Skip to main content

Computational Drug Target Pathway Discovery: A Bayesian Network Approach

  • Chapter
  • First Online:
Handbook of Statistical Bioinformatics

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

Genome-wide transcriptome data together with statistical analysis enable us to reverse-engineer gene networks that can be a kind of views useful for understanding dynamic behaviour of biological elements in cells. In this chapter, we elucidate statistical models for estimating gene networks based on two types of microarray gene expression data, gene knock-down and time-course. In our modeling, nonparametric regression model is combined with Bayesian networks to capture nonlinear relationships between genes and a derived Bayesian information criterion with efficient structure learning algorithm selects network structure. Some efficient algorithms for structure learning of Bayesian networks, which is known as an NP-hard problem for optimal solutions, are also introduced. To demonstrate the statistical gene network analysis shown in this chapter, we estimate gene networks based on microarray data of human endothelial cell treated with an anti-hyperlipidaemia drug fenofibrate. Based on the constructed gene networks, we illustrate computational strategies for discovering drug target genes and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ago, T., & Sadoshima J. (2006). GDF15, a cardioprotective TGF-beta superfamily protein. Circulation Research, 98, 294–297.

    Article  Google Scholar 

  2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), Proc. 2nd International Symposium on Information Theory (pp. 267–281). Budapest: Akademiai Kiadó.

    Google Scholar 

  3. Akutsu, T., Miyano, S., & Kuhara, S. (1999). Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing, 4, 17–28.

    Google Scholar 

  4. Akutsu, T., Miyano, S., & Kuhara, S. (2000). Algorithms for identifying Boolean networks and related biological networks based on matrix multiplication and fingerprint function. Journal of Computational Biology, 7, 331–344.

    Article  Google Scholar 

  5. Akutsu, T., Kuhara, S., Maruyama, O., & Miyano, S. (2003) Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model. Theoretical Computer Science, 298, 235–251.

    Article  MathSciNet  MATH  Google Scholar 

  6. Araki, H., Tamada, Y., Imoto, S., Dunmore, B., Sanders, D., Humphrey, S., Nagasaki, M., Doi, A., Nakanishi, Y., Yasuda, K., Tomiyasu, Y., Tashiro, K., Print, C., Charnock-Jones, D. S., Kuhara, S., & Miyano, S. (2009). Analysis of PPAR alpha-dependent and PPAR alpha-independent transcript regulation following fenofibrate treatment of human endothelial cells. Angiogenesis, 12(3), 221–229.

    Article  Google Scholar 

  7. Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F. F., Pawson, T., & Hogue, C. W. V. (2001). BIND-The biomolecular interaction network database. Nucleic Acids Research, 29, 242–245.

    Article  Google Scholar 

  8. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M., & Miyano, S. (2002). A string pattern regression algorithm and its application to pattern discovery in long introns. Genome Informatics, 13, 3–11.

    Google Scholar 

  9. Bernard, A., & Hartemink, A. (2005). Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. Pacific Symposium on Biocomputing, 10, 459–470.

    Article  Google Scholar 

  10. BIND. http://www.blueprint.org/

  11. Bussemaker, H. J., Li, H., & Siggia, E. D. (2001). Regulatory element detection using correlation with expression. Nature Genetics, 27, 167–171.

    Article  Google Scholar 

  12. Cell Illustrator: http://www.cellillustrator.com/

  13. Chickering, D. (1996). Learning Bayesian networks is NP-complete. In Learning from data: Artificial intelligence and statistics V (pp. 121–130). Springer-Verlag.

    Google Scholar 

  14. Davison, A. C. (1986). Approximate predictive likelihood. Biometrika, 73, 323–332.

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliott, S. J., Schaus, S. E., & Collins, J. J. (2005). Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nature Biotechnology, 23(3) 377–383.

