Skip to main content

Inferring Signaling and Gene Regulatory Network from Genetic and Genomic Information

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

  • 4032 Accesses

Abstract

Biological systems respond to environmental changes and genetic variations. One of the essential tasks of systems biology is to untangle the signaling and gene regulatory networks that respond to environmental changes or genetic variations. However, unwiring the complex gene regulatory program is extremely challenging due to the large number of variables involved in these regulatory programs. The traditional single gene centered strategy turns out to be both insufficient and inefficient for studying signaling and gene regulatory networks. With the emergence of various high throughput technologies, such as DNA microarray, ChIP-chip, etc., it becomes possible to interrogate the biological systems at genome scale efficiently and cost effectively. As these high throughput data are accumulating rapidly, there exists a clear demand for methods that effectively integrate these data to elucidate the complex behaviors of biological systems. In this chapter, we discuss several recently developed computational models that integrate diverse types of high throughput data, particularly, the genetic and genomic data, as examples for the systems approaches that untangle signaling and gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rikova, K., Guo, A., Zeng, Q., et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6), 1190–1203.

    Article  Google Scholar 

  2. Creighton, C. J. (2008). Multiple oncogenic pathway signatures show coordinated exression atterns in human prostate tumors. PLos ONE, 3(3), e1816.

    Article  Google Scholar 

  3. Zaman, S., Lippman, S. I., Zhao, X., et al. (2008). How saccharomyces responds to nutrients. Annual Review of Genetics, 42(1), 27–81.

    Article  Google Scholar 

  4. Wang, Y., Pierce, M., Schneper, L., et al. (2004). Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast. PLos Biology, 2(5), e128.

    Article  Google Scholar 

  5. Zaman, S., Lippman, S. I., Schneper, L., et al. (2009). Glucose regulates transcription in yeast through a network of signaling pathways. Molecular Systems Biology, 5, 245.

    Google Scholar 

  6. Ptacek, J., Devgan, G., Michaud, G., et al. (2005). Global analysis of protein phosphorylation in yeast. Nature, 438(7068), 679–684.

    Article  Google Scholar 

  7. Morley, M., Molony, C. M., Weber, T. M., et al. (2004). Genetic analysis of genome-wide variation in human gene expression. Nature, 430(7001), 743–747.

    Article  Google Scholar 

  8. Brem, R. B., Yvert, G., Clinton, R., et al. (2002). Genetic dissection of transcriptional regulation in budding yeast. Science, 296(5568), 752–755.

    Article  Google Scholar 

  9. Schadt, E. E., et al. (2003). Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297–302.

    Article  Google Scholar 

  10. Chen, Y., Zhu, J., Lum, P. Y., et al. (2008). Variation in DNA elucidate molecular networks that cause disease. Nature, 452(7186), 429–435.

    Article  Google Scholar 

  11. Schadt, E. E., et al. (2005). An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 37, 710–717.

    Article  Google Scholar 

  12. Brem, R. B., & Kruglyak, L. (2005). The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1572–1577.

    Article  Google Scholar 

  13. Brem, R. B., Storey, J. D., Whittle, J., et al. (2005). Genetic interactions between polymorphisms that affect gene expression in yeast. Nature, 436(7051), 701–703.

    Article  Google Scholar 

  14. Rockman, M. V., & Kruglyak, L. (2006). Genetics of global gene expression. Nature Reviews Genetics, 7(11), 862–872.

    Article  Google Scholar 

  15. Tu, Z., Wang, L., Arbeitman, M. N., et al. (2006). An integrative approach for causal gene identification and gene regulatory pathway inferece. Bioinformatics, 22(14), e489–e496.

    Article  Google Scholar 

  16. Ghaemmaghami, S., Huh, W.-K., Bower, K., et al. (2003). Global analysis of protein expression in yeast. Nature, 425(6959), 737–741.

    Article  Google Scholar 

  17. Zien, A., Kuffner, R., Zimmer, R., et al. (2000). Analysis of gene expression data with pathway scores. Proceedings of the International Conference on Intelligent Systems and Molecular Biology, 8, 407–417.

    Google Scholar 

  18. Hughes, T. R., Marton, M. J., Jones, A. R., et al. (2000). Functional discovery via a compendium of expression profiles. Cell, 102(1), 109–126.

