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Abstract

Coding theoretic and complexity theoretic considerations naturally lead to the question
of generating symmetric, sparse, redundant linear systems. This paper provides new way of
constructions with better parameters and new lower bounds.

Low Density Parity Check (LDPC) codes are linear codes defined by short constraints (a
property essential for local testing of a code). Some of the best (theoretically and practically)
used codes are LDPC. Symmetric codes are those in which all coordinates “look the same”,
namely there is some transitive group acting on the coordinates which preserves the code. Some
of the most commonly used locally testable codes (especially in PCPs and other proof systems),
including all “low-degree” codes, are symmetric. Requiring that a symmetric binary code of
length n has large (linear or near-linear) distance seems to suggest a “conflict” between 1/rate
and density (constraint length). In known constructions, if one is constant then the other is
almost worst possible - n/poly(log n).

Our main positive result simultaneously achieves symmetric low density, constant rate codes
generated by a single constraint. We present an explicit construction of a symmetric and tran-
sitive binary code of length n, near-linear distance n/(log log n)2, of constant rate and with
constraints of length (log n)4. The construction is in the spirit of Tanner codes, namely the
codewords are indexed by the edges of a sparse regular expander graph. The main novelty is
in our construction of a transitive (non Abelian!) group acting on these edges which preserves
the code. Our construction is one instantiation of a framework we call Cayley Codes developed
here, that may be viewed as extending zig-zag product to symmetric codes.

Our main negative result is that the parameters obtained above cannot be significantly
improved, as long as the acting group is solvable (like the one we use). More specifically,
we show that in constant rate and linear distance codes (aka ”good” codes) invariant under
solvable groups, the density (length of generating constraints) cannot go down to a constant,
and is bounded below by log(Ω(`)) n if the group has a derived series of length `. This negative
result precludes natural local tests with constantly many queries for such solvable ”good” codes.
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1 Introduction

The work in this paper is partially motivated from several (related) research directions. We first
give a very high level description of these, and then proceed to describe our results.

1.1 Motivation

Locally testable codes Codes in which the proximity to a codeword can be determined by a few
coordinate queries have proven a central ingredient in some major results in complexity theory.
They appear as low-degree tests in the IP = PSPACE, MIP = NEXP and PCP = NP
theorems, and indeed the work of [16] (which was later partly derandomized by [8]) elucidates their
role as the “combinatorial heart” of PCPs. The quest to simultaneously optimize their coding
theoretic parameters and the number of queries used has recently culminated in the combination of
[7] and [13] (see also [26]) in a length n binary linear code of linear distance and rate 1/(log n)O(1),
testable with a constant number of queries (which are testing linear constraints of constant length).
Further improving the rate to a constant is a major open problem. Essential to locally testable
codes is having short constraints.

LDPC codes Low Density Parity Check codes are precisely linear codes with short constraints.
Density is the constraints length. These codes were defined in the seminal work of Gallager [14] in
the 60’s. Only in the 90’s, due to works of [22, 30, 32] and others did LDPC codes start to compete
with the algebraic constructions in the coding-theory scene. Today these provide some of the best
practical and theoretical codes for many noise models, and are extremely efficient to encode and
decode. In particular, they can achieve linear distance, constant rate and constant constraint size
simultaneously. But their natural potential for local testing was (possibly) devastated by such
results as [6], who showed that a general class of LDPC codes, based on expanders, requires a
linear number of queries to test, despite having constant-size constraints. We note that possessing
short defining constraints is not always an obvious property of a code – e.g. it was only recently
discovered in [19] that the sparse dual-BCH codes have such constraints (but unfortunately this
code has a very bad rate).

Symmetric codes Many of the classical codes, e.g. Hamming, Reed-Solomon, Hadamard, Reed-
Muller, BCH, and some Goppa codes are symmetric, namely there is a transitive group acting on the
coordinates which leaves the code invariant. Symmetry is not only elegant mathematically - it often
also implies concise representation of the code as well as tools to analyze its quality parameters,
like rate and distance. Huge literature is devoted to such codes within coding theory, but even for
cyclic codes (those invariant under cyclic shifts) it is still a major open problem if they can have
simultaneously constant rate and linear distance. The conjecture is that this is impossible. A major
result of Berman from the seventies [9] shows that there are no good cyclic codes of length n where
all the prime divisors of n are bounded. Interesting progress on this conjecture was made by Babai
Shpilka and Stefankovic [5] that extend Berman’s result and relax the conditions on the sizes of the
prime divisors of the code length. Moreover [5] show that the conjecture is true if one requires the
cyclic code to be defined by constraints of constant length (i.e to be LDPC). McElice [25] proved
(non constructively) that there are asymptotically good non-linear codes invariant under the action
of very large groups, however these codes are clearly not LDPC.
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Symmetric low-density and locally testable codes Starting with linearity testing of [10] and
the first low-degree tests of [4, 28], nearly all locally testable codes appearing in proof systems are
symmetric. A theory studying the extent to which symmetry can help (or handicap) local testing
was initiated by Kaufman and Sudan [18]. They generalized known examples showing that when
the acting group is the affine group (and the coordinates are naturally identified with the elements
of the vectors space acted upon), then having short constraints that define the code is not only
necessary, but also sufficient for local testability. Moreover, in these cases the orbit (under the
group action) of a single constraint suffices to define the code, and a canonical local test is picking
a random constraint from that orbit1. Again, the rate of all these codes is poor, and [18] challenge
reconciling the apparent conflict between rate and density, possibly for other groups.

Expanding Cayley graphs Gallager’s construction [14] of LDPC codes was based on sparse
random graphs, and Tanner’s construction [35] was based on high girth graphs. Sipser and Spielman
[32] identified expansion as the crucial parameter of graphs which yield codes with good parameters.
This was followed up in almost all subsequent works, using expanders to construct codes. This
work motivated further explicit constructions of good expanders. As example, we note that the [32]
“belief propagation” decoding algorithm for LDPC was simplest if the underlying graph is a lossless
expander, and subsequently [11] were able to explicitly construct such expanders. Unfortunately,
all codes constructed this way seem far from symmetric. But expander graphs can certainly be
symmetric! Indeed, almost all constructions of expander graphs are Cayley graphs, namely the
vertices correspond to the elements of a finite group, and edges are prescribed by a fixed generating
set of the group. It is evident that such graphs are symmetric, namely the group itself acts
transitively on the vertices and preserves the edges. We note importantly that even the zig-zag
product construction of expanders [31], which started as a combinatorial alternative to algebraic
constructions, was extended to allow iterative probabilistic constructions of Cayley graphs [2, 27]
via the semi-direct product of groups. Our codes are partially motivated by making explicit the
probabilistic construction of [2, 27] Attempts to construct codes iteratively exist, with the best
example being Meir’s, partially explicit construction [26]. However, again, this code is far from
symmetric.

Several natural research directions point to the following question: To what extent can sym-
metric LDPC codes attain (or even come close to) the coding theory gold standard
of linear distance and constant rate? To fix ideas, let us consider symmetric codes with lin-
ear (or even near-linear) distance, and examine the trade-off between density and 1/rate. In all
known codes if 1/rate or density is constant then the other is worst possible, about n/poly(log n),
the code length! Best density/rate trade-offs for known binary high distance symmetric codes are
the following. Reed-Muller codes over binary field (say degree-d polynomials), which are invariant
under the affine group, have short constraints (2d-long) but pathetic rate (log n)d/n. BCH codes,
invariant under the cyclic group, have constant rate, but constraints of (worst possible) length
Ω(n). Reed-Muller codes over large fields concatenated with Hadamard achieve density (log n)1/ε

with (1/rate) being 2(log n)ε
[3, 34].2

1We note that the existence of a single constraint that generates a code gives rise to a canonical algorithm for
local testing the code. An algorithm that picks a random constraint from the orbit. For codes invariant under the
affine group, Kaufman and Sudan have shown that such a canonical algorithm is indeed a valid local tester for the
code. This motivates the search for other symmetric codes generated by the orbit(s) of one (or few) generators, with
the hope that local testing would be implied.