    Article  Google Scholar 

  16. Ferrari, N., Pfeffer, U., Dell’Eva, R., Ambrosini, C., Noonan, D. M., & Albini, A. (2005). The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl) retinamide. Clinical Cancer Research, 11, 4610–4619.

    Article  Google Scholar 

  17. Friedman, N., Nachman, I., & Pe’er, D. (1999). Learning Bayesian network structure from massive datasets: The “sparse candidate” algorithm. In Fifteenth conference on uncertainty in artificial intelligence, UAI-99.

    Google Scholar 

  18. Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian network to analyze expression data. Journal of Computational Biology, 7, 601–620.

    Article  Google Scholar 

  19. Fujita, A., Sato, J. R., Garay-Malpartida, H. M., Yamaguchi, R., Miyano, S., Sogayar, M. C., & Ferreira, C. E. (2007). Modeling gene expression regulatory networks with the sparse vector autoregressive model, BMC Systems Biology, 1, 39.

    Article  Google Scholar 

  20. Gervois, P., Fruchart, J. C., & Staels, B. (2007). Drug insight: Mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology & Metabolism, 3, 145–156.

    Article  Google Scholar 

  21. Goya, K., Sumitani, S., Xu, X., Kitamura, T., Yamamoto, H., Kurebayashi, S., Saito, H., Kouhara, H., Kasayama, S., & Kawase, I. (2004). Peroxisome proliferator-activated receptor α agonists increase nitric oxide synthase expression in vascular endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 658–663.

    Article  Google Scholar 

  22. Granger C. W. J. (1969). Investigating causal relationships by econometric models and cross-spectral methods. Econometrica, 37, 424–438.

    Article  Google Scholar 

  23. Green, P. J., & Silverman, B. W. (1994). Nonparametric regression and generalized linear models. Chapman & Hall/CRC Monographs on Statistics & Applied Probability.

    Google Scholar 

  24. GRID. http://biodata.mshri.on.ca/grid/servlet/Index

  25. Gupta, P. K., Yoshida, R., Imoto, S., Yamaguchi, R., & Miyano, S. (2007). Statistical absolute evaluation of gene ontology terms with gene expression data. In Proceedings of the 3rd international symposium on bioinformatics research and applications. Lecture note in bioinformatics (Vol. 4463, pp. 146–157). Atlanta, Springer-Verlag.

    Google Scholar 

  26. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2001). Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. Pacific Symposium on Biocomputing, 6, 422–433.

    Google Scholar 

  27. Hartemink, A. J., Gifford, D. K., Jaakkola, T. S., & Young, R. A. (2002). Combining location and expression data for principled discovery of genetic regulatory network models. Pacific Symposium on Biocomputing, 7, 437–449.

    Google Scholar 

  28. Hastie, T., & Tibshirani, R. (1990). Generalized additive models. Chapman & Hall.

    Google Scholar 

  29. Hayashida, K., Kume, N., Minami, M., Inui-Hayashida, A., Mukai, E., Toyohara, M., & Kita, T. (2004). Peroxisome proliferator-activated receptor alpha ligands activate transcription of lectin-like oxidized low density lipoprotein receptor-1 gene through GC box motif. Biochemical and Biophysical Research Communications, 323, 1116–1123.

    Article  Google Scholar 

  30. Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.). Learning in Graphical Models, Kluwer Academic Publisher.

    Google Scholar 

  31. Heckerman, D., & Geiger, D. (1995). Learning Bayesian networks: A unification for discrete and Gaussian domains. In Proceedings of the eleventh conference on uncertainty in artificial intelligence (pp. 274–284).

    Google Scholar 

  32. Hirose, O., Yoshida, R., Imoto, S., Yamaguchi, R., Higuchi, T., Charnock-Jones, D. S., Print, C., & Miyano, S. (2008). Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Bioinformatics, 24, 932–942.

    Article  Google Scholar 

  33. Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature Reviews Drug Discovery, 1, 727–730.

