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Abstract. In this paper, we present a real-time obstacle detection sys-
tem for the mobility improvement for the visually impaired using a hand-
held Smartphone. Though there are many existing assistants for the vi-
sually impaired, there is not a single one that is low cost, ultra-portable,
non-intrusive and able to detect the low-height objects on the floor. This
paper proposes a system to detect any objects attached to the floor
regardless of their height. Unlike some existing systems where only his-
togram or edge information is used, the proposed system combines both
cues and overcomes some limitations of existing systems. The obstacles
on the floor in front of the user can be reliably detected in real time using
the proposed system implemented on a Smartphone. The proposed sys-
tem has been tested in different types of floor conditions and a field trial
on five blind participants has been conducted. The experimental results
demonstrate its reliability in comparison to existing systems.

Key words: obstacle detection; visually impaired; real-time; monocular
vision

1 Introduction

Mobility assistance is desperately needed by the visually impaired because ob-
stacles can cause injuries. Consultation with an expert group [16] has highlighted
that available mobility assistances are dissatisfactory to the blind for various rea-
sons. Thus this research aims to fill this gap by building a low-cost, non-intrusive
and simple system for blind navigation.

Several methods already exist for providing mobility assistance for the visu-
ally impaired, ranging from human helpers to modern devices. A human guide
is the most intelligent assistant, but is not always readily available. On the other
hand, a white cane is the most readily available mobility tool but is very intrusive
and makes the blind person highly conspicuous. A guide dog[16] is a good choice
because they are loyal and less intrusive but is as expensive as a car and each
dog is only capable of providing assistance for a few years due to a long rigorous
training process. Some blind people develop the echolocation ability to gain a
measure of self-sufficiency in their mobility. Echolocation is the ability to sense
objects by listening for echoes - i.e. human based sonar. However, echolocation
is a difficult skill to master and is not able to detect small objects.
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Due to the issues with these traditional mobility solutions, a range of techno-
logical solutions have been developed, commonly referred to as electronic travel
aids (ETAs). An ETA based on optical triangulation, e.g. LaserCane [1], is accu-
rate but has a very narrow scan beam and costs more than five times the price
of a typical mid-range Smartphone [19]. An ETA based on acoustic triangula-
tion, e.g. MiniGuide [17] and GuideCane [14], can find open areas and can be
as cheap as a mid-range Smartphone. However, a MiniGuide is unable to detect
low-height objects on the floor and the GuideCane is very bulky. An ad-hoc ETA
based on stereo vision, e.g. a Minoru 3D webcam [18] plus a notebook computer
running the vOICe software, can recover full depth map but such a system is
not popular due to the lack of a stereo camera in many portable devices.

Despite the existence of various mobility assistants, it is still difficult to find
an assistant that is ultra-portable, low cost, non-intrusive, and able to detect
on-floor obstacles. Motivated by this gap, we propose a solution embedded on
a mobile phone platform since many visually impaired people already make use
of Smartphones due to their many useful features (camera, optical character
recognition, text-to-speech, voice command, GPS navigation, etc.) By utilizing
the embedded camera on the Smartphone, it is possible to make the system non-
intrusive through computer vision techniques. The main challenge here is how to
detect on-floor obstacles through computational efficient computer vision tech-
niques that can run in real time on a Smartphone. There are similar techniques
for autonomous navigation employed in robots or autonomous vehicles, but they
are computationally expensive [12], restricted to certain environments e.g. roads
[11], and/or requiring a training phase to learn the scene’s characteristics and
thus not portable to different environments [10]. The proposed research seeks
to effectively make use of perspective projection knowledge and fast computer
vision techniques (color histograms and edge detection). By combining these
techniques, the proposed system is able to detect most on-floor obstacles in real
time on a Smartphone without any prior training/adapting stages. The system
is compared to two other systems, the edge based approach of Taylor et al. [12]
and the color histogram based approach of Tan et al.[11], which are also efficient
enough to run on a Smartphone. Experiments and field trials have shown that
the proposed system has better accuracy whilst being more computationally
efficient.