2Note that when this code is mostly used to get constant query complexity, it is modified to make coordinates
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Indeed, some believed that the conflict between density and rate in symmetric codes cannot be
reconciled. On the other hand, no result precludes the ratio of density/rate from being best possible,
namely a constant! Our paper addresses both upper and lower bounds on this trade-off.

1.2 Our Results and techniques

We first describe our upper bounds and then our lower bounds.

1.2.1 Upper bounds

Our main positive result allows simultaneous constant rate and polylogarithmic density, and in
particular reduces the upper bound on the ratio density/rate to poly log n! More precisely, The-
orem 11 gives an explicit construction of length-n symmetric codes of constant rate and distance
n/(log log n)2 which is defined by constraints of a length poly(log n). Moreover, these constraints
constitute the orbit of a single constraint, under the transitive action of a (non Abelian) group.

In order to prove this result, we develop a framework of “Cayley Codes”, which we describe next.
They extend Tanner codes in that the coordinates of the code are identified with the edges of a
regular expander graph, and constraints are imposed on neighborhoods (namely edges incident on
each single vertex) according to a fixed “inner code” B. In Cayley codes we naturally insist that
the underlying graph is a Cayley graph, namely the vertices are the elements of a group G, and a
set of generators S of the group determine edges in a natural way. While this a graph is symmetric
(G acts transitively on its vertices), there is no such guarantee in general for the code. The problem
is to find a group that acts on the edges of the graph, and preserves all copies of the internal code.
We show that if some group H simultaneously acts transitively on the code B and acts on the
group G, then the semi-direct product group G oH acts transitively on the edges. We note that
this action is not standard.

We then turn to find an appropriate instantiation of this idea with good parameters. This paragraph
is a bit technical and may be skipped at first reading. The group G is chosen to be the hypercube
Ft

2, and S a very specific ε-biased set in G (so as to make the associated Cayley graph expanding),
which can be identified with the elements of a cyclic group H isomorphic to the multiplicative
group of of F ∗

t4 . The inner code B is chosen to be a BCH code on S on which the group H acts
transitively. The inferior distance and density of the code B are mitigated since its length is only
polylogarithmic in the length of the whole code. Now the action of H on G (whose nature we
describe in the technical section) allows the construction of the semi-direct product G o H. We
now define the action of this group on directed edges of the graph, and prove that all parts fit: this
group acts transitively on the Tanner code of the Cayley graph on G; S.

Alon, Lubotzky and Wigderson [2] provided a randomized construction of high rate high distance
codes generated by two orbits. They asked about explicit constructions of high rate, high distance
codes generated by few orbits (for the group they studied). Our construction provides such explicit
codes generated by one orbit!.

correspond not to the value of the encoded polynomial on a point, but rather its value on an entire line or larger
subspace. This has lousy rate, and when derandomized to improve the rate, transitivity of the action is lost.
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1.2.2 Lower bounds

The second result (Theorem 13) shows that there is no good code invariant under a solvable
group with few low-weight generators. In fact we rule out the possibility of such codes even if the
support of their generators is o(logΩ(`) n) if the group has a derived series of length ` and n is the
code length. This result exclude the possibility of good solvable locally testable codes with few
low weight generators. Note that the codes we have constructed in the upper bound section are
solvable. Our methods extend work of Lubotzky and Weiss [23], who showed a similar lower bound
on the number of generators Cayley graphs on these groups to be expanders. The extension is in
two directions - we show the same for Schreier graphs, and then extend their argument from finding
standard separators to finding ε-partitions of the graph to many parts - from which we can deduce
information on the distance and rate of the associated Tanner codes.

A work by Babai,Shpilka and Stefankovic [5] showed that there are no good cyclic codes with low
weight constraints (with no restriction on the number of generating constraints). Since low weight
constraints are a necessary (but not sufficient) condition for testability, they showed that there are
no good cyclic locally testable codes. Our work here shows that there are no good solvable locally
testable codes with few low weight generating constraints. i.e. we exclude good locally testable
codes over larger groups of symmetry but under the assumption of few low weight generating
constraints. As far as we know, it could well be the case that a cyclic code whose dual has a low
weight basis must have a basis that is generated by a constant many low-weight constraints.

The proof showing that there are no good solvable codes with few low weight generators has two
main parts. First, for a parameter ε (later taken to be o(1)) we define a new notion that we call
an ε-partition of a graph, which extends the notion of a small separator, in that we demand that
the separating set splits the graph into many pieces. More precisely, a graph has an ε-partition
(Definition 22) if one can remove ε fraction of its vertices to make all connected components of
relative size at most ε. We show that a Schreier graph of a solvable group with d = o(logΩ(`) n)
generators has an ε-partition where ε is sub-constant. The proof of this part is by induction on the
derived length of the group (Lemma 18) with the Abelian being the base case. (Lemma 16). This
extends a technique of Lubotzky and Weiss [23] from Cayley to Schrier graphs, and from separators
to ε-partitions.

In the second part of the proof (Lemma 21) we associate codes invariant under groups with Schreier
graphs over these groups (see Definition 26), and show that if the associated Schreier graph has an
ε-partition then either the rate or the relative distance of the code is bounded by ε.

1.2.3 Organization.

In Section 2 we present some general definitions to be used through out the work. In Section 3
we introduce the notion of Cayley codes, and present our main conceptual theorem (Theorem 7)
showing sufficient conditions under which symmetric codes with one generator exist. In Section 4
we show our explicit construction of an almost good code with one generator of polylorarithmic
weight (Theorem 11). Finally, we show that there are no good Abelian and solvable codes with few
low weight generators (Theorem 12, Theorem 13). These lower bounds appear in Section 5.
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2 Some General Definitions

We start with some basic definitions that are being used throughout this work. The definitions deal
with group actions, Abelian and solvable groups, linear codes, Cayley graphs and Schreier graphs.

2.1 Group theory definitions

Definition 1 (Group automorphism). A group automorphism is an isomorphism from a group to
itself. The automorphisms of a group G form a group, denoted Aut(G).

Definition 2 (The symmetric group). The symmetric group on a set X, denoted by Sym(X),
is the group of permutations of the set X. The compusition of two permutations f, g (viewed as
bijective functions on X) is denoted f ◦ g.

Definition 3 (Action of a group on a group). An action of a group H on a group G is a group
homomorphism φ : H → Aut(G). In other words, each element h ∈ H corresponds to an au-
tomorphism φh of G, where φh1·h2 = φh1φh2. Let gh = φh(g) denotes the action of h ∈ H on
g ∈ G.

Definition 4 (Action of a group on a set, transitivity). An action of a group H on a set X is a
group homomorphism φ : H → Sym(X) that sends each element h to a permutation of the elements
of X. Let xh denotes the action of h ∈ H on x ∈ X. That is, an action should satisfy for every
h, h′ ∈ H, x ∈ X

xhh′ = (xh′)h

The action is called transitive if for every x1, x2 ∈ X there exists h ∈ H such that

xh
1 = x2

Fact 1. If a group H acts on sets G, S, then H acts also on G× S in the obvious way.

Definition 5 (Orbit). Suppose a group H acts on a set X. The orbit of an element x ∈ X under
the action of H is the set

xH = {xh|h ∈ H}.
Definition 6 (Semi-direct product group). Suppose a group H acts on a group G. The semidirect
product GoH is a group whose elements are pairs (g, h) where g ∈ G and h ∈ H. We define

(g1, h1) · (g2, h2) = (g1 · gh−1
1

2 , h1 · h2).

