisfies objectives formula. For the play outcome we have
the following result (proof is in App. A):

Lemma 1. An infinite play outcome can be computed by examining a short
finite prefix.

For formula satisfiability we have the following result (proof is in App. B):

Lemma 2. For an infinite play the decidability of objectives formula satisfac-
tion can be reduced to verifying the formula on a short finite prefix.

This lead us to the central theorem for decidability (proof is in App. C ):

Theorem 1 Deciding if a play is the one that fulfill the most strategies objec-
tives is decidable for any play by looking at a finite number of states.

Moreover we can prove that deciding if a play satisfies the most strategy
objectives can be done in polynomial time (proof in App D):

Theorem 2 Deciding if a play satisfies the most strategy objectives can be de-
cided in polynomial time O(s x |¢|) where s is the number of states in the finite
prefix and ¢ the formula to verify.

Ultimately we have the general decidability theorem (Proof is in App. E):

Theorem 3 (Decidability) Finding the strategy that fulfill the most strategies
objectives over an anticipation game is decidable.



4.5 Memory Space complexity

A key property for implementation is that the memory required to find a strategy
for a given set of objectives is linear (proof is in App F).:

Theorem 4 Memory space complexity worst case can is: WC = Set x V x
R x (54 1) Where Set is the finite memory space required to hold sets mapping
values, V is the number of vertices of the dependency graph, R is the number of
rules and S is the number of strategies researched.

5 Evaluation

In order to evaluate that AG can be used in practice, we have conducted a set
of evalution with our prototype on a standard Intel 2.9GHz core 2 Linux. Each
benchmark was run three times and the reported time is the mean. Two set of
benchmarks have been conducted. The first set was used to determine is the AG
framework is usable in practice. The second set was used to measure the impact
of strategy on the analyzer performance and ensure that they are consistent with
theoretical bounds.

The first set of benchmark was done by running the analyzer against a large
example. This example use the set of rules presented in the Sec. 3.4 and an initial
random network state and look for the intrusion and defense strategy presented
in Sec 4. The random initial state is composed of 5200 nodes, 27000 dependen-
cies and 3 random vulnerabilities. Each of the 200 servers nodes have 10 random
dependencies and each of the 5000 clients nodes have 5 random dependencies.
To ensure that the generated initial state is not a degenerate case, we have used
10 different initial states. The analyzer have the same performance regardless
of the initial states used. In order to deal with such large example, our analyzer
uses numerous optimization including a static analysis of the dependency graph
shape and rules set based on the strategy constraints. Theses optimization, in
particular the early cut optimization, explain why it has been possible to find the
optimal strategy for the defense objectives and only an approximate strategy for
the intrusion one. The approximate strategy found is sound and not complete.
Which mean that it is a valid strategy but there is no guarantee that it is the
best possible as it could be a local optimum. However tests on smaller example
suggest that it is often the optimum one. Benchmark results presented in figure
G, tshow that in practice, AG can be used to analyze a new situation even for a
complex network in a matter of seconds.



Nb Nodes|Nb Dep| Strategy type Time
5200 | 27000 | Defense Exact 2.4 sec
5200 | 27000 |Intrusion|Approximate|55 sec

Fig. 9. Analyzer performance benchmark

We evaluate the impact of strategy on analysis performance by conduct-

ing two type of benchmark. The first was designed to measure the impact of
strategy on analyzer speed and the second on memory usage. In order to have
the most accurate evaluation possible, all analyzer optimizations were disabled.
The game we choose as a baseline for our benchmark is an expended version
of example presented in the paper with ten additional clients. Without optimiza-
tion, adding clients increase drastically the interleaving generated by the rules
compromise forwardand compromise backward.
For the speed performance benchmark, we have used as a baseline the time re-
quired by the analyzer to run every possible plays generated by the game without
strategy. Then we have run the analyzer with an increasing number of strategy
requests.We have requested a number of strategies that range between 0 and
100. Every strategy requested had [ constraint to be in the worst case possible:
Strategy are evaluated on every states of the play. Experimentation results ( see
diagram in App. G) show that that the time requested to analyze the game grows
linearly in the number of strategies. Which is consistent with the theorem 2.

