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Abstract

How well can the maximum size of an independent set, or the minimum size of a dominating
set of a graph in which all degrees are at most d be approximated by a randomized constant time
algorithm ? Motivated by results and questions of Nguyen and Onak, and of Parnas, Ron and
Trevisan, we show that the best approximation ratio that can be achieved for the first question
(independence number) is between Ω(d/ log d) and O(d log log d/ log d), whereas the answer to the
second (domination number) is (1 + o(1)) ln d.

1 Introduction

The question of identifying the properties of bounded degree graphs in the model of [6] that can be
tested efficiently, is that of recognizing the properties that are local in nature. These are properties for
which the local structure of the graph supplies meaningful information about the global property. A
related problem deals with efficient approximation algorithms for graph parameters, like the indepen-
dence number, or the domination number of a given bounded degree graph. The question here is to
decide how well we can approximate these quantities by observing the local structure of the graph. In
this short paper we discuss several problems of this type, continuing the work in several earlier papers
including [9] and [8] on related questions.

1.1 Notation and definitions

Following [9] and [8] we call a real number y an (α, β)-approximation for a number y if y ≤ y ≤ αy+β.
A randomized algorithm A is an (α, β)-approximation algorithm for a graph parameter P (G) if given
an input graph G the algorithm computes a value y which is an (α, β)-approximation for P (G) with
probability at least 2/3 for any proper input graph G. Let G(n, d) denote the family of all graphs
on n vertices with maximum degree at most d, represented by their adjacency lists. In this note
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we are interested in randomized (α, εn)-approximation algorithms for some graph parameters, that
work on input graphs G ∈ G(n, d) in constant expected time, that is, in time bounded by a function
f = f(d, ε) of d and ε only, which is independent of n. In order to make the discussion cleaner, we
will not be interested in the precise function f as long as it is independent of n. Our objective is
to try to determine or estimate, for a given graph parameter P , the best possible α so that for any
positive ε > 0 there is a constant time, randomized (α, εn)-approximation algorithm for P (G) for
inputs G ∈ G(n, d). In some cases the same α actually works for ε = 0 as well.

We note that it is possible to replace the success probability 2/3 by any larger number smaller than
1 (by running the algorithm several times, taking the median of all values computed) and it is also
possible to replace the expected running time by worst case running time by stopping the algorithm
if its running time exceeds its expectation by a large constant factor.

1.2 Examples

• Simple sampling of vertices, checking their degrees, shows that for every ε > 0 there is a constant
time randomized (1, εn) approximation algorithm for estimating the sum of degrees of a graph
G ∈ G(n, d). The analysis is essentially trivial, and the example is listed here mainly to practice
the definitions. A similar approach provides a constant time randomized (1, εn) approximation
algorithm for the number of triangles (or copies of any fixed connected graph) in a given G ∈
G(n, d).

• As shown in [9] and [7] for every ε > 0 there is a constant time randomized (2, εn) approximation
algorithm for the vertex cover of a graph G ∈ G(n, d). Trevisan (c.f. [9]) observed that there is
no such (2− δ, εn)-approximation algorithm, for any fixed ε < δ.

• In [8] it is proved that for every ε > 0 there is a constant time randomized (H(d + 1), εn)
approximation algorithm for the domination number of a graph G ∈ G(n, d), where H(d+ 1) =
1 + 1

2 + . . . + 1
d+1 = ln d + Θ(1) and the domination number of G = (V,E) is the minimum

cardinality of a set of vertices U ⊂ V so that each vertex v ∈ V − U has a neighbor in U .

• Another result proved in [8] is that for every ε > 0 there is a constant time randomized (1, εn)
approximation algorithm for the maximum size of a matching in a graph G ∈ G(n, d).

1.3 A useful tool

The basic tool applied in the algorithms of [9] and [8] is the result that for every ε > 0 there is a
constant time randomized algorithm that computes, for a given G ∈ G(n, d), a (1, εn)-approximation
of the size of some maximal (with respect to containment) independent set in G. The same proof
provides such an approximation even in the weighted case, which we’ll need here, where the weight of
each vertex is, say, an integer between 1 and d.
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1.4 The new results

Our first result deals with approximation of domination numbers, showing that the (H(d + 1), εn)
approximation proved in [8] is essentially tight.