Definition 7 (Abelian group). A finite group G is Abelian if for every a, b ∈ G, ab = ba.

Definition 8 (Commutator subgroup). For a group G, the commutator subgroup of G denoted
[G,G] is a subgroup of G generated by all commutators of G, where a commutator of g, h ∈ G is
[g, h] = g−1h−1gh. The identity element of G is the only commutator iff G is Abelian.

Definition 9 (Normal subgroup). For a group G, a subgroup H of G is Normal if for every g ∈ G,
gHg−1 = H.
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Definition 10 (Quotient group). For a group G and a normal subgroup H of G, the quotient
group of H in G, written G/H is the set of cosets of H in G, with the operation (Ha)(Hb) = Hab.

Fact 2. For a group G, the quotient group G/[G,G] is Abelian.

Definition 11 (Solvable group). For a group G denote G0 = G, and Gi+1 = [Gi, Gi]. G is solvable
of derived length ` if G`−1 6= 1 and G` = 1, the trivial group of size 1. Also note that by Fact 2
Gi/Gi+1 is an Abelian group for i = 0, · · · `− 1.

Note that Abelian groups are solvable with derived length 1.

2.2 Codes definitions

Definition 12 (Linear code, length, dimension, rate, distance). A code C ⊆ FX is linear if C
forms a linear subspace over F. The orthogonal space to C is denoted as the dual-code C⊥. The
length of the code C is |X|. The dimension of the code C is the dimension of the subspace that is
described by C. The rate of the code C denoted as rC is the dimension of the code divided by its
length. A weight of a codeword c ∈ C denoted as w(c) is the number of non-zero elements in the
image of c. The distance of C is the minimum weight of a non-zero codeword of C, divided by the
length of C.

Definition 13 (Concatenated code). Given linear codes Ci ⊆ FXi, 1 ≤ i ≤ n, a concatenated code
C ⊆ FX1∪···∪Xn is a linear code such that c ∈ C iff c|Xi ∈ Ci for every i, where c|Xi denotes the
restriction of c to the coordinates Xi.

Definition 14 (Code invariant under a group). An action of a group H on a set X, induces an
action of H on the set FX = {f : X → F} that is defined as follows. For f ∈ FX , h : X → X,
fh = f ◦ h ∈ FX . A code C ⊆ FX is said to be H-invariant if

C = HC
def={fh|f ∈ C, h ∈ H}

C that is H-invariant is also H-transitive if the action of H on X is transitive (by definition 4).

Definition 15 (Short generators, Support of generators). A linear code C ⊆ FX that is H-invariant
has (r, w)-short generators if there exist r codewords c1, ...cr ∈ C⊥ each of weight at most w, such
that the vectors cH

1

⋃ · · ·⋃ cH
r span C⊥. For a generator ci ∈ C⊥, let s(ci) ⊆ X be the coordinates on

which ci has non-zero support. The support of the given generators of C is s(c1)
⋃ · · ·⋃ s(cr) ⊆ X.

2.3 Graph definitions

Definition 16 (Cayley graph). Given a group G and a set of generator S ⊂ G, the Cayley graph
Cay(G,S) is a graph, whose vertices are labeled by elements of G, and there is an edge (u, v) iff
there exist s ∈ S, such that u · s = v. When set S is symmetric (i.e. s ∈ S iff s−1 ∈ S), then the
graph Cay(G,S) is undirected.
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Definition 17 (Schreier graph). Given a group G that acts on a set X and a set of generator
S ⊆ G, the Schreier graph Shr(G,X, S) is a graph, whose vertices are labeled by elements of X,
and there is an edge (x1, x2) iff there exist s ∈ S, such that x2 = xs

1 (recall that xs
1 denotes the

action of s on x1).

Definition 18 (Edge-transitive graph). A graph H = (V, E) is edge-transitive [17] if there exists
a group G that acts on the edges of the graph and preserve the graph, and such that for all pairs of
edges e1, e2 ∈ E there exists an element g ∈ G such that g(e1) = e2.

3 Cayley Codes

In this section we present our conceptual contribution. We define Cayley codes and show conditions
under which these codes are invariant under a group that acts transitively on them. Moreover, we
derive conditions, under which these codes are generated by few low weight generators under the
action of that group.

Definition 19 (Cayley code). Given a Cayley Graph Cay(G,S) and a linear code B ⊆ FS of
length |S| = d define the linear a Cayley code Cay(G,S, B) ⊆ F|G|·|S|/2 as follows. Its coordinates
are the |G| · |S|/2 undirected edges of the graph Cay(G,S), namely the pairs {(g, si), (gsi, s

−1
i )},

g ∈ G, si ∈ S = {s1, · · · , sd}. The defining linear constraints are the local constraints of B on the
edges incident on every vertex, namely

c ∈ Cay(G,S, B) iff for every g ∈ G the following holds:

• Vertex consistency:

(c{(g,s1),(gs1,s−1
1 )}, · · · , c{(g,sd),(gsd,s−1

d )}) ∈ B.

The following lemmas are concerned with the rate and distance of the Cayley codes.

Lemma 1 (Rate of Cayley codes). The code Cay(G,S, B) with B of block length |S| = d and rate
rB > 1

2 , has rate 2rB − 1.

Proof. The rate of the code follows immediately from the definition. Consider c ∈ Cay(G,S,B). c
is of length |G||S|/2.

The codeword c obeys |G| vertices constraints of the form (c{(g,s1),(gs1,s−1
1 )}, · · · , c{(g,sd),(gsd,s−1

d )}) ∈
B, for every g ∈ G. Each such vertex constraint impose |S|(1 − rB) constraints of the code
B. The total number of constraints imposed is |G||S|(1 − rB). Hence, the rate of the code is
1− 2(1− rB) = 2rB − 1.

Lemma 2 (Distance of Cayley codes). Consider the Cayley code Cay(G,S, B) for a linear code
B of block length |S| = d, and minimum relative distance δ. If the Cayley graph Cay(G,S) is
an expander with normalized second largest eigenvalue λ then the code Cay(G,S, B) has minimum

distance at least
(

δ−λ
1−λ

)2
.
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Proof. Follows immediately from [32] (Lemma 15).

In the following we define an action of the semi-direct product group and show that the Cayley
graph Cay(G, S) is edge transitive under this action. This is then used for showing that the Cayley
codes are invariant under this group that acts transitively on them.

Definition 20 (Action of the semi-direct product group). Let G be a group, S ⊆ G a symmetric
set. Let H be a group such that H acts on G, and H acts on S and preserves S. In such case the
semi-direct product G oH is defined. We define the action of the semi-direct product G oH on
G× S to be as follows for (g, h) ∈ GoH, (g′, s′) ∈ (G× S).

(g, h)(g′, s) = gg′h
−1

, sh−1

In the following we show that the defined action of the semi direct product group GoH on G×S
is indeed an action.

Lemma 3 (The action of the semi-direct product group is valid). The action of the semi-direct
product GoH on G× S defined in Definition 20 is indeed an action.

Proof. The defined action of GoH on G×S acts on G and on S separately. The separate actions
are well defined since H acts on G and H acts on S. The combined action of G oH on G × S is
then well defined by Fact 1.

In the following we show conditions under which the Cayley graph Cay(G,S) is edge transitive
under the above action of the semi-direct product group GoH.

Lemma 4 (Conditions for the Cayley graph to be edge-transitive under the action of the semi-direct
product group). Let G be a group, S ⊆ G a symmetric set. Let H be a group such that:

• H acts on G.

• H acts transitively on S.

Then the graph Cay(G,S) is edge-transitive under the action of the semi-direct product group GoH.

Proof. Since H acts on G and H acts on S the semi-direct product group G o H is well defined
as well as its action on G × S. For proving the edge-transitivity we first need to show that edges
are mapped to edges (edge preservation), and that every edge can be mapped to every other edge
(transitivity).