The remainder of the paper is organized as follows: Section 2 introduces
the related work. Section 3 explains the proposed on-floor obstacle detection
system. In Section 4, the implementation on the Smartphone and the usage are
discussed. The evaluation results of the system are presented in Section 5 before
the conclusions are made in Section 6.

2 Related Work

As we have decided to utilize the embedded camera on Smartphones, we will
review existing approaches that could lead to the obstacle detection using a
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monocular camera: three-dimensional structure reconstruction, two-dimensional
motion analysis, and recognition.

Three-dimensional structure reconstruction from monocular images is prob-
ably the most geometrically intuitive way to identify obstacles: the relative dis-
tance between the camera and each object can be easily computed for each frame
and thus any obstacle can be determined. This problem has been investigated by
many researchers for decades. Most of the efforts have been on stationary scene
reconstruction, while a few researchers are interested in the scene with moving
objects. Among existing approaches, traditional structure from motion (SFM) is
the most well known. SFM approach [8] first finds the correspondence between
images, and then initializes the 3D scene using matches that satisfy the epipolar
constraints while does not related by a homography, and finally other frames are
added to refine the scene using bundle adjustment. This approach can be accu-
rate but the computation cost is very high. Monocular simultaneous localization
and mapping (MonoSLAM) [2] is a recent approach that can be classified as a
real-time online SFM using a monocular camera. MonoSLAM aims to localize
the camera by simultaneously recovering the 3D structure of the landmarks in
the scene. This approach requires a high frame rate so that landmarks can be
tracked within a small search window. The number of landmarks is also lim-
ited in this approach in order to achieve real-time performance. When there is a
moving object in the scene, traditional SFM will fail to work. In such case, some
researchers proposed that the correspondence between images is clustered into
different groups [13], as they are related with different fundamental matrixes.
However, the research in this area is in the preliminary stage. Furthermore, it is
still impratical to implement these SFM algorithms (including MonoSLAM) on
the mobile phone due to low computation power.

Two-dimensional motion analysis is another way to identify the obstacles,
which does not involve 3D reconstruction. Instead, the 3D movements of objects
or the time-to-contact may be estimated. This approach first computes the 2D
optical flow motion from an input video, then analyze it using different criteria:
for example, by simply comparing the sum of 2D motion field between the left
and right halves of the image, obstacles can be avoided by turning to the side
with smaller sum (balance strategy) [3]. When the camera is moving straight
forward and smoothly in a constant speed, the time-to-contact can be estimated
by utilizing the focus of expansion and the divergence from the focus of expansion
[9]. If the camera is not constantly moving and its motion is unknown, it becomes
very hard to determine the depth from the 2D flow, because it could be projected
from different 3D flow.

Through recognition based on knowledge context [7], shape [5], or color [6],
it is possible to identify the obstacles. The knowledge on the context or shape
normally requires massive training efforts and would be unsuitable to reliably
recognition. In contrast to the context/shape, the color information is easier to
learn and recognize. The existing methods employ the color information mainly
in three ways:
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1. Mathematically-defined color models: the colors in the desired regions are
modeled with a Gaussian or a Mixture of Gaussians (MoG) models - the
training process may takes from as short as a few minutes (context-aware)
to as long as several hours (manual) [10]. However, these models are based
on snapshots of the scene as it is during training, and so are not applicable
if the person moves to a new scene;

2. Color histograms: by sacrificing memory, color histograms represent the de-
sired colors in the simplest form. Due to its simplicity, the computation is
very efficient and so can be continuously recalculated which is ideal for appli-
cation in mobile platform. Tan et al. [11] assume that the small area in front
of a vehicle is always clear and the color histogram is sampled. By maintain-
ing a set of such color histograms for the clear road and a histogram for the
background determined in previous frame, it calculates the probability of a
pixel belonging to road by distance measurements on histograms. After linear
combination of the previous and current probability of the same pixel, it can
be determined if a pixel belongs to a road or the background. In comparison
to mathematical models, histograms directly represent the true (empirical)
color distribution rather than fitting it to a (potentially inaccurate) model
[10, 11, 15];

3. Edges: when the desired region is known as consisting of a uniform color, its
appearance may consist of different colors due to illumination variances on
that region or due to camera artifacts. In most cases, the transitions between
these colors are smooth. Therefore, edges, or unsmooth color transitions,
often indicate borders between objects. Taylor et al.[12] assumes that floors
consist of uniform colors and a simple seeded region growing method is used
based on normalized red (r), normalized green (g), hue (h) and intensity (i)
channels to expand the safe region for navigation.