Theorem 1.1 The smallest α so that for every ε > 0 there is a constant time randomized (α, εn)
approximation algorithm for the domination number of a graph G ∈ G(n, d) is (1 + o(1)) ln d, where
the o(1)-term tends to zero as d tends to infinity.

The second result is about approximation of independence numbers.

Theorem 1.2 There are two positive constants c1, c2 so that the following holds. The smallest α
so that for every ε > 0 there is a constant time randomized (α, εn) approximation algorithm for the
independence number of a graph G ∈ G(n, d) is at least c1 d

log d , and at most c2 d log log d
log d .

2 Proofs

In this section we present the proofs of the two theorems stated above. Recall that the girth of a
graph G is the length of a shortest cycle in it. We start with the proof of Theorem 1.1.

2.1 Dominating set

Lemma 2.1 For every fixed d and large n divisible by 2d+2, there are two d-regular graphs G = (V,E)
and G′ = (V ′, E′) in G(n, d) so that the following holds.
(i) The girth of G is at least, say, 0.5 log n/ log d and its domination number is precisely n

d+1 .

(ii) The girth of G′ is at least 0.5 log n/ log d and its domination number is (1 + o(1))n ln d
d .

Proof:
(i) Start with an arbitrary set of n/(d+ 1) pairwise vertex disjoint stars, each containing d edges. Let
U denote the set of centers of these stars, and let W denote the set of all their end vertices. Note that
|W | = nd

d+1 is even, and thus there is a d − 1-regular graph H on the set W . Let G be the d-regular
graph on the n vertices U ∪W consisting of all edges of the initial stars as well as all edges of H.
The domination number of G is clearly n/(d+ 1), as U is a dominating set in it. The girth, however,
can be small, and our objective is to show that it can be increased without changing the domination
number. This will be done by modifying the graph G, without touching the edges of the stars.

The method is similar to that of Erdös and Sachs in [5]. Call a cycle short if its length is at most
0.5 log n/ log d. As long as there is a short cycle, take arbitrarily a shortest cycle C, and an arbitrary
non-star edge in it uv. Since the graph is d-regular, there is another non-star edge xy in it whose
distance from uv is at least log n/ log d. Omit the two edges uv and xy from G and replace them by
the two new edges xu and yv. It is easy to check that this replacement does not create any new cycles
of length at most that of C, and destroys the cycle C itself. Continuing in this manner until there are
no short cycles left we obtain the desired graph G.

3



(ii) Let G′ be a random d-regular graph on n vertices. It is known that with high probability the
domination number of G′ is (1 + o(1))n ln d

d (see, e.g., [4]). It is also not difficult to check that the
expected number of cycles of length at most 0.5 log n/ log d in G′ is at most

√
n, and hence, by

Markov’s Inequality, with probability at least 0.5 there are at most 2
√
n such cycles. Fix a graph

with domination number (1 + o(1))n ln d
d and at most 2

√
n short cycles, and modify it according to

the process described in the proof of part (i), destroying all short cycles. Since each modification step
touches at most 2 edges, and cannot create too many short cycles, the domination number changes
during this process by at most o(n), providing the desired result.

Proof of Theorem 1.1: The existence of the required approximation algorithm is proved in [8], as
described in Section 1. It remains to show that no better approximation is possible.

Let G and G′ be as in Lemma 2.1 and consider two distributions on graphs in G(n, d): the first is
a permuted copy of G, and the second is a permuted copy of G′. By the girth and regularity condi-
tions the statistics of subgraphs of less than 0.5 log n/ log d vertices and edges in both distributions is
identical. Hence no constant time algorithm can distinguish between them. This completes the proof.
Note that the two distributions here are not only computationally indistinguishable for randomized
constant time algorithms, but are completely identical. It is possible to use computational indistin-
guishability here and show that in fact in order to obtain an (α, εn)-approximation for the domination
of G ∈ G(n, d), where α < (1− δ) ln d and ε < δ ln d, one needs to inspect at least Ω(

√
n) vertices and

edges, but as we care here only about algorithms whose running time is independent of n, we do not
include the detailed analysis of this stronger claim.

