Skip to main content

Review of Weighted Gene Coexpression Network Analysis

  • Chapter
  • First Online:
Book cover Handbook of Statistical Bioinformatics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

We survey key concepts of weighted gene coexpression network analysis (WGCNA), also known as weighted correlation network analysis, and related data analysis strategies. We describe the construction of a weighted gene coexpression network from gene expression data, identification of network modules and integration of external data such as gene ontology information and clinical phenotype data. We review Differential Weighted Gene Coexpression Network Analysis (DWGCNA), a method for comparing and contrasting networks constructed from qualitatively different groups of samples. DWGCNA provides a means for measuring not only differential expression but also differential connectivity. Further, we show how to incorporate genetic marker data with expression data via Integrated Weighted Gene Coexpression Network Analysis (IWGCNA). Lastly, we describe R software implementing WGCNA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., & Barabasi, A. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.

    Article  MathSciNet  MATH  Google Scholar 

  2. Albert, R., Jeong, H., & Barabasi, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.

    Article  Google Scholar 

  3. Aten, J., Fuller, T., Lusis, A., & Horvath, S. (2008). Using genetic markers to orient the edges in quantitative trait networks: The neo software. BMC Systems Biology, 2(1), 34. DOI10.1186/1752-0509-2-34.

    Google Scholar 

  4. Butte, A., Tamayo, P., Slonim, D., Golub, T., & Kohane, I. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America, 97, 12182–12186.

    Article  Google Scholar 

  5. Cabusora, L., Sutton, E., Fulmer, A., & Forst, C. (2005). Differential network expression during drug and stress response. Bioinformatics, 21(12), 2898–2905.

    Article  Google Scholar 

  6. Carlson, M., Zhang, B., Fang, Z., Mischel, P., Horvath, S., & Nelson, S. F. (2006). Gene connectivity, function, and sequence conservation: Predictions from modular yeast co-expression networks. BMC Genomics, 7(7), 40.

    Article  Google Scholar 

  7. Carter, S., Brechb, C., Griffin, M., & Bond, A. (2004). Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics, 20(14), 2242–2250.

    Article  Google Scholar 

  8. Chaibub Neto, E., Ferrara, C. T., Attie, A. D., & Yandell, B. S. (2008). Inferring causal phenotype networks from segregating populations. Genetics, 179(2), 1089–1100. DOI10.1534/genetics.107.085167.

    Google Scholar 

  9. Chuang, H., Lee, E., Liu, Y., Lee, D., & Ideker, T. (2007). Network-based classification of breast cancer metastasis. Molecular Systems Biology, 3(3), 140.

    Google Scholar 

  10. Clayton, D., & McKeigue, P. M. (2001). Epidemiological methods for studying genes and environmental factors in complex diseases. Lancet, 358, 1356–1360.

    Article  Google Scholar 

  11. Dennis, G. J., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). David: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(5), P3.

    Article  Google Scholar 

  12. Dong, J., & Horvath, S. (2007). Understanding network concepts in modules. BMC Systems Biology, 1(1), 24.

    Article  MATH  Google Scholar 

  13. Eisen, M., Spellman, P., Brown, P., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14863–14868.

    Article  Google Scholar 

  14. Fisher, R. A. (1915). On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron, 1, 1–32.

    Google Scholar 

  15. Frohlich, H., Speer, N., Poustka, A., & BeiSZbarth, T. (2007). Gosim – an r-package for computation of information theoretic go similarities between terms and gene products. BMC Bioinformatics, 8(1), 166. DOI10.1186/1471-2105-8-166.

    Google Scholar 

  16. Fuller, T. F., Ghazalpour, A., Aten, J. E., Drake, T. A., Lusis, A. J., & Horvath, S. (2007). Weighted gene coexpression network analysis strategies applied to mouse weight. Mammalian Genome, 18(6–7), 463–472. DOI10.1007/s00335-007-9043-3.

    Google Scholar 

  17. Gargalovic, P., Imura, M., Zhang, B., Gharavi, N., Clark, M., Pagnon, J., Yang, W., He, A., Truong, A., Patel, S., Nelson, S., Horvath, S., Berliner, J., Kirchgessner, T., & Lusis, A. (2006). Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proceedings of the National Academy of Sciences, 103(34), 12741–12746.

    Article  Google Scholar 

  18. Gentleman, R., Huber, W., Carey, V., Irizarry, R., & Dudoit, S. (2005). Bioinformatics and computational biology solutions using R and bioconductor.. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  19. Ghazalpour, A., Doss, S., Zhang, B., Wang, S., Plaisier, C., Castellanos, R., Brozell, A., Schadt, E. E., Drake, T. A., Lusis, A. J., & Horvath, S. (2006). Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genetics, 2(8), e130. DOI10.1371/journal.pgen.0020130.