Among these related works, only limited approaches are possible to run on
a device with low-computational power, such as mobile phones, without prior-
learning: color histogram based recognition and edge based recognition. The
proposed system will hence build on these approaches. The proposed system
will be introduced in the next section.

3 Proposed System

Similar to the related work on recognition based color histograms and edges, the
proposed system assumes that a small region of the floor in front of the user is
safe. In addition, the proposed system assumes that the user is able to maintain
the Smartphone at a certain tilt angle, e.g. 45° , all the time so that the floor in
front of the user is always visible in the image. With these two assumptions, the
idea behind the proposed system is based on the image region that is assumed
to be a clear floor region and finding anything that looks different from it. We
compute the distance from the user, after which the safe path is found.

The proposed system will be described in three parts: image region of interest,
initial histogram for safe region, and safe path finding.
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3.1 Image Region of Interest

Many existing methods process all pixels in an image or do so in the worst
case[12]. In fact, not all pixels in the image need to be analyzed for the purpose
of obstacle detection in our case. As a person normally walks straight ahead,
a rectangular floor region in front of him/her is of most concern whether there
is an obstacle. Therefore, only the projected image region of that rectangular
region is of interest. While the exact depth of a pixel representing the floor
can be accurately computed using perspective projection knowledge through a
homography matrix, by assuming the camera is pointing forward with a tilt
angle downwards and no roll angle, an input image can be simply explained as
follows: the pixels at the lower region of the image represents the floor that is
closer to the user, and a rectangular region in front of the user will appears like
a trapezoid because the object looks smaller when it is farther under perspective
projection.

Therefore, a proper trapezoid image region can be computed based on known
tilt angle and focal length of the camera and can be defined on the image as the
image region of interest. Thus, the maximum number of pixels needed to be
processed can be decreased.

3.2 Initial Histogram for Safe Region

The small region of the floor in front of the user appears at the bottom of the
image and is assumed safe. The knowledge of the safe floor can be learned from
that image region. Similar to Tan et al.’s system, a color histogram will be
employed to represent this image region.

In order to build a color histogram, the color space must be firstly chosen.
Gevers and Smeulders [4] have evaluated several popular color spaces to deter-
mine invariance to viewpoint, object geometry and illumination for recognizing
multicolored objects. However, there is no single color space that is most appro-
priate under all circumstances. If the conditions across images are controlled,
the RGB color space is the most appropriate for recognizing multicolored ob-
jects although it has worse performance in terms of discriminative power due
to its sensitivity to varying image conditions. As for an embedded camera on a
Smartphone handheld by a human, the image changes could be frequent due to
auto white balance and auto exposure of the camera affected by the environment
where it is pointed to. However, different regions within a single image should
have the same white balance level and have the same exposure time. Hence, we
decide to build a histogram for each frame and choose the simplest RGB color
space because it is the most appropriate when the imaging conditions is constant
according to [4].

To build a traditional RGB histogram from a small region in a tiny image
is not robust. The number of pixels in each bin could be very small and thus
the color distribution could not be well represented. Bootstrapping is a way to
increase the number of samples - but it will increase computational cost and may
introduce incorrect samples. We therefore adopt a binary RGB histogram with



6 A Smartphone-based Obstacle Sensor for the Visually Impaired

163 bins, which does not concern pixel counts in each bin. The corresponding bin
of a pixel in the sampling region is labeled as true. In addition, the neighboring
9 bins of this bin are also labeled as true to accommodate small variations to the
color. Thus, a binary RGB histogram is initially built for the safe region. Next,
we will introduce the safe path finding process based on this initial histogram
for the safe region in the image region of interest.