Secondly we use the memory profiler massif from the valgrind tool suite
[24] to verify that the memory needed by the analyzer grows linearly in the
number of strategies as proved in theorem 4. We run the analyzer with a grow-
ing number of strategies ranging from 1 to 30. For each test we take the memory
peak reported in massif diagram as (in appendix H). In this figure the memory is
almost constant because the optimal strategies were found early in the game. Re-
sults, visible in the figure on App G, show that as expected the memory needed is
linear in the number of strategies which is consistent with thetheoretical bound
proved in Sec 4.4.

6 Conclusion

In this paper we have introduced strategies for anticipation games. We have
shown that using strategy objectives as analysis goal allow to find answers to
key security questions such as "What is the best patching strategy in term of
time and cost”. We have explained how our extension takes into account the fi-
nancial dimension of the network security, making the AG the first framework
that deals with time and the financial dimension of attack at the same time. We



have proved that finding the strategy that fulfill the most strategy objectives is
decidable and that it only required a linear memory space. We have also proved
that verifying the validity of a strategy against a given play can be done in poly-
nomial time. Finally we have evaluated the suitability of AG with strategies for
practical use by fully implementing AG with strategy in a prototype written in
C. Our evaluation shows that our prototype is capable of finding strategy for
large network. Future work involves extending strategies with non-determinism
to model attackers with various levels of knowledge and skill.
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A Proof of Lemma 1

Proof. The number of distinct states for any play is finite because the number
of rules and DG vertices are finite. Therefore an infinite play has a finite num-
ber of distinct states. Therefore if it is an infinite play, it has a loop. Payoff and
cost functions are monotonic, therefore outcome values can only increase. Con-
sequently there are two possible cases for a given outcome value. One: if the
value is incremented during the first loop iteration, it will be incremented at ev-
ery loop iteration and therefore the value diverges. Two: the value remains the
same after the first loop iteration. In this case the value will remain the same
regardless the number of iterations. Therefore it is possible to compute the out-
come of an infinite play in a short finite prefix.

B Proof of Lemma 2

Proof. As explained in lemma 1, infinite plays have a loop. Therefore at the
end of the first iteration all the distinct states of the play have been enumerated.
Hence if objectives formula holds at the end of the first iteration, it holds for
any number of iterations. Therefore it is possible to compute the validity of an
infinite play in a short finite prefix.



C Proof for Theorem 1

Proof. 1t is trivial for finite play and for infinite play it is true because both
strategy formula satisfiability and strategy outcome can be verified on a short
prefix by lemma 1 and lemma 2.

D Proof of Theorem 2

Proof. By lemma 2 we know that the number of states that need to be verified is
finite. Moreover since play constraint are expressed in CTL, the theorem 3.1 of
[22] holds. This theorem states that path model checking for CTL can be done
in PTIME if the number of states is finite.

Additionally by lemma 1 we know that the the outcome of the play is known af-
ter examining the same short prefix used to determine if the formula is satisfied.
Moreover comparing the outcome of the play with the previous selected play is
done in constant time. Therefore deciding which play is the best can be done in
polynomial time

E Proof of Theorem E

Proof. The number of dependency graph vertices, sets and rules are finite. There-
fore the number of distinct states is finite. Hence the number of plays is finite.
By theorem 1, every play is decidable by examining a finite number of states.
Therefore the number of states to examine to find a strategy is finite. Addition-
ally by hypothesis the number of strategies is finite hence each state needs to
be inspected a finite number of times. Therefore finding a strategies that fulfill
strategy objectives over an AG is decidable.

F Proof of Theorem 4

Proof. The longest possible finite play is the one where every rule is executed
against every dependency graph vertex twice because a rule execution can either
fail or be successfully against a given vertex. By theorem 1 even for infinite
plays it is sufficient to store this number of states because adding another state
is equivalent to adding the first state of the second loop iteration which is not
needed. Therefore the worst memory case occurs when every strategy play and
the current play are equal to the longest play.
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Fig. 12. Analyzer memory consumption for the execution with 30 strategies re-
ported by Massif the Valgrind tool
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