Edge preservation. We need to show that undirected edges (which are pairs of anti-directional
directed edges) are mapped to undirected edges, namely that for (g, h) ∈ GoH, (g′, s) ∈ G× S

(g, h)(g′, s) = (g′(g,h), s(g,h))
(g, h)(g′s, s−1) = ((g′s)(g,h), (s−1)(g,h))

8



is such that (g′s)(g,h) = g′(g,h) · s(g,h), and (s(g,h))−1 = (s−1)(g,h).

Indeed,

(g′s)(g,h) = g(g′s)h−1
= gg′h

−1
sh−1

= g′(g,h) · s(g,h) ;

(s(g,h))−1 = (sh−1
)−1 = (s−1)h−1

= (s−1)(g,h)

Transitivity. We need to show that the action of GoH on G× S is transitive. That is, we need
to show that for every (g′, s), (g′′, s′′) ∈ G× S there exists (g, h) ∈ GoH such that (g, h)(g′, s) =
(g′′, s′′).

Recall, that the action of (g, h) ∈ G o H on (g′, s) ∈ G × S is of the form (g, h)(g′, s) =
(g′(g,h), s(g,h)) = (gg′h−1

, sh−1
).

Pick h such that s′′ = sh−1
(this can be done since H acts transitively on S).

Pick g such that g′′ = gg′h−1
(this can be done since G acts transitively on itself).

Hence the transitivity is obtained.

In the following we show conditions under which the Cayley code Cay(G,S, B) is invariant under
the above action of the semi-direct product group GoH.

Lemma 5 (Conditions for the Cayley code to be invariant and transitive under the semi-direct
product group). Let G be a group, S ⊆ G a symmetric set. Let B ⊆ FS be a linear code. Let H be
a group such that:

• H acts on G.

• H acts transitively on S.

• B is H-invariant

Then the code Cay(G,S, B) ⊆ F|G||S|/2 is invariant under the action of the semi-direct product
group GoH. Moreover, the code Cay(G,S, B) is transitive under this group.

Proof. By Lemma 4 the semi-direct product group GoH acts transitively on the edges of the Cayley
graph Cay(G,S). Assume |G| = n, |S| = d. For showing that the code Cay(G,S, B) ⊆ F|G||S|/2 is
invariant under the semi-direct product group GoH we need to show that for every (g, h) ∈ GoH,
c = (c{(g1,s1)(g1s1,s−1

1 )}, · · · , c{(gn,sd)(gnsd,s−1
d )}) ∈ Cay(G,S, B) we have

(g, h) · c = (c{(g(g,h)
1 ,s

(g,h)
1 )((g1s1)(g,h),(s−1

1 )(g,h))}, · · · ,

c{(g(g,h)
n ,s

(g,h)
d ),((gnsd)(g,h),(s−1

d )(g,h))}) ∈ Cay(G,S, B)

For showing the last we need to show that vertex consistency is preserved.
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Vertex consistency. We show that for every 1 ≤ i ≤ n:

(c{(g(g,h)
i ,s

(g,h)
1 )((gis1)(g,h),(s−1

1 )(g,h))}, · · · ,

c{(g(g,h)
i ,s

(g,h)
d ),((gisd)(g,h),(s−1

d )(g,h))}) ∈ B.

By the assumption that c ∈ Cay(G,S, B), we know that for every 1 ≤ i ≤ n:

(c{(gi,s1)(gis1,s−1
1 )}, · · · , c{(gi,sd)(gisd,s−1

d )}) ∈ B.

Hence, similarly, for every 1 ≤ i ≤ n:

(c{(g(g,h)
i ,s1)(g

(g,h)
i s1,s−1

1 )}, · · · ,

c{(g(g,h)
i ,sd),(g

(g,h)
i sd,s−1

d )}) ∈ B

This is since we only got the G coordinate permuted. Since by assumption the code B is H-invariant
we also know that for every h−1 ∈ H (and every 1 ≤ i ≤ n)

(c{(g(g,h)
i ,sh−1

1 )(g
(g,h)
i sh−1

1 ,(sh−1
1 )−1)}, · · · ,

c{(g(g,h)
i ,sh−1

d ),(g
(g,h)
i sh−1

d ,(sh−1
d )−1)}) ∈ B.

Given the action of the semidirect product group G o H on the S coordinate in G × S (where
the action on S is performed only by H), and where (g′s′)(g,h) = g′(g,h) · s′(g,h), and (s′(g,h))−1 =
(s′−1)(g,h) we obtain that for every 1 ≤ i ≤ n:

(c{(g(g,h)
i ,s

(g,h)
1 )((gis1)(g,h),(s−1

1 )(g,h))}, · · · ,

c{(g(g,h)
i ,s

(g,h)
d ),((gisd)(g,h),(s−1

d )(g,h))}) ∈ B

as required.

The transitivity of the code Cay(G,S, B) ⊆ F|G||S|/2 under the action of the semidirect product
group GoH is implied by Lemma 4.

The following lemma bounds to the number of generators of a Cayley code as well as their weight.

Lemma 6 (The number/weight of generators of a Cayley code). Let G be a group, S ⊆ G a
symmetric set. Let B ⊆ FS be a linear code of rate rB > 1

2 . Let H be a group such that:

• H acts on G.

• H acts transitively on S.

• B is H-invariant

Then the code Cay(G,S,B) ⊆ F|G||S|/2 has at most (1 − rB)|S| generators (under action of the
semi-direct product group G o H) of weight at most |S|. In particular, if H is the cyclic group
the code Cay(G,S, B) has one generator (more generally, if B is generated by one generator with
respect to H then the code Cay(G,S, B) has one generator).

10



Proof. By Lemma 4 the code Cay(G,S, B) is invariant under the semi-direct product group GoH.
Potential generators are contained in a basis to the code dual to B, hence there are at most
(1 − rB)|S| such generators. If H is the cyclic group then the code dual to B is generated by a
single vector and its orbit under H. As the generators of the Cayley code code Cay(G,S, B) are
contained in the generators of the code dual to B, the code Cay(G,S,B) has one generator.

The following is the main theorem of the of this section. It defines conditions for the existence of
codes with high rate, high distance and few generators (under a certain group) of low weight. The
proof of the theorem follows immediately from Lemma 4, Lemma 5 and Lemma 6.

Theorem 7 (Cayley Codes Theorem). Let G be a group, S ⊆ G a symmetric set. Let H be a
group. Let B ⊆ FS be a linear code such that:

• Cay(G, S) is an expander with second normalized eigenvalue λ.

• Distance of B is δ > λ.

• Rate of B is greater than 1
2 (rB > 1

2).

• H acts on G.

• H acts transitively on S.

• B is H-invariant with 1-generator.

Then the code Cay(G,S, B) ⊆ F|G||S|/2 has constant rate 2rB − 1 and distance [(δ − λ)/(1 − λ)]2.
It is transitive and invariant under the semi-direct product group GoH. The code is generated by
one generator of weight bounded by |S|.

4 Transitive high rate and high distance code with one low weight
generator

In the following we aim at finding groups G, H, S ⊆ G a symmetric set and a linear code B of
length |S| that meets the conditions of the main theorem (Theorem 7). We start by showing that
if we take G = F t

2 then there exists S ⊆ G ε-biased set |S| = t4− 1 and a group H = F ∗
t4 , such that

H acts on G and H acts transitively on S. Recall that S is ε-biased in G is equivalent to saying
that the second normalized eigenvalue of Cay(G, S) is at most ε.

Lemma 8 (Choosing G, H, S). Let t = 2a such that 4a = s|t. Let G = F t
2. Let q = t4 = 2s. Let

H = F ∗
q then the following holds.

• H acts on G.