3.3 Safe Path Finding

We define four states of a pixel: uninterested, unvisited, floor, obstacle. Since only
the image region of interest is of concern, we label all pixels in that region as
unvisited and the rest as uninterested. As the small region at the bottom of the
image is considered as the floor, we label all pixels in this small region as floor.
Our remaining task is to process any pixel labeled unvisited, if that pixel is of
interest.

A classifier has to be built with the prior knowledge of both classes (floor and
obstacle). In Tan et al.’s system, in addition to the histogram of the road (floor),
the histogram of the background (obstacle) is also built based on the pixels
classified as “background” in the previous frame. The knowledge of two classes
enables them to classify a pixel. After linear combination of the current frame
and the previous frame on the probability of each pixel, the largest region of
pixels classified as “road” is considered as road while other pixels are considered
as background. However, their system could not be simply applied in our case
because the background information in the previous frame is unreliable due to
various factors such as lighting changes, scene changes caused by rapid hand
movements.

Since a histogram for obstacle could not be reliably obtained, thresholding is
the most appropriate approach based on the knowledge on only one class (floor).
If the floor is known consisting of a single color, the problem becomes easy and
can be solved by seeded region growing with a pre-defined threshold for finding
edges, e.g. the Taylor et al.’ system. However, we may have multiple colors in the
histogram sampled from the safe region. We thus propose the following scheme
to determine if a pixel belongs to the floor, which uses both histograms and
edges:

1. The current pixel for determination should be a neighboring pixel of a pixel
already identified as floor ;

2. The histogram bin corresponding to the color of the current pixel is firstly
checked - if it is true, the current pixel can be determined as floor and the
determination process is complete;

3. A 3Ö3 Laplacian edge detector is convolved with the given pixel in R, G

and B channels respectively. If the convolved value in any channel is above
a pre-defined threshold, the current pixel is determined as obstacle and the
determination process is complete;

4. The current pixel is then determined as floor, since it has a similar color
with one of the known colors of the floor. The current pixel’s color is used
to update the histogram by labeling the corresponding bin as true.
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With this scheme, a pixel can be identified as floor or obstacle with either
histogram or edge constraints. Since the pixel to be determined needs to be a
neighboring pixel of a pixel determined as floor, we will now discuss the image
pixel scanning scheme.

center

left right

obstacleunvisited uninterested floor

(a) (b)

Fig. 1. Image label illustrations: (a) before scanning; (b) an example result after scan-
ning

The image region of interest is subdivided into three sub-regions: center, left
and right. The center sub-region represents the main path for the user, i.e. the
floor area that the user would step on if walking straight ahead. The left and
right sub-regions represent the areas to the side and can become alternative
paths if the main path is obstructed. Figure 1(a) illustrates such sub-divisions.
We propose a pixel scanning scheme that efficiently computes the safe depth in
each of these three paths.

1. Considering all pixels at the bottom line of the image region of interest as
seed points, we first process the center sub-region and then the side sub-
regions;

2. For each sub-region, we initialize Vi (i=center, left or right), defined as the
y coordinate of its safe depth visualized in the image, as the y coordinate of
a top pixel in the image region of interest. After that, each seed point will
be processed: starting from the seed point that is the closest from bottom
center of the image and then propagating to left/right;

3. From each seed point, a set of pixels (a line segment from the seed point to
a point where y = Vi) are of interest which represents a very narrow path
that is parallel to the user’s orientation.

4. For each pixel of interest, if it is labeled unvisited, we apply the aforemen-
tioned scheme to determine if it is floor or obstacle. After the determination
(if required), if a pixel is labeled as obstacle, the rest of unexplored interested
pixels from the same seed point is discarded and Vi is updated to the current
y coordinate. All pixels beyond y = Vi can be skipped since the obstacle has
been found in this region.
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After the above pixel scanning process, Vcenter, Vleft and Vright can be ob-
tained which can be converted to corresponding depths dcenter, dleft and dright in
metric units, given the camera focal length and tilt angle of the camera. If any
of these safe depths is over a pre-defined threshold, the corresponding path is
considered a safe path. The safe path(s) can hence be found. Figure 1(b) illus-
trates an example resulted from the scanning. In this example, the solid thick
line represents the border of the expected obstacle. According to the proposed
scanning scheme described above, the safe depth of each path can be determined
after encountering with only a small number of pixels of the obstacle, eliminating
the need to process many other pixels in the image region of interest.