    Article  Google Scholar 

  34. Ideker, T., Ozier, O., Schwikowski, B., & Siegel, A. F. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(ISMB 2002), S233–S240.

    Google Scholar 

  35. Imoto, S., Goto, T., & Miyano, S. (2002). Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. Pacific Symposium on Biocomputing, 7, 175–186.

    Google Scholar 

  36. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., & Miyano, S. (2003). Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. In Proceedings of the IEEE 2nd computational systems bioinformatics (CSB2003) (pp. 104–113).

    Google Scholar 

  37. Imoto, S., Kim, S., Goto, T., Aburatani, S., Tashiro, K., Kuhara, S., & Miyano, S. (2003). Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. Journal of Bioinformatics and Computational Biology, 1, 231–252.

    Article  Google Scholar 

  38. Imoto, S., Savoie, C. J., Aburatani, S., Kim, S., Tashiro, K., Kuhara, S., & Miyano, S. (2003). Use of gene networks for identifying and validating drug targets. Journal of Bioinformatics and Computational Biology, 1(3), 459–474.

    Article  Google Scholar 

  39. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., & Miyano, S. (2004). Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Journal of Bioinformatics and Computational Biology, 2(1), 77–98.

    Article  Google Scholar 

  40. Imoto, S., Higuchi, T., Goto, T., & Miyano, S. (2006). Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks. Statistical Methodology, 3(1), 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  41. Imoto, S., Tamada, Y., Araki, H., Yasuda, K., Print, C. G., Charnock-Jones, D. S., Sanders, D., Savoie, C. J., Tashiro, K., Kuhara, S., & Miyano, S. (2006). Computational strategy for discovering druggable gene networks from genome-wide RNA expression profiles. Pacific Symposium on Biocomputing, 11, 559–571.

    Article  Google Scholar 

  42. Islam, K. K., Knight, B. L., Frayn, K. N., Patel, D. D., & Gibbons, G. F. (2005). Deficiency of PPARalpha disturbs the response of lipogenic flux and of lipogenic and cholesterogenic gene expression to dietary cholesterol in mouse white adipose tissue. Biochimica et Biophysica Acta, 1734, 259–268.

    Article  Google Scholar 

  43. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the Nationl Academy of Sciences of the United States of America, 97, 4569–4574.

    Article  Google Scholar 

  44. Kersten, S., Mandard, S., Escher, P., Gonzalez, F. J., Tafuri, S., Desvergne, B., & Wahli, W. (2001). The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism. FASEB Journal, 15, 1971–1978.

    Article  Google Scholar 

  45. Kim, J., Ahn, J. H., Kim, J. H., Yu, Y. S., Kim, H. S., Ha, J., Shinn, S. H., & Oh, Y. S. (2007). Fenofibrate regulates retinal endothelial cell survival through the AMPK signal transduction pathway. Experimental Eye Research, 84, 886–893.

    Article  Google Scholar 

  46. Kim, S., Imoto, S., & Miyano, S. (2004). Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 75(1–3), 57–65.

    Article  Google Scholar 

  47. Kojima, K., Fujita, A., Shimamura, T., Imoto, S., & Miyano, S. (2008). Estimation of nonlinear gene regulatory networks via L 1 regularized NVAR from time series gene expression data, Genome Informatics, 20, 37–51.

    Article  Google Scholar 

  48. Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M., Simon, I., Zeitlinger, J., Jennings, E. G., Murray, H. L., Gordon, D. B., Ren, B., Wyrick, J. J., Tagne, J. -B., Volkert, T. L., Fraenkel, E., Gifford, D. K., & Young, R. A. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799–804.

    Article  Google Scholar 

  49. Lefebvre, P., Chinetti, G., Fruchart, J. C., & Staels, B. (2006). Sorting out the roles of PPAR in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 116, 571–580.