• There exists explicit g ∈ F t
2 such that the set S = {gH} ⊆ G is an ε-biased set with ε =

1/q1/4 log q.

11



Proof. We will consider several related representations of elements in F2t using its subfield F2s .

Let d = t
s = 2s/4

s ,. Let e1, · · · , ed be a basis for F2t over F2s such that for v ∈ F2t is written uniquely
as v = v1e1 + v2e2 + · · · + vded with vi ∈ F2s . As elements of the underlying vector spaces, we’ll
use the vector representation v = (v1, v2, · · · , vd) where v1, · · · , vd ∈ F s

2 . Finally, we will also let v
correspond to the univariate degree d polynomial fv(x) = v1x + v2x

2 + · · ·+ vdx
d ∈ F (2s)[x].

The action of H on G is simple: for any h ∈ H and v ∈ G we define vh to be

(v1, v2, · · · , vd)h = (v1h, v2h
2, · · · , vdh

d)

with multiplication in F2s componentwise. This is clearly an action.

To define the ε-biased set S, let g = (1, 1, · · · , 1) =
∑d

i=1 ei ∈ F t
2, and define S = gH = {gh : h ∈

H}. By definition H acts transitively on S and |S| = |H| = q − 1. We now turn to upper bound
the bias of this set, namely upper bound

∑
h∈H ψ(gh) for all nontrivial additive characters ψ of F2t .

For this estimate we factor each such character through F2s . Formally, let ψ0 be some fixed
nontrivial additive character of F2s . Let Tr : F2t → F2s denote the (linear) trace function. Then
all additive characters of F2t are then obtained as: ψ(v) = ψ0(Tr(zv)) with some z ∈ F ∗

2t . Fix any
such z, and lets call the associated character sum ∆z. By linearity of the trace, we have

∆z =
∑

h∈H

ψ(gh) =
∑

h∈H

ψ((e1 + e2 + · · ·+ ed)h) =

∑

h∈H

d∑

i=1

ψ0(Tr(zei · hi)) =
∑

h∈H

ψ0(
d∑

i=1

(Tr(zei)) · hi)

Let us denote by ai = Tr(zei) ∈ F2s . Since the ei are a basis and z 6= 0, not all ai can be
simultaneously zero. Using the polynomial representation above, we have ∆z =

∑
h∈H ψ0(fa(h)),

namely a complete character sum of a nonzero degree d polynomial over F ∗
2s . By Weil bound [36, 12],

|∆z| < d · √2s = 2s/4

s · 2s/2 = q/(q1/4 log q).

Lemma 9. (Bounding the second eigenvalue in Cay(G,S)) Let G, S defined as in Lemma 8.
The Cayley graph Cay(G,S) is an expander with second normalized eigenvalue λ < 2/(q1/4 log q).
Observe that this graph has 2t vertices. The degree of each vertex is (t)4 − 1 = q − 1.

Proof. Since G = F t
2 is Abelian the eigenvalues of Cay(G,S) can be expressed in terms of the

characters of F t
2. Specifically, if S is an ε-biased set then the second normalized eigenvalue of

Cay(G,S) is at most 2ε. The value of λ is obtained by the fact that S is an ε-biased set, for
ε = 1/(q1/4 log q) by Lemma 8.

In the following, we use t, q, s as they are defined in Lemma 8. To complete the construction of a
Cayley code that meets the condition of Theorem 7, we need a linear cyclic code B transitive under
the action of the cyclic group H. We next show that such a code of length |S| = q− 1, rate greater
than 1

2 and large distance can be simply taken to be an appropriate BCH code.
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Lemma 10. (A linear code B invariant under the cyclic group F ∗
q with good rate and distance)

There exists a linear cyclic code B of length q − 1 (i.e. invariant under the cyclic group H = F ∗
q )

that has rate greater than 1/2 and normalized distance greater than 1/c log q for some constant
c > 1.

Proof. By Corollary 10 in [33] the BCH code is a linear cyclic code of length N = q − 1 that can
be chosen to obey the following relation N − k = (d/2) log N .

Where N is the length of the code, k is the dimension of the code, d is the distance (actual distance,
not normalized). Thus if we pick k to be greater than N

2 , we obtain d > N/c log N for some constant
c > 1. i.e. a normalized distance greater than 1/c log q for some constant c > 1

Theorem 11 (Almost good code with one generator of polylogrithmic weight). Let G, H, S, B
be as above. Let M = 2t. The Cayley code Cay(G,S, B) has length n = M × (logM)4/2, constant
rate, distance greater than 1

c′(log log n)2
for some constant c′ > 1. The code is transitive and invariant

under the semi direct product group GoH, and it is generated by one generator of weight at most
(log n)4.

Proof. Consider G,H, S, B from above. By Lemma 9, the Cayley graph Cay(G,S) is an expander
with second largest eigenvalue λ < 2/q1/4 log q. By Lemma 10 the linear code B is a cyclic code
that has distance δ = 1/c log q > λ, moreover rB > 1

2 . By definition of H,G, S, B, H acts on G, H
acts transitively on S and B is H-invariant with 1-generator. Hence all the conditions of Theorem 7
are met and the code has constant rate, distance

(
δ − λ

1− λ

)2

=

(
1/c log q − 2/q1/4 log q

1− 2/q1/4 log q

)2

=
1

c′ log2 q
=

1
c′(log log M)2

Moreover, The code is transitive and invariant under the semi direct product group GoH, and it
is generated by one generator of weight at most (log M)4.

5 There are no good Abelian and solvable codes with few low
weight generators

In the following we show that good codes with few low weight generators cannot be obtained from
invariance under Abelian and solvable groups.

The main theorems of this section are the following.

Theorem 12 (No good Abelian codes with generators of low support). An n-length linear code
transitive and invariant under an Abelian group, defined by the orbits of constraints that are sup-
ported on s ≤ (log n)1/4 coordinates, has either rate or relative distance bounded by ε, where
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ε = n−1/6d2
with d = s2. Moreover, if the rate of the code exceeds ε, the code is a concatena-

tion of codes of length at most εn each.

Before stating the theorem for the solvable case we need the following definition.

Definition 21. For a function f(x) the k-iterate of f , denoted f (k)(x) = f(f(....f(x))) where the
last has k-repetitions.

The lower bound theorem for the solvable case is the following.

Theorem 13 (No good solvable codes with generators of low support). An n-length linear code
transitive and invariant under a solvable group of derived length `, defined by the orbits of constraints
that are supported on s ≤ (log n)(2l) coordinates, has either rate or relative distance bounded by ε,
where ε = d/(log n)(l) with d = s2. Moreover, if the rate of the code exceeds ε, the code is a
concatenation of codes of length at most εn each.

The theorems imply the following corollary.

Corollary 1. For a linear code invariant and transitive under an Abelian/solvable group with s, ε
as above. Let δ =

√
ε. If the rate of the code is at least δ, then the code must have 1/δ codewords

with pairwise disjoint support.

Proof of Corollary 1. If the rate of the code is at least δ =
√

ε then the theorems imply that
the code is a concatenation of codes of length at most εn each. Every such concatenated code
contributes ε to the total rate of the code. Hence the code is obtained by a concatenation of at
least 1/δ = 1/

√
ε linear codes. Each such concatenated code contributes at least one codeword of

disjoint support from the other codewords, so the proof of the corollary is established.

The proofs of the theorems have two main parts. First we define a new notion that we call an
ε-partition of a graph (Definition 22), and show that a Schreier graph of an Abelian/solvable group
with d generators has an ε-partition (where d and ε are as defined as in the theorems). The proof
of this part is by induction on the derived length of the group (Lemma 18) with the Abelian being
the base case (Lemma 16).

In the second part (Lemma 21) we associate codes invariant under groups with Schreier graphs over
these groups (see Definition 26), and show that if the associated Schreier graph has an ε-partition
then either the rate or the relative distance of the code is bounded by ε.