4 Implementation and Usage

The proposed system is implemented on a mid-range Smartphone - Nokia E71.
The main built-in camera of this Smartphone has the maximum video frame rate
of 15 fps and minimum image dimension of 128Ö96 pixels for video capture. It
works on a single 369 MHz ARM 11 processor. With the S60 3rd Edition SDK for
Symbian OS and Carbide.c++ IDE, applications can be developed and many
features on the phone can be controlled, such as camera, vibration feedback,
voice, etc.

Because there is no accelerometer on this particular Smartphone, we assume
that the user will hold the phone at a tilt angle of about 45° , which allows the
depth threshold for safe path to be similar to the height of the camera. The
height of the camera is pre-defined as one meter and is adjustable by simply
pushing a button. With the pre-defined camera height, the farthest detectable
depth is about two meters since the embedded camera has a field of view of about
40° vertically. In addition, the input image is sub-sampled to 64Ö48 pixels for
storage and performance considerations. In terms of feedback, like other ETAs
such as the MiniGuide, the vibration feedback is provided if the main (center)
path is not safe. In addition, auditory feedback can also be provided on demand,
mainly for new users, through a button giving verbal instructions as to the safe
depth on the main path. If the safe depth of the main path is under a threshold
(unsafe to proceed), it further advises as to which side paths are safe.

The standard usage of the system is as follows:

1. The users may adjust the camera height based on the pose which they find
most comfortable. The determination of the camera height may require as-
sistance from another person;

2. The users hold the phone in the correct pose: put it in the center in front of
the body, and point it forward with about 45° downward tilt angle;

3. The users can keep walking forward until the Smartphone is vibrating;
4. If the Smartphone is vibrating and the auditory feedback is not utilized, the

user may sweep the Smartphone left or right, or point to other directions until
it stops vibrating. The users should then adjust themselves to the pointing
direction of the Smartphone and continue to proceed forward;
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5. Whether the Smartphone is vibrating or not, if the users want the auditory
feedback, they may push a button to obtain auditory feedback on demand.
For example, if there is an obstacle, the users may hear “0.9 meters, bear
left”. In this case, the users should step a little bit to the left and the Smart-
phone should stop vibrating and thus the users can proceed forward. If there
is another obstacle far from the user, the users may hear “1.9 meters”, and
the user is given an idea how far the obstacle is.

5 Results

The proposed system implemented on the Smartphone is evaluated in different
environments before it is tested in a field trial and compared against two existing
approaches. The results on the evaluation are first presented, followed by the
discussion on the field trial experiment.

5.1 Quantitative Evaluation

We will compare the proposed system with Tan et al.’s color histogram based
system and Taylor et al.’s edge based system. We hold the Smartphone at a tilt
angle of about 45° and about one meter above the floor. Therefore the depth
range for dangerous obstacles is around one meter, which means any obstacle
farther than one meter is considered safe. For the purposes of evaluation, we
record the input images as we navigate. The recorded input images are then
processed using Taylor et al.’s system, Tan et al.’s system, and the proposed
system.

In Tan et al.’s system, up to four normalized rg histograms are used to
represent the road (based on the reference area) and one rg histogram is built
for the background (from the previous frame). It uses a linear combination of
current and previous frame to compute the probability of road at each pixel
after the distance measurement. Each pixel can be determined as either road
(floor) or background (obstacle). After that, our pixel scan direction is used to
find obstacles in the user’s path (see Section 3.3). In their original paper, the
classified pixels are further fit with a road model, which is irrelevant to this
paper and hence not implemented.

In Taylor et al.’s system, a basic seeded region growing method is used to
find same-color regions in the images based on r, g, h and i channels. Our pixel
scan direction is then used to find obstacles in user’s path.