    Google Scholar 

  20. Han, J., Bertin, N., Hao, T., Goldberg, D., Berriz, G., Zhang, L., Dupuy, D., Walhout, A., Cusick, M., Roth, F., & Vidal, M. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430(6995), 88–93.

    Article  Google Scholar 

  21. Henegar, C., Clement, K., & Zucker, J. D. (2006). Unsupervised multiple-instance learning for functional profiling of genomic data. In J. Fuernkranz, T. Scheffer, & M. Spiliopoulou (Eds.), Machine learning: ECML 2006 (pp. 186–197). Berlin: Springer. DOI 10.1007/11871842.

    Google Scholar 

  22. Horvath, S., & Dong, J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Computational Biology, 4(8), e1000, 117. DOI10.1371/journal.pcbi.1000117.

    Google Scholar 

  23. Horvath, S., Zhang, B., Carlson, M., Lu, K., Zhu, S., Felciano, R., Laurance, M., Zhao, W., Shu, Q., Lee, Y., Scheck, A., Liau, L., Wu, H., Geschwind, D., Febbo, P., Kornblum, H., Cloughesy, T. F., Nelson, S., & Mischel, P. (2006). Analysis of oncogenic signaling networks in glioblastoma identifies aspm as a novel molecular target. Proceedings of the National Academy of Sciences of the United States of America, 103(46), 17402–17407.

    Article  Google Scholar 

  24. Hu, Z., Mellor, J., Wu, J., & DeLisi, C. (2004). Visant: An online visualization and analysis tool for biological interaction data. BMC Bioinformatics, 5(1), Article 17.

    Google Scholar 

  25. Jeong, H., Mason, S., Barabasi, A., & Oltvai, Z. (2001). Lethality and centrality in protein networks. Nature, 411, 41.

    Article  Google Scholar 

  26. Katan, M. (1986). Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet, i, 507–508.

    Google Scholar 

  27. Kaufman, L., & Rousseeuw, P. (1990). Finding rroups in data: An introduction to cluster analysis. New York: Wiley.

    Google Scholar 

  28. Keller, M. P., Choi, Y., Wang, P., Belt Davis, D., Rabaglia, M. E., Oler, A. T., Stapleton, D. S., Argmann, C., Schueler, K. L., Edwards, S., Steinberg, H. A., Chaibub Neto, E., Kleinhanz, R., Turner, S., Hellerstein, M. K., Schadt, E. E., Yandell, B. S., Kendziorski, C., & Attie, A. D. (2008). A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Research, 18(5), 706–716. DOI10.1101/gr.074914.107.

    Google Scholar 

  29. Langfelder, P., & Horvath, S. (2007). Eigengene networks for studying the relationships between co-expression modules. BMC Systems Biology, 1, 54. DOI10.1186/1752-0509-1-54.

    Google Scholar 

  30. Langfelder, P., & Horvath, S. (2008). Wgcna: An r package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559.

    Article  Google Scholar 

  31. Langfelder, P., Zhang, B., & Horvath, S. (2007). Defining clusters from a hierarchical cluster tree: The dynamic tree cut library for R. Bioinformatics, 24(5), 719–720.

    Article  Google Scholar 

  32. Li, A., & Horvath, S. (2007). Network neighborhood analysis with the multi-node topological overlap measure. Bioinformatics, 23(2), 222–231.

    Article  Google Scholar 

  33. Little, J., & Khoury, M. J. (2003). Mendelian randomisation: A new spin or real progress? Lancet, 362, 930–931.

    Article  Google Scholar 

  34. Liu, M., Liberzon, A., Kong, S. W., Lai, W. R., Park, P. J., Kohane, I. S., & Kasif, S. (2007). Network-based analysis of. affected biological processes in type 2 diabetes models. PLoS Genetics, 3(6), e96. DOI10.1371/journal.pgen.0030096.

    Google Scholar 

  35. Oldham, M., Horvath, S., & Geschwind, D. (2006). Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17973–17978.

    Article  Google Scholar 

  36. Oldham, M. C., Konopka, G., Iwamoto, K., Langfelder, P., Kato, T., Horvath, S., & Geschwind, D. H. (2008). Functional organization of the transcriptome in human brain. Nature Neuroscience, 11(11), 1271–1282.