    Article  Google Scholar 

  19. Wang, Y., & Dohlman, H. G. (2004). Pheromone signaling mechanisms in yeast. Science, 306(5701), 1508–1509.

    Article  Google Scholar 

  20. Yvert, G., Brem, R. B., Whittle, J., et al. (2003). Trans-acting regulatory variation in Saccaromyces cerevisiae and the role of transcription factors. Nature Genetics, 35(1), 57–64.

    Article  Google Scholar 

  21. Zhu, J., Zhang, B., Smith, E. N., et al. (2008). Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics, 40(7), 854–861.

    Article  Google Scholar 

  22. Fujita, A., Sato, J. R., Garay-Malpartida, H. M., et al. (2007). Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. Bioinformatics, 23(13), 1623–1630.

    Article  Google Scholar 

  23. Yu, J., Smith, V. A., Wang, P. P., et al. (2004). Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18), 3594–3603.

    Article  Google Scholar 

  24. Wu, X., Jiang, R., Zhang, M. Q., et al. (2008). Network-based global inference of human disease genes. Molecular Systems Biology, 4, 189.

    Article  Google Scholar 

  25. Stuart, J. M., Segal, E., Koller, D., et al. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science, 302(5643), 249–255.

    Article  Google Scholar 

  26. Start, J. M., Jagalur, M., et al. (2006). Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics, 7, 125.

    Article  Google Scholar 

  27. Zhu, J., Lum, P. Y., Lamb, J., et al. (2004). An integrative genomics approach to the reconstruction of gene networks in segregating populations. Cytogenetics and Genome Research, 105(2–4), 363–374.

    Article  Google Scholar 

  28. Zhu, J., Wiener, M. C., Zhang, C., et al. (2007). Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. Plos Computational Biology, 3(4), e69.

    Article  MathSciNet  Google Scholar 

  29. MacIsaac, K. D., Wang, T., Gordon, D. B., et al. (2006). An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 7, 113.

    Article  Google Scholar 

  30. Guldener, U., Munsterkotter, M., Oesterheld, M., et al. (2006). MPact: The MIPS protein interaction resource on yeast. Nucleic Acids Research, 34, D436–441.

    Article  Google Scholar 

  31. Zhu, J., Zhang, B., Smith, E. N., et al. (2008). Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics, 40(7), 854–861.

    Article  Google Scholar 

  32. Albert, R., Jeong, H., Barabasi, A. L., et al. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.

    Article  Google Scholar 

  33. Sze, J. Y., Woontner, M., Jaehning, J. A., et al. (1992). In vitro transcriptional activation by a metabolic intermediate: Activation by Leu3 depends on alpha-isopropylmalate. Science, 258(5085), 1143–1145.

    Article  Google Scholar 

  34. Suthram, S., Beyer, A., Karp, R. M., et al. (2008). eQED: An efficient method for interpreting eQTL associations using protein networks. Molecular Systems Biology, 4, 162.

    Article  Google Scholar 

  35. Basso, K., Margolin, A. A., Stolovitzky, G., et al. (2005). Reverse engineering of regulatory networks in human B cells. Nature Genetics, 37,(4), 382–390.

    Article  Google Scholar 

  36. Lee, S. I., Pe’er, D., Dudley, A. M., et al. (2006). Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 14062–14067.

    Article  Google Scholar 

  37. Lee, S. I., Dudley, A. M., Drubin, D., et al. (2009). Learning a prior on regulatory potential from eQTL data. PLoS Genetics, 5(1), e1000358.

    Article  Google Scholar 

  38. Yang, X., Deignan, J. L., Qi, H., et al. (2009). Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nature Genetics, 41(4), 415–423.

    Article  Google Scholar 

  39. Chaibub Neto, E., Ferrara, C. T., Attie, A. D., et al. (2008). Inferring causal phenotype networks from segregating populations. Genetics, 179(2), 1089–1100.

    Article  Google Scholar 

  40. Chen, L. S., Emmert-Streib, F., & Storey, J. D. (2007). Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biology, 8(10), R219.

    Article  Google Scholar 

  41. Cui, Q., Ma, Y., Jaramillo, M., et al. (2007). A map of human cancer signaling. Molecular Systems Biology, 3, 152.

    Article  Google Scholar 

  42. Chuang, H.-Y., Lee, E., Liu, Y.-T., et al. (2007). Network-based classification of breast cancer metastasis. Molecular Systems Biology, 3, 140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengzhu Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tu, Z., Zhu, J., Sun, F. (2011). Inferring Signaling and Gene Regulatory Network from Genetic and Genomic Information. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_23

Download citation

Publish with us

Policies and ethics