Accuracy We conduct a set of tests to evaluate the accuracy of the three sys-
tems in three different indoor environments, where the floor is (1) un-patterned
non-reflective, (2) patterned non-reflective or (3) un-patterned reflective. An ex-
ample from each sequence is shown in Figure 2. In each test, we manually label
the ground truths in each input image: if any obstacle is present within the
bottom half (up to about one meter’s distance) of central trapezoid region (the
center path), the frame is labeled as positive. Otherwise, it is labeled as negative.
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(a) (b) (c) (d)

Fig. 2. Example frame from Sequence #1:#3(Row 1:3): (a) original input image;
(b) output using Taylor’s method; (c) output using Tan’s method; (d) output using
the proposed method.

For each device, the true positives (TP) which represents an obstacle has been
correctly identified after manual verification, the false positives (FP), the true
negatives (TN ) and the false negatives (FN ) are recorded for each frame in each
sequence. We compute

– positive predictive value (a.k.a precision, TP/(TP + FP )) indicating how
much a positive feedback (e.g. vibration) can be trusted;

– negative predictive value (TN/(TN + FN))indicating how much a negative
feedback (e.g. no vibration) can be trusted;

– sensitivity (a.k.a recall, TP/(TP + FN) indicating how reliable the system
is to pick up all obstacles;

– specificity (TN/(TN +FP )) indicating how reliable the system is to identify
a safe path;

– the overall accuracy of the system ((TP + TN)/(TP + FP + TN + FN)).

As Tables 1:3 show, the proposed system outperforms other systems in every
test. In general, Tan et al. and Taylor et al.’s systems are usually quite poor at
avoiding false alarms. Overall, the proposed system has a overall accuracy of
over 94% in all these situations, while the other two systems can only achieve
about 80% in certain situation(s).

Speed While accuracy is important in determining if an obstacle can be cor-
rectly identified, the speed of processing is also important as it controls how
heavy the computation is and how quickly the user will receive a response. The
performance data are listed in Table 4. In comparison between these three real-
time systems, the proposed system only takes 7ms to compute which is 10% of
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Table 1. Results - Quantitative - Sequence #1 (464 frames)

Measurement Taylor et al. Tan et al. Proposed

Positive Predictive Value/Precision 89.58% 45.51% 96.00%
Negative Predictive Value 77.17% 83.69% 99.31%

Sensitivity/Recall 50.59% 86.47% 98.82%
Specificity 96.60% 40.14% 97.62%

Overall Accuracy 79.74% 57.11% 98.06%

Table 2. Results - Quantitative - Sequence #2 (375 frames)

Measurement Taylor et al. Tan et al. Proposed

Positive Predictive Value/Precision 13.00% 64.91% 100.0%
Negative Predictive Value 77.63% 91.82% 94.26%

Sensitivity/Recall 46.03% 58.73% 69.84%
Specificity 37.82% 93.59% 100.0%

Overall Accuracy 39.20% 87.73% 94.93%

Table 3. Results - Quantitative - Sequence #3 (496 frames)

Measurement Taylor et al. Tan et al. Proposed

Positive Predictive Value/Precision 34.48% 73.86% 97.50%
Negative Predictive Value 72.65% 86.70% 93.36%

Sensitivity/Recall 65.22% 70.65% 84.78%
Specificity 42.71% 88.44% 99.00%

Overall Accuracy 49.83% 82.82% 94.50%
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the idle time and thus significantly save the battery life while Tan et al.’s system
requires about 45% of the idle time and Tayler’s system takes up to 100%. Taylor
et al.’s system has wide variation in speed because it depends on the distance of
the obstacle: it performs faster when the obstacle is close as fewer pixels need to
be processed. Based on the results from accuracy and performance comparison,
we then provide the proposed system to real blind people for a field trial.

Table 4. Results - Speed

Taylor et al. Tan et al. Proposed

Computation time per frame 8:83 ms 30 ms 7 ms
Time spent (percentage of idle time) 12%:125% 45% 10%

Theoretical frame rate (fps) 12:125 33 150
Actual frame rate (fps) 8:15 15 15

5.2 Real-world Evaluation

The proposed system implemented on the Smartphone was given to several blind
users for evaluation. We will discuss the goal, environment, subjects, procedures,
issues, feedback and limitations of the field trial.