    Article  Google Scholar 

  50. Masys, D. R. (2001). Linking microarray data to the literature. Nature Genetics, 28, 9–10.

    Google Scholar 

  51. Murakami. H., Murakami. R., Kambe. F., Cao. X., Takahashi. R., Asai. T., Hirai, T., Numaguchi, Y., Okumura, K., Seo, H., & Murohara, T. (2006). Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC. Biochemical and Biophysical Research Communications, 341, 973–978.

    Article  Google Scholar 

  52. Murphy, K., & Mian, S. (1999). Modelling gene expression data using dynamic Bayesian networks (Tech. rep.). Berkeley, CA: Computer Science Division, University of California.

    Google Scholar 

  53. Nagasaki, M., Doi, A., Matsuno, H., & Miyano, S. (2003). Genomic Object Net: I. a platform for modeling and simulating biopathways. Applied Bioinformatics, 2, 181–184.

    Google Scholar 

  54. Nagasaki, M., Yamaguchi, R., Yoshida, R., Imoto, S., Doi, A., Tamada, Y., Matsuno, H., Miyano, S., & Higuchi, T. (2006). Genomic data assimilation for estimating hybrid functional petri net from time-course gene expression data. Genome Informatics, 17(1), 46–61.

    Google Scholar 

  55. Ong, I. M., Glasner, J. D., & Page, D. (2002). Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics, 18(ISMB2002), S241–S248.

    Google Scholar 

  56. Ott, S., Imoto, S., & Miyano, S. (2004). Finding optimal models for small gene networks. Pacific Symposium on Biocomputing, 9, 557–567.

    Google Scholar 

  57. Pearce, D. J., & Kelly, P. H. (2006). A dynamic topological sort algorithm for directed acyclic graphs. ACM Journal of Experimental Algorithmics, 11, 1.7.

    Google Scholar 

  58. Pe’er, D., Regev, A., Elidan, G., & Friedman, N. (2001). Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17(Suppl. 1, ISMB 2001), 215–224.

    Google Scholar 

  59. Perrier, E., Imoto, S., & Miyano, S. (2008). Finding optimal Bayesian network given a super-structure. Journal of Machine Learning Research, 9, 2251–2286.

    MathSciNet  MATH  Google Scholar 

  60. Pilpel, Y., Sudarsanam, P., & Church, G. M. (2001). Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 29, 153–159.

    Article  Google Scholar 

  61. Savoie, C. J., Aburatani, S., Watanabe, S., Eguchi, Y., Muta, S., Imoto, S., Miyano, S., Kuhara, S., & Tashiro, K. (2003). Use of gene networks from full genome microarray libraries to identify functionally relevant drug-affected genes and gene regulation cascades. DNA Research, 10, 19–25.

    Article  Google Scholar 

  62. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  63. SCPD. http://cgsigma.cshl.org/jian/

  64. Segal, E., Barash, Y., Simon, I., Friedman, N., & Koller, D. (2002). From promoter sequence to expression: a probabilistic framework. In Proceedings of the 6th annual international conference on research in computational molecular biology (RECOMB2002) (pp. 263–272).

    Google Scholar 

  65. Segal, E., Wang, H., & Koller, D. (2003). Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19(ISMB2003), i264–i272.

    Google Scholar 

  66. Segal, E., Yelensky, R., & Koller, D. (2003). Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics, 19(ISMB2003), i273–i282.

    Google Scholar 

  67. Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., & Miyano, S. (2009). Recursive elastic net for inferring large-scale gene networks from time course microarray data. BMC Systems Biology, 3, 41.

    Article  Google Scholar 

  68. Shimamura, T., Yamaguchi, R., Imoto, S., & Miyano, S. (2007). Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data. Genome Informatics, 19, 142–153.

    Article  Google Scholar 

  69. Shipley, J. M., & Waxman, D. J. (2003). Down-regulation of STAT5b transcriptional activity by ligand-activated peroxisome proliferator-activated receptor (PPAR) alpha and PPARgamma. Molecular Pharmacology, 64, 355–364.