    Article  Google Scholar 

  37. Opgen-Rhein, R., & Strimmer, K. (2007). From correlation to causation networks: A simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology, 1(37).

    Google Scholar 

  38. Presson, A. P., Sobel, E. M., Papp, J. C., Suarez, C. J., Whistler, T., Rajeevan, M. S., Vernon, S. D., & Horvath, S. (2008). Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Systems Biology, 2, 95. DOI10.1186/1752-0509-2-95.

    Google Scholar 

  39. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., & Barabasi, A. L. (2002). Hierarchical organization of modularity in metabolic networks. Science, 297(5586), 1551–1555.

    Article  Google Scholar 

  40. Reeves, W., Wagner, D., Nisenbaum, R., Jones, J., Gurbaxani, B., Solomon, L., Papanicolaou, D., Unger, E., Vernon, S., & Heim, C. (2005). Chronic fatigue syndrome-a clinically empirical approach to its definition and study. BMC Medicine, 3(19).

    Google Scholar 

  41. Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., GuhaThakurta, D., Sieberts, S. K., Monks, S., Reitman, M., Zhang, C., Lum, P. Y., Leonardson, A., Thieringer, R., Metzger, J. M., Yang, L., Castle, J., Zhu, H., Kash, S. F., Drake, T. A., Sachs, A., & Lusis, A. J. (2005). An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 37(7), 710–717.

    Article  Google Scholar 

  42. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. DOI10.1101/gr.1239303.

    Google Scholar 

  43. Shen, R., Ghosh, D., Chinnaiyan, A., & Meng, Z. (2006). Eigengene-based linear discriminant model for tumor classification using gene expression microarray data. Bioinformatics, 22(21), 2635–2642.

    Article  Google Scholar 

  44. Smith, G. D. (2006). Randomized by (your) god: Robust inference from an observational study design. Journal of Epidemiology & Community Health, 60, 382–388.

    Article  Google Scholar 

  45. Smith, G. D., & Ebrahim, S. (2003). ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32, 1–22.

    Article  Google Scholar 

  46. Steffen, M., Petti, A., Aach, J., D’haeseleer, P., & Church, G. (2002). Automated modelling of signal transduction networks. BMC Bioinformatics, 3(1), 34.

    Article  Google Scholar 

  47. Stuart, J. M., Segal, E., Koller, D., & Kim, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science, 302(5643), 249–255.

    Article  Google Scholar 

  48. vanNas, A., Guhathakurta, D., Wang, S., Yehya, S., Horvath, S., Zhang, B., IngramDrake, L., Chaudhuri, G., Schadt, E., Drake, T., Arnold, A., & Lusis, A. (2008). Elucidating the role of gonadal hormones in sexually dimorphic gene co-expression networks. Endocrinology, 3(150), 1235–1249.

    Article  Google Scholar 

  49. Voy, B. H., Scharff, J. A., Perkins, A. D., Saxton, A. M., Borate, B., Chesler, E. J., Branstetter, L. K., & Langston, M. A. (2006). Extracting gene networks for low-dose radiation using graph theoretical algorithms. PLoS Computational Biology, 2(7), e89.

    Article  Google Scholar 

  50. Wei, H., Persson, S., Mehta, T., Srinivasasainagendra, V., Chen, L., Page, G., Somerville, C., & Loraine, A. (2006). Transcriptional coordination of the metabolic network in arabidopsis. Plant Physiology, 142(2), 762–774.

    Article  Google Scholar 

  51. Weston, D., Gunter, L., Rogers, A., & Wullschleger, S. (2008). Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC Systems Biology, 2(1), 16. DOI10.1186/1752-0509-2-16.

    Google Scholar 

  52. Wilcox, R. R. (2004). Introduction to robust estimation and hypothesis testing. Academic Press. ISBN:0127515429.

    Google Scholar 

  53. Yip, A., & Horvath, S. (2007). Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, 8(8), 22.

    Article  Google Scholar 

  54. Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology4(1), 17.

    Google Scholar 

  55. Zhou, X., Kao, M., & Wong, W. (2002). Transitive functional annotation by shortest path analysis of gene expression data. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12783–12788.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the grant support from 1U19AI063603-01, 5P30CA016042-28, P50CA092131, and DK072206. The authors would like to thank UCLA collaborators Jun Dong, Jake Lusis, Tom Drake, Dan Geschwind, Wen Lin, Paul Mischel, Mike Oldham, and Wei Zhao for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Horvath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuller, T., Langfelder, P., Presson, A., Horvath, S. (2011). Review of Weighted Gene Coexpression Network Analysis. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_18

Download citation

Publish with us

Policies and ethics