Goal The goal of this experiment is to evaluate to what extent a blind user
feels the differences among the three systems and how good the systems are in
relation to each other from a human perspective. The reason for doing this is
that it is difficult to translate quantitative accuracy numbers from Table 1:3
into human experience.

Fig. 3. Experiment setup

Environment The experiment took place in the Association for the Blind of
Western Australia. Eleven paper boxes were randomly placed in a corridor by
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ensuring there was no straight safe path (see Figure 3). Low height boxes are
chosen due to safety concerns and the blind participant would not be able to
sense the boxes even by taking advantage of echolocation. Therefore, the result
obtained under such environment setup would not be affected by the skills of
the participant.

Subjects Five blind adult volunteers were invited to participate in this experi-
ment. We identify them as P1 to P5 in this paper. To ensure that the evaluation
is unbiased, we did not tell the participant which system was developed by us un-
til after the experiment was finished. Each participant was first given a random
system for testing, during which the participant can get familiar with correctly
holding the Smartphone and learn how to obtain/understand feedback from the
Smartphone before the evaluation process starts. The order of the systems given
to the participant for evaluation was randomly defined because the number of
participants does not meet the requirement of Latin square.

Procedures During the testing and evaluation of the systems, the participants
were requested to walk through the corridor with only the Smartphone, with-
out white cane, guide dog or other ETAs. The participant was asked to point
the Smartphone to the front with about 45° tilt angle and stop proceeding once
the Smartphone starts vibrating. Once the Smartphone vibrates, the partici-
pant either swept the phone to find a clear path or used auditory feedback (their
choice). Though detailed instructions were given, the participant was followed
by a human guide to ensure safety. The human guide only provided three types
of assistance: 1) reminding the participant of the correct holding posture of the
Smartphone; 2) stopping the participant from proceeding when an obstacle is
about to be encountered but the participant shows no sign of stopping; 3) in-
forming the participant of the safe path to proceed when the participant could
not find a clear path using the Smartphone. After the participants finished ex-
periencing the three different systems, they were asked to rank the systems (if
they could feel the differences) and give each system a score between one (worst)
and ten (best). Further comments from the participant were also recorded.

Issues One of the five participants (P3) had difficulty holding and using the
phone as needed, and due to the limited training time was unable to overcome
this. Hence P3 could not distinguish between the three systems. In contrast,
P2 got used to the device very quickly as we were told that P2 had been using
another ETA, the MiniGuide, for about 10 years. Obviously, the system presents
usability barriers to its usage, but all existing ETAs also suffer from similar
issues.

Feedback The feedbacks from all participants except P3 are then consolidated
and the rating for each system is shown in Table 5. Only P1 thought Tan et
al.’s system was better. All others preferred the proposed system. As Table 5
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shows, the proposed system is generally 50% better than Tan et al.’s system and
is almost twice as good as Taylor et al.’s system according to the participants.

Table 5. Results - Real World

Subject Taylor et al. Tan et al. Proposed

P1 5 10 7.5
P2 7 4 10
P3 N/A N/A N/A
P4 4 4 10
P5 4 7 10

Limitations During the experiment, we observed that it is not easy for most
participants to hold the Smartphone at the requested tilt angle (around 45°) all
the time. Since there is no embedded accelerometer in this specific Smartphone,
longer training time would be useful for the user to get accustomed to it. The
problem can be addressed if a Smartphone with accelerometer is used.

6 Conclusions and Future Work

This paper presents a real-time obstacle detection system implemented on a
Smartphone, which can be used by the visually impaired as a mobility tool. By
combining color histograms, edge cues and pixel-depth relationship, the proposed
system is able to detect on-floor obstacles and provides feedback to the user
through vibration and voice-on-demand. The proposed system has been tested
in different environments and provides consistent and reliable results despite the
simplicity of the system. The proposed system has been evaluated by blind users
and received a high ranking. There is still plenty of room to improve the proposed
system, such as utilizing the embedded accelerometer in some Smartphone and
dealing with more complex floor patterns, etc.
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