Theorem 12 follows immediately from Lemma 21 and Lemma 16 below. Similarly, the proof of
Theorem 13 follows immediately from Lemma 21 and Lemma 18.

We start by introducing the notion of an ε-partition of a graph that plays a major role in the proofs.

Definition 22 (ε-Partition of a Graph). A graph H on vertices X has an ε-partition if X can be
partition into X0, X1, · · · , Xt (i.e. X = X0 ∪X1∪, · · · ,∪Xt), each of size at most ε|X|, such that
there are no edges between Xi, Xj for all distinct i, j > 0 (i.e. the removal of X0 partitions the
graph to many small connected components).
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We stress that the notion of ε-partition for sub-constant ε is stronger than non-expansion. E.g. take
a disjoint union of two identical Cayley expanders, the obtained graph is transitive, non-expanding
and has no ε-partition.

In the following we study ε-partitions of non-expanding Schreier graphs of Abelian and solvable
groups. An interesting open question is which other groups obey the condition that a non-expanding
Schreier graphs of these groups have ε-partition for sub-constant ε.

5.1 ε-Partitions of non-expanding Abelian Schreier graphs

In the following we study non-expanding Schreier graphs of Abelian groups and show that they
have ε-partition for sub-constant ε. The proofs of this subsection use the followings pair of tools.
The first tool is a decomposition theorem for Abelian groups (Theorem 14). The second tool is a
reduction from Schreier graphs to Cayley graphs (Claim 15).

Theorem 14 (Decomposition Theorem for Abelian groups). A finite Abelian group G can be
obtained by a direct product of constant many cyclic groups. I.e G = C1 × C2×, · · · ,×C` where
Ci’s are cyclic groups.

Claim 15 (A reduction from Schreier to Cayley graphs ). Let G be an Abelian group and S ⊆ G
a (symmetric) set. Let X be a set such that G acts on X transitively. Then the Schreier graph
Sch(G,X, S) is isomorphic to a Cayley graph Cay(G′, S′) where G′ is Abelian, |G′| = |X| and
|S′| = |S|.

Proof. By the Decomposition Theorem for Abelian groups G = C1 × C2×, · · · ,×C` where Ci are
cyclic groups. Since G acts on X transitively we have for every x ∈ X, X = {xg|g ∈ G}. Fix the
stabilizer H of a point x ∈ X. i.e. H = {g ∈ G|xg = x}. The stabilizer H is a subgroup of G, hence
H is also Abelian and the group G′ = G/H is well defined. Also, G′ acts on X and the natural
homomorphism G → G′ maps the generators S to a set S′ ⊆ G′. So we obtain |G′| = |X| and by
the transitivity of the action of G on X we can label X with the elements of G′ so the Schreier
graph Sch(G,X, S) is isomorphic to a Cayley graph Cay(G′, S′).

We now turn to show that non-expanding Schreier graphs of Abelian groups have ε-partition for
sub-constant ε.

Lemma 16. Let G be an Abelian group and X be a set such that G acts on X and |X| = n. Let
S ⊆ G be a (symmetric) set of size d ≤ (log n)1/2. Then, the Schreier graph Sch(G, X, S) has an
ε-partition, with ε ≤ n−

1
6d2 .

Proof. Assume first that the action of G on X is transitive. By Claim 15 above, the graph
Sch(G,X, S) is isomorphic to the Cayley graph Cay(G′, S′) where G′ is Abelian and |S′| = |S|. Now
by Claim 17 below, the Cayley graph Cay(G′, S′) (and hence also the Schreier graph Sch(G,X, S))
has an ε-partition with ε ≤ n−

1
4d2 .

If the action of G on X is not transitive then consider partition of X induced by the action of
G. i.e. X = X1 ∪ X2 ∪ · · · ∪ Xk where the action of G on each Xi is transitive. In this case the
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graph Sch(G,X, S) = Sch(G, X1, S) ∪ · · · ∪ Sch(G,Xk, S), where G is transitive on each Xi. We
can assume that each Xi is such that |Xi| ≥ n1− 1

4d2 ≥ n
3
4 since otherwise the relevant connected

component is already of the required size. By the previous discussion the graph Sch(G,Xi, S) has
an ε-partition with ε ≤ n−

3
4·4d2 ≤ n−

1
6d2 . This implies that the Schreier graph Sch(G,X, S) has an

ε-partition with ε ≤ n−
1

6d2 .

Claim 17. Let G be an Abelian group of size n, and S ⊆ G a (symmetric) set of size d ≤ (log n)1/2.
Then, the Cayley graph Cay(G,S) has an ε-partition, with ε ≤ n−

1
4d2 .

Proof. By the Decomposition Theorem for Abelian groups every Abelian group is direct product
of cyclic groups. Moreover, we can assume that there are at most d of these, otherwise S does not
even generate G, and we can work on each connected component separately. Thus, we may assume
that one of these cyclic groups is H = Zm, with m > n1/d, and G = H ×K. We will partition H
only by removing from it at most εm vertices D, and leaving all components Ci with size at most
εm each. This induces in G a set of vertices D ×K to remove of at most εn vertices, after which
the components of G will be Ci ×K of at most εn vertices each.

Let T be the projection of S on H, namely the H coordinates of each element of S in its H ×K
representation. T may be a multiset, but has size at most d, and consider the Cayley graph
Cay(H, T ).

Let T = {h1, h2, ..., hd} where each hi is an integer in [−m/2,m/2], which we use to represent Zm.

Let t be such that t2d = m/2. Thus, t = (m/2)1/2d.

1/t = 1/(m/2)1/2d < 1/n1/4d2
= 1/2(log n)/4d2

First case. Assume all |hi| < m/t2. We break Zm to t2 intervals of length m/t2 each. Then the
partition to disjoint pieces is clear: go around the circle Zm, and remove every t’th interval. Thus,
in total we remove m/t vertices and get disconnected pieces of size at most m/t each. Hence, we
obtain an ε-partition with ε ≤ 1/2(log n)/4d2

= n−
1

4d2 .

Second case. If the first case does not apply we show that the Cayley graph Cay(H,T ) is
isomorphic to the first case, so we could be done by the proof of the first case once we order the
vertices right.

Denote I(x) the name (in [t2]) of the interval that x (an element of Zm) belongs to, in the intervals
of length m/t2 defined above. Now consider the map f : Zm → (t2)d defined by f(a) = (I(a ·
h1), I(a · h2), ..., I(a · hd)). Since t2d = m/2 < m we have a collision f(a) = f(b), which means that
for c = b− a we have |c · hi| < m/t2 for all i. In other words, if we order the elements according to
c · 1, c · 2, ..., c ·m, then we are back to the first case.
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5.2 ε-Partitions of non-expanding solvable Schreier graphs

In the following we study non-expanding Schreier graphs of solvable groups and show that they
have ε-partition for sub-constant ε.

Lemma 18. Let G be a solvable group of derived length `, and X be a set |X| = n, such that G
acts on X. Let S ⊆ G be a (symmetric) set of size d ≤ [(log n)1/4](`). Then, the Schreier graph
Sch(G,X, S) has an ε-partition, with ε ≤ 1

2
([(log n)1/4](`))2

6d2

.

Before moving to the proof of the lemma we describe the proof strategy. Given a Schreier graph
Sch(G,X, S) where G is solvable of derived length `, acts on X, with a set of generators S ⊆ G
of size d, we define a subgroup H of G, and two simpler Schreier graphs Sch(G/H, X/H, S′)
and Sch(H,X1, S1). The first graph is Abelian and the second has a shorter derived series. We
first show that either Sch(G/H,X/H, S′) or Sch(H, X1, S1) has an ε-partition. We then show
(Claim 20) that if either of the graphs Sch(G/H, X/H, S′) or Sch(H,X1, S1) has an ε-partition
then so does Sch(G,X, S). This follows closely the structure of proof in [23], which we need to
extend in two ways: from Cayley to Schreier graphs, and from non-expansion to ε-partition. This
reduction/induction increases the number of generators exponentially.

