Skip to main content

Boolean Networks

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Abstract

Reconstruction of genetic regulatory networks from gene expression profiles and protein interaction data is a critical problem in systems biology. Boolean networks and their variants have been used for network reconstruction problems due to Boolean networks’ simplicity. In the graph of a Boolean network, nodes represent the statuses of genes while the edges represent relationships between genes. In a Boolean network model, the status of a gene is quantized as ‘on’ or ‘off’, representing the gene as being ‘active’ or ‘inactive’ respectively. In this chapter, we will introduce the basic definitions of Boolean networks and the analysis of their properties. We will also discuss a related model called probabilistic Boolean network, which extends Boolean networks in order to have the advantage of modeling with data uncertainty and model selection. Furthermore, we will also introduce directed acyclic Boolean network and the statistical method of SPAN to reconstruct Boolean networks from noisy array data by assigning an s-p-score for every pair of genes. At last, we will suggest possible directions for future developments on Boolean networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akutsu, T., Kuhara, S., Maruyama, O., & Miyano, S. (1998). Identification of gene regulatory networks by strategic gene disruptions and gene overexpression. In Proceeding 9th ACM-SIAM symposium discrete algorithms (pp. 695–702).

    Google Scholar 

  2. Akutsu, T., & Miyano, S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing, 4, 17–28.

    Google Scholar 

  3. Akutsu, T., Miyano, S., & Kuhara, S. (2000). Inferring qualitative relations genetic networks and metabolic pathways. Bioinformatics, 16, 727–734.

    Article  Google Scholar 

  4. Bornholdt, S. (2005). Less is more in modeling large genetic networks. Science, 310(5747), 449–451.

    Article  Google Scholar 

  5. Dougherty, E. R., Kim, S., & Chen, Y. (2000). Coefficient of determination in nonlinear signal processing. Signal Processing, 80, 2219–2235.

    Article  MATH  Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.

    Article  Google Scholar 

  7. Harvey, I., & Bossomaier, T. (1997). Time out of joint: Attractors in asynchronous random Boolean network. In Proceedings of the fourth European conference on artificial life (pp. 67–75).

    Google Scholar 

  8. Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197–243.

    MATH  Google Scholar 

  9. Huang, S. (1999). Gene expression profiling, genetic networks and cellular states: An integrating concept for tumorigenesis and drug discovery. Journal of Molecular Medicine, 77, 469–480.

    Article  Google Scholar 

  10. Imoto, S., Goto, T., & Miyano, S. (2002). Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. Pacific Symposium on Biocomputing, 7, 175–186.

    Google Scholar 

  11. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., & Miyano, S. (2004). Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Journal of Bioinformatics and Computational Biology, 2, 77–98.

    Article  Google Scholar 

  12. Jensen, F. V. (1996). An introduction to Bayesian networks. London: University College London Press.

    Google Scholar 

  13. Jensen, F. V. (2001). Bayesian networks and decision graphs. New York: Springer.

    MATH  Google Scholar 

  14. Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology, 22(3), 437–467.

    Article  Google Scholar 

  15. Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.

    Google Scholar 

  16. Kauffman, S. A., Peterson, C., Samuelsson, B., & Troein, C. (2003). Random Boolean network models and the yeast transcriptional network. Biophysics, 100(25), 14796–14799.

    Google Scholar 

  17. Kim, H., Lee, J. K., & Park, T. (2007). Boolean networks using the chi-square test for inferring large-scale gene regulatory networks. BMC Bioinformatics, 8, 37.

    Article  Google Scholar 

  18. Kim, S., Dougherty, E. R., Chen, Y., Sivakumar, K., Meltzer, P., Trent, J. M., & Bittner, M. (2000). Multivariate measurement of gene expression relationships. Genomics, 67, 201–209.

    Article  Google Scholar 

  19. Laubenbacher, R., & Stigler, B. (2004). A computational algebra approach to the reverse engineering of gene regulatory networks. Journal of Theoretical Biology, 299, 523–537.