    Article  Google Scholar 

  70. Shmulevich, I., Dougherty, E. R., Kim, S., & Zhang, W. (2002). Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics, 18, 261–274.

    Article  Google Scholar 

  71. Staels, B., Maes, M., & Zambon, A. (2008). Fibrates and future PPARα agonists in the treatment of cardiovascular disease. Nature Clinical Practice Cardiovascular Medicine, 5, 542–553

    Article  Google Scholar 

  72. Tamada, Y., Araki, H., Imoto, S., Nagasaki, M., Doi, A., Nakanishi, Y., Tomiyasu, Y., Yasuda, K., Dunmore, B., Sanders, D., Humphries, S., Print, C., Charnock-Jones, D. S., Sanders, D., Tashiro, K., Kuhara, S., & Miyano, S. (2009). Unraveling dynamic activities of autocrine pathways that control drug-response transcriptome networks. Pacific Symposium on Biocomputing, 14, 251–263.

    Google Scholar 

  73. Tamada, Y., Imoto, S., Tashiro, K., Kuhara, S., & Miyano, S. (2005). Identifying drug active pathways from gene networks estimated by gene expression data. Genome Informatics, 16(1), 182–191.

    Google Scholar 

  74. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of Royal Statistical Society B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

  75. Tinerey, L., & Kadane, J. B. (1996). Accurate approximations for posterior moments and marginal densities. Journal of American Statistical Association, 81, 82–86.

    Google Scholar 

  76. Toh, H., & Horimoto, K. (2002). Inference of a genetic network by a combined approach of cluster analysis and graphical Gaussian modeling. Bioinformatics, 18, 287–297.

    Article  Google Scholar 

  77. Tsamardinos, I., Brown, L. E., & Aliferi, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65, 31–78.

    Article  Google Scholar 

  78. Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the United States of America, 98, 5116–5121.

    Article  MATH  Google Scholar 

  79. Yamaguchi, R.,Yoshida, R., Imoto, S., Higuchi, T., & Miyano, S. (2007). Finding module-based gene networks with state-space models – Mining high-dimensional and short time-course gene expression data. IEEE Signal Processing Magazine, 24, 37–46.

    Article  Google Scholar 

  80. Yamamoto, T., Nishizaki, I., Nukada, T., Kamegaya, E., Furuya, S., Hirabayashi, Y., Ikeda, K., Hata, H., Kobayashi, H., Sora, I., & Yamamoto, H. (2004). Functional identification of ASCT1 neutral amino acid transporter as the predominant system for the uptake of L-serine in rat neurons in primary culture. Neuroscience Research, 49, 101–111.

    Article  Google Scholar 

  81. YTF. http://biochemie.web.med.uni-muenchen.de/YTFD/

  82. Zandbergen, F., & Plutzky, J. (2007). PPARα in atherosclerosis and inflammation. Biochimica et Biophysica Acta, 1771, 972–982.

    Article  Google Scholar 

  83. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of Royal Statistical Society B, 67, 301–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Satoru Kuhara, Kousuke Tashiro, Masao Nagasaki, Yukiko Nakanishi, Atsushi Doi, Yuki Tomiyasu, Kaori Yasuda, Cristin Print, D. Stephen Charnock-Jones, Sally Humphreys, Ben Dunmore, Deborah Sanders, Christopher J. Savoie for their continuous efforts on our HUVEC study. Computation time was provided by the Super Computer System, Human Genome Center, Institute of Medical Science, University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Miyano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imoto, S., Tamada, Y., Araki, H., Miyano, S. (2011). Computational Drug Target Pathway Discovery: A Bayesian Network Approach. In: Lu, HS., Schölkopf, B., Zhao, H. (eds) Handbook of Statistical Bioinformatics. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16345-6_24

Download citation

Publish with us

Policies and ethics