5.2.1 Definitions of simpler related Schreier graphs

Definition 23 (The Schreier graph Sch(G/H, X/H, S′)). Let H = [G, G] and recall that G/H is
Abelian, and H is normal.

For x ∈ X, let xH = {xg1 |g1 ∈ H}, i.e. xH is the orbit of x ∈ X under H. Let X/H be the set
of different orbits. Note that the orbits X/H are a partition of X. The cosets of X/H are simply
xHa with a’s being coset representatives of H in G.

Thus, the action of G/H on X/H is induced by the action of G on X, and it can be defined as
(Ha)(xH) = (xa)H = xHa (by the normality of H).

Hence, we build a Schreier graph on the orbits using the induced action on them of G/H. Namely,
Sch(G/H, X/H, S′) is the Schreier graph on the X/H orbits where S′ = Im(S) under the natural
map from G → G/H.

In order to define the Schreier graph Sch(H,X1, S1) we need to define a map f with its properties
first.

Definition 24 (The map f). Let H = [G,G] and n = [G : H]. Let T = {t1, · · · tn} be the right
coset representatives of H (T = T−1), and denote by f : G → T the map from G → T , such that
f(g) = ti iff g is in the coset Hti.

Claim 19. The map f : G → T has the following properties

1. g[f(g)]−1 ∈ H

2. For every g, h ∈ G, f(f(g)f(h)) = f(gh).
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3. For every g ∈ G, [f(g)]−1 = f(g−1).

4. For every zj , zj′ ∈ H, ti, ti′ ∈ T and s ∈ G, if (zj)tis = (zj′)ti′ then zjtis[f(tis)]−1 = zj′.

Proof. In the following we prove the four different properties of f .

Proof of 1. For g ∈ G, g = g1t where g1 ∈ H, t ∈ T , we have that f(g) = t. Hence g[f(g)]−1 =
gt−1 = g1tt

−1 = g1 ∈ H.

Proof of 2. Let g, h ∈ G be as follows. g = g1ti, h = h1tj where g1, h1 ∈ H, ti, tj ∈ T .

f(gh) = f(g1tih1tj) = f(g1(tih1)tj) = f(g1(h′1ti)tj)
for some h′1 ∈ H since H is normal.

Thus,

f(gh) =f((g1h
′
1)titj) = f(titj) = f(f(g1ti)f(h1tj))

=f(f(g)f(h))

Proof of 3. By the normality of H, there exists g′ ∈ H such that g′−1t−1
i = t−1

i g−1
1 .

[f(g)]−1 =[f(g1ti)]−1 = t−1
i = f(g′−1t−1

i )

=f(t−1
i g−1

1 ) = f(g−1)

Proof of 4. Note first the following facts that follow easily from the previous properties of f .

• If s ∈ G is such that (zj)tis = (zj′)ti′ then f(s) = f(t−1
i ti′). This is since f(tis) = f(ti′), so

f(f([ti]−1)f(tis)) = f(f([ti]−1)f(ti′)). Hence f([ti]−1tis) = f(s) = f([ti]−1ti′).

• For every ti, ti′ , f(ti) = ti, f(ti′) = f(tif(ti−1ti′)).

Assume that for s ∈ G, (zj)tis = (zj′)ti′ .

(zj)tis =(zj′)ti′ = (zj′)f(ti′) = (zj′)f(tif(t−1
i ti′))

=(zj′)f(tif(s)) = (zj′)f(tis)

Hence, (zj)tis[f(tis)]−1 = (zj′).

We now move to the definition of the Schreier graph Sch(H, X1, S1).

Definition 25 (The Schreier graph Sch(H, X1, S1)). Let H = [G,G]. For x ∈ X, let X1 =
xH . Given G and X, let G′ to be the smallest subgroup of G containing H such that G′/H acts
transitively on X/H. The coset representatives of H in this G′ are noted TX = {ti ∈ T |xHti ∈ X/H}
where TX ⊆ T (T is as defined in the definition of the map f). Wlog we can assume G′ = G. Hence,
TX = T and |TX | = |X/H| = |G/H| = |T |. The set of generators S1 ⊆ H are of the following
form. tis[f(tis)]−1, ti ∈ T , s ∈ S. Hence, |S1| ≤ |S||X/H|.
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5.2.2 Proof of Lemma 18

The proof is by induction on `. For ` = 1, G is Abelian so the lemma follows immediately from
Lemma 16. Assume the lemma holds for `− 1. We next prove that it holds for `. Let H = [G, G].
Recall that G/H is Abelian. Let g(n) = [(log n)1/4](`)

d .

Let |X/H| = k.

Case one: 2(d2g2(n)) < k. I.e. d < (log k)1/2

g(n) , then again by Lemma 16, the Schreier graph
Sch(G/H, X/H, S′) has an ε-partition, with

ε ≤ 1

2
log k

6d2

≤ 1

2
g2(n)

6

=
1

2
([(log n)1/4](`))2

6d2

.

Case two: 2(d2g2(n)) ≥ k. Here the Schreier graph Sch(H, X1, S1) is such that n′ = |X1| ≥
n

2(d2g2(n))
≥ n

[(log n)1/4](`−1) and it has a set of generators S1, where

|S1| ≤ kd ≤ d2(d2g2(n)) ≤ 2(d4g2(n))

≤ ([(log n)1/4](`−1))1/g2(n) ≤ [(log n′)1/4](`−1)

g(n)
.

Thus, according to the induction hypothesis applied to Sch(H, X1, S1), the graph Sch(H,X1, S1)
has an ε-partition, with

ε ≤ 1

2
([(log n′)1/4](`−1))2

6|S1|2
≤ 1

2
g2(n)

6

=
1

2
([(log n)1/4](`))2

6d2

.

We complete the proof of the lemma by showing in the next claim (Claim 20) that if either of the
graphs Sch(G/H,X/H, S′) or Sch(H, X1, S1) has an ε-partition then so does Sch(G,X, S).

Claim 20. If either of the graphs Sch(G/H, X/H, S′) or Sch(H, X1, S1) has an ε-partition then
so does Sch(G,X, S).

Proof. If the graph Sch(G/H, X/H, S′) has an ε-partition, then by removing at most ε|X/H| cosets
a partition of |X/H| into sets Z1, Z2, · · · , Zm ⊆ X/H is obtained, where each set is of size at most
ε|X/H| with no edges from S′ between pieces. Let TZi be the coset representatives of the cosets in
Zi. An ε-partition of Sch(G,X, S) is immediately implied by the partition of Sch(G/H, X/H, S′)
by removing at most ε|X/H| whole cosets of size |xH | each from Sch(G,X, S). Namely, such a
partition is HTZ1 , · · ·HTZm where each part is of size at most ε|X/H| · |H| = ε|X| and there are
no edges from S between the parts.

If the graph Sch(H, X1, S1) has an ε-partition, recall the definitions of the map f : G → T and the
coset representatives T .
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Assume that the ε-partition of the graph Sch(H, X1, S1) partition the vertex set X1 into sets
Z1, Z2, · · · , Zm each of size at most ε|X1| with no edges from S1 between pieces. The ε-partition of
Sch(H, X1, S1) implies an ε-partition of Sch(Hti, X1ti, S1) , ti ∈ T into sets Z1ti, Z2ti, · · · , Zmti.