2.2 Independence number

Proof of Theorem 1.2: The proof of the lower bound is simple: there is a d-regular bipartite
graph G on n vertices with girth Ω(log n) (and independence number n/2), and it is well known that
a random d-regular graph on n vertices has, with high probability, independence number at most
O(n log d

d ) and only a small number of cycles of length shorter than 0.5 log n/ log d. We can thus modify
the graph as in the previous subsection and get a d-regular graph G′ on n vertices with girth at least
Ω(log n/ log d) and independence number at most O(n log d

d ). As in the previous proof, no constant
time algorithm will be able to distinguish between a permuted copy of G and a permuted copy of G′,
providing the lower bound.

The proof of the upper bound requires a bit more work. It is, in fact, non trivial to get any constant
time (α, εn)- approximation algorithm to the independence number, with α = o(d). We first describe
a sequential deterministic algorithm and then observe that it can be converted into a randomized,
constant time procedure.

Let G ∈ G(n, d) be a given input graph. As long as there is a nonempty set X of vertices of G with
a common neighbor in the graph, satisfying |X| ≤ log3 d, so that the induced subgraph on X contains
no independent set of size at least |X|/ log d, omit it. (When there are many choices for such a set
X, pick one arbitrarily). Suppose that when there is no such set X left, there are t vertices in the
remaining graph. By the result in [2] (see the remark following the proof of Theorem 1.1 in [2]), the
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induced graph left on the t remaining vertices contains an independent set of size at least Ω( t log d
d log log d).

It is also obvious that G has an independent set of size at least n
d+1 . Thus, the independence number

of G is at least the average between these two, that is, at least Ω( n
d+1 + t log d

d log log d). On the other
hand we known that there is no independent set of size bigger than n−t

log d + t, providing the required
approximation if the value of t is known with sufficient accuracy.

It thus remains to show how to approximate t in randomized constant time. Define an auxiliary
weighted graph F whose set of vertices is the set of all nonempty subsets X of at most log3 d vertices
of G with a common neighbor, so that the induced subgraph of G on X contains no independent set of
size at least |X|/ log d. Two such vertices X and X ′ of F are adjacent iff the two sets X and X ′ have a
nonempty intersection. The weight of each vertex X is the cardinality |X| of the subset corresponding
to it. Note that one can easily check the adjacency relations in the graph F by observing the original
graph G locally. We can therefore find, in randomized constant time, a good approximation to the
weight of a maximal (with respect to containment) independent set of vertices of F , which will enable
us to approximate the value of t defined in the sequential procedure described above. This completes
the proof.

3 Concluding remarks and open problems

We have investigated the best possible approximation ratios that can be obtained for two graph
parameters by randomized, constant time algorithms on bounded degree graphs represented by their
adjacency lists. The problem for domination number is quite well understood, whereas in the case
of independence number there is still a Θ(log log d) gap between the upper and lower bounds. It will
be interesting to close this gap. We suspect that the log log d term can be omitted, but this will
require an additional argument. It is worth noting that the best known polynomial time algorithm
for approximating the independence number of graphs G ∈ G(n, d) provides an approximation ratio
of Θ(d/ log d). This is based on the method of [3] that applies semidefinite programming, and it seems
unlikely that it can be converted to a constant time randomized algorithm.

A purely combinatorial problem, that seems related to the question above (although we do not know
any direct relation) is the conjecture raised in [1] that for any fixed graph H, any graph G ∈ G(n, d)
that contains no copy of H has an independent set of size at least cH n log d

d . Here, too, the best known
result, due to Shearer [10], is off by a factor of log log d, and it is only known that the independence
number of any such graph is at least cH n log d

d log log d .
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