    Article  MathSciNet  Google Scholar 

  20. Li, L. M., & Lu, H. H.-S. (2005). Explore biological pathways from noisy array data by directed acyclic Boolean networks. Journal of Computational Biology, 12(2), 170–185.

    Article  Google Scholar 

  21. Liang, S., Fuhrman, S., & Somogyi, R. (1998). REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing, 3, 18–29.

    Google Scholar 

  22. Moler, E. J., Radisky, D. C., & Mian, I. S. (2000). Integrating naive Bayes models and external knowledge to examine copper and iron homeostasis in S. cerevisiae. Physiol Genomics, 4(2), 127–135.

    Google Scholar 

  23. Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Mateo: Morgan Kaufmann.

    Google Scholar 

  24. Schwarzer, C., & Teuscher C. (2003). The software of teuscher’s Lab: Matlab random Boolean network toolbox. Swiss Federal Institute of Technology Lausanne (EPFL). URL http://www.teuscher.ch/rbntoolbox/

  25. Shannon, C. E., & Weaver, W. (1963). The Mathematical Theory of Communication. University of Illinois Press. ISBN: 0252725484.

    Google Scholar 

  26. Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18(2), 261–274.

    Article  Google Scholar 

  27. Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceeding of the IEEE, 90(11), 1778–1792.

    Article  Google Scholar 

  28. Shmulevich, I., Dougherty, E. R., & Zhang, W. (2002). Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics, 18(10), 1319–1331.

    Article  Google Scholar 

  29. Shmulevich, I., Gluhovsky, I., Hashimoto, R. F., Dougherty, E. R., & Zhang, W. (2003). Steady-state analysis of genetic regulatory networks modelled by probabilistic Boolean networks. Comparative and Functional Genomics, 4, 601–608.

    Article  Google Scholar 

  30. Somogyi, R., & Sniegoski, C. A. (1996). Modeling the complexity of genetic networks: Understanding multigene and pleiotropic regulation. Complexity, 1, 45–63.

    MathSciNet  Google Scholar 

  31. Sontag, E., Veliz-Cuba, A., Laubenbacher, R., & Jarrah, A. S. (2008). The effect of negative feedback loops on the dynamics of Boolean networks. Biophysical Journal, 95, 518–526.

    Article  Google Scholar 

  32. Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction and search. Cambridge, MA: MIT.

    Google Scholar 

  33. Szallasi, Z., & Liang, S. (1998). Modeling the normal and neoplastic cell cycle with ‘realistic Boolean genetic networks’: Their application for understanding carcinogenesis and assessing therapeutic strategies. Pacific Symposium on Biocomputing, 3, 66–76.

    Google Scholar 

  34. Thomas, R., Thieffry, D., & Kaufman, M. (1995). Dynamical behaviour of biological regulatory networksXI. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bulletin of Mathematical Biology, 57(2), 247–276.

    Google Scholar 

  35. Wegner, K., Knabe, J., Robinson, M., Egri-Nagy, A., Schilstra, M., & Nehaniv, C. (2007). The NetBuilder’project: development of a tool for constructing, simulating, evolving, and analysing complex regulatory networks. BMC Systems Biology, 1(Suppl 1):P72.

    Article  Google Scholar 

  36. Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics, 55(3), 601–644.

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolfram, S. (1984). Universality and complexity in cellular automata. Physica 10D, 10(1), 1–35.

    Google Scholar 

  38. Wuensche, A. (1998). Genomic regulation modeled as a network with basins of attraction. Pacific Symposium on Biocomputing, 3, 89–102.

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the English editing of Yang Wang and Arthur Tu. This work was partially supported by the National Science Council (NSC), National Center for Theoretical Sciences (NCTS) and Center of Mathematical Modeling and Scientific Computing (CMMSC) at the National Chiao Tung University in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Horng-Shing Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chueh, TH., Lu, H.HS. (2011). Boolean Networks. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_20

Download citation

Publish with us

Policies and ethics