Now consider the partition of Sch(G,X, S) into pieces of the form {Zjt1, · · · , Zjt|T |}, (ti ∈ T ).
We next show that this is indeed a partition. I.e. there is no edge s ∈ S that connects any
(zj)ti and (zj′)ti′ . This follows from the forth property proved in Claim 19 showing that for every
zj , zj′ ∈ H, ti, ti′ ∈ T and s ∈ S, if (zj)tis = (zj′)ti′ then zjtis[f(tis)]−1 = zj′ , i.e. there exists
s1 = tis[f(tis)]−1 ∈ S1, such that zjs1 = zj′ . The forth property proved in Claim 19 implies that if
there is an edge between parts defined by the above partition of Sch(G,X, S), then there is an edge
between parts in the above partition of Sch(H, X1, S1). However, we assumed that the partition
of Sch(H, X1, S1) is valid and hence so is the partition of Sch(G,X, S).

5.3 A Coding Result and the proofs of Theorems 12 and 13

In the following we consider codes invariant under groups and associate with them Schreier graphs
which we call the Schreier-graph of the code (see following Definition 26). We show that if the
Schreier-graph of the code has an ε-partition then either the rate or the relative distance of the
code are bounded by ε (Lemma 21). The ε-partitions of Abelian and solvable Schreier graphs
(Lemma 16 and Lemma 18) combined with this coding theory result (Lemma 21) immediately
imply the proofs of Theorem 12 and Theorem 13.

Definition 26 (Schreier graph of a code). Let C ⊆ FX be a linear code invariant and transitive
under a group G, where C is defined by the orbits of constraints that are supported on a set W ⊆ X
of size d. The Schreier graph of the code C is the graph Sch(G,X, S) where S is defined as follows.
Pick x ∈ X, Let S′ ⊆ G be such that W = {xg|g ∈ S′}. S = {gi(gj)−1|gi, gj ∈ S′}, i.e. |S| = d2 is
such that for each generating constraint of C, there is a clique in the graph between its coordinates.

Lemma 21. Let C ⊆ FX be a linear code invariant and transitive under a group G. Assume C is
defined by the orbits of constraints that are supported on d coordinates of C. If the Schreier graph of
the code Sch(G,X, S) (recall |S| = d2) has an ε-partition then either the rate or the relative distance
of C are bounded by ε. Moreover, if the rate of the code exceeds ε, the code is a concatenation of
codes of length at most ε|X| each.

Proof. If the rate of C is bounded by ε then we are done. It remains to show that if the rate of C
is larger than ε then the distance of C is at most ε|X|.
By the definition of a Schreier graph of a code, The Schreier graph of the code C, Sch(G,X, S),
contains a clique between the coordinates of each generating constraint of the code C. Since the
graph Sch(G,X, S) has an ε-partition, there exists a partition of X = X0∪X1∪· · ·∪Xq into disjoint
sets Xi each of size at most ε|X|, such that there are no edges between Xi, Xj for i 6= j > 0. The
fact that the graph Sch(G,X, S) contains a clique between the coordinates of each generating
constraint of the code C, and the ε-partition of Sch(G,X, S) imply that each generating constraint
of the code C has support completely contained in Xi ∪X0 for some i.
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Consider constraints of the form {x = 0|x ∈ X0}. There are at most ε|X| such constraints. Since
we assume that the rate of C is larger than ε, there exists a sub-code B ⊆ C, B 6= 0, that satisfy
all of the generating constraints of C as well as the constraints {x = 0|x ∈ X0}. Using the fact
that each generating constraint of C has support completely contained in Xi ∪X0 for some i, we
obtain that each generating constraint of B has support completely contained one Xi, i ≥ 0.

So B ⊆ C ⊆ FX is a non-zero linear code, for which there exists a partition of X = X0∪X1∪· · ·∪Xq

into subsets Xi each of size at most ε|X|, and a set of constraints that generate B, each of which
has support completely contained in one Xi, hence by Claim 22 (below), B (and hence C) has
distance bounded by ε|X|.
Claim 22. Let C ⊆ FX be a linear code. If there exists a partition of X = X0 ∪ X1 ∪ · · · ∪ Xq

into subsets Xi each of size at most ε|X|, and a set of constraints that span C⊥ each of which has
support completely contained in one Xi, then C is a concatenation of disjoint codes Ci ⊆ FXi of
length at most ε|X| each, and in particular, C has distance bounded by ε|X|.

Proof. To see that C is a concatenation of codes we need to show c ∈ C iff ci ∈ Ci for every i (where
ci is the restriction of c to the coordinates of Xi). If c ∈ C then it obeys the constraints of the code
C. Since the constraints that define the code C can be partitioned into disjoint sets, where each
set defines the code Ci, we have that if c ∈ C then ci ∈ Ci for every i. Next we show that if c ∈ FX

is such that ci ∈ Ci for every i, then c ∈ C. Since the constraints that define C can be partitioned
into constraints that define Ci for every i, and since we know that ci obeys all the constraints of Ci

we have that c obeys all the defining constraints of C and hence c ∈ C. To see that the distance
of C is bounded by ε|X| note that if C is not empty then it contains a non zero codeword c ∈ C,
where c = c0||c1|| · · · ||cq; ci ∈ Ci. Since c is non zero there exists some non-zero ci (assume w.l.o.g
that i = 0). As C is a concatenation of codes Ci’s, c ∈ C implies that c′ = c0||0||0 · · · 0||0 is also in
C and it has weight bounded by |X1| ≤ ε|X|, hence C has distance bounded by ε|X|.

6 Conclusions and Open Questions

This paper was motivated from by the construction of locally-testable codes of good coding-theoretic
parameters. As is well known, Goldreich and Sudan [16] showed how to obtain such codes can be
constructed from PCPs with related parameters, and good parameters are achieved by combining
the PCPs of Dinur [13] with Ben-Sasson and Sudan [7]. Specifically, they achieve linear binary
codes of length n with linear distance, rate 1/(log n)c and constant-size queries. These codes are
completely explicit.

Removing the PCP machinery and obtaining such codes (and even better ones) directly is a basic
question, motivated at length in the paper of Meir [26]. He succeeds only partially, in that his
construction that is partly probabilistic. Moreover, the construction cleverly retains “proofs of
membership” in the code, as part of the code, which make it resemble Dinur’s PCP construction.

We take a completely different approach. As all locally-testable codes must be LDPC codes (since
low query complexity means low density in the parity check matrix), and moreover many locally-
testable codes are symmetric (have a transitive group acting on them), we ask first if the above
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coding theoretic parameters can be attained by codes that are simultaneously symmetric and low-
density. We give the first such construction. Our codes are linear binary codes of length n with
near linear distance n/(log log n)2, constant rate and both density bounded by 1/(logn)4. The
group acting transitively is non-Abelian. All previously known symmetric codes with such (or even
weaker) distance had either density or (1/rate) close to n, and groups in all cases are Abelian.

There are several open questions that arise from this work.

• Cayley codes and local testing. Are the Cayley codes we construct actually locally testable?
We tend to think that they are not, in which case would be the first example of a symmetric
LDPC code which is not locally testable. As we offer a general framework of Cayley codes,
possibly other choices of components in this framework can lead to to locally-testable codes.

• Improving the parameters. Can one get the ultimate – symmetric, constant density good
codes (namely with linear distance and constant rate)? Our lower bounds imply that for such
a result the acting group must be “more noncommutative” than the one we use, namely it
cannot be solvable with a constant-length derived series.

• Key to our lower bound is our that Cayley codes of such groups have ε-partition, a property
which implies in particular that such codes must have two disjoint codewords. Interestingly,
the question of proving the latter property for similar codes comes up naturally in the work of
Lackenby [20, 21] on 3-dimensional manifolds. Specifically, he asks if linear codes symmetric
under the action of p-groups (which are solvable, but can have constant degree Cayley graphs),
which have constant rate, density and normalized distance, must have two codewords with
disjoint support. Our lower-bound techniques fails for such groups.
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