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Abstract

In this paper we survey recent (up to end of 2009) advances in the area of sublinear-time algorithms.

1 Introduction

The area of sublinear-time algorithms is a new rapidly emerging area of computer science. It has its roots
in the study of massive data sets that occur more and more frequently in various applications. Financial
transactions with billions of input data and Internet traffic analyses (Internet traffic logs, clickstreams, web
data) are examples of modern data sets that show unprecedented scale. Managing and analyzing such data
sets forces us to reconsider the traditional notions of efficient algorithms: processing such massive data sets
in more than linear time is by far too expensive and often even linear time algorithms may be too slow.
Hence, there is the desire to develop algorithms whose running times are not only polynomial, but in fact
are sublinear in n.

Constructing a sublinear time algorithm may seem to be an impossible task since it allows one to read
only a small fraction of the input. However, in recent years, we have seen development of sublinear time
algorithms for optimization problems arising in such diverse areas as graph theory, geometry, algebraic
computations, and computer graphics. Initially, the main research focus has been on designing efficient
algorithms in the framework of property testing (for excellent surveys, see [28, 32, 33, 43, 53]), which is
an alternative notion of approximation for decision problems. But more recently, we have seen some major
progress in sublinear-time algorithms in the classical model of randomized and approximation algorithms.
In this paper, we survey some of the recent advances in this area. Our main focus is on sublinear-time
algorithms for combinatorial problems, especially for graph problems and optimization problems in metric
spaces.
∗This survey is a draft of the paper that appeared as invited contribution in Property Testing. Current Research and Surveys,

pages 42–66, editd by O. Goldreich, LNCS 6390, Springer-Verlag, Berlin, Heidelberg, 2010. It is also a slightly updated version of
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Our goal is to give a flavor of the area of sublinear-time algorithms. We focus on in our opinion the most
representative results in the area and we aim to illustrate main techniques used to design sublinear-time
algorithms. Still, many of the details of the presented results are omitted and we recommend the readers to
follow the original works. We also do not aim to cover the entire area of sublinear-time algorithms, and in
particular, we do not discuss property testing algorithms [28, 32, 33, 43, 53], even though this area is very
closely related to the research presented in this survey.

Organization. We begin with an introduction to the area and then we give some sublinear-time algorithms
for a basic problem in computational geometry [15]. Next, we present recent sublinear-time algorithms
for basic graph problems: approximating the average degree in a graph [27, 37], estimating the cost of a
minimum spanning tree [16] and approximating the size of a maximum matching [51, 56]. Then, we discuss
sublinear-time algorithms for optimization problems in metric spaces. We present the main ideas behind
recent algorithms for estimating the cost of minimum spanning tree [21] and facility location [10], and
then we discuss the quality of random sampling to obtain sublinear-time algorithms for clustering problems
[22, 49]. We finish with some conclusions.

2 Basic Sublinear Algorithms

The concept of sublinear-time algorithms has been known for a very long time, but initially it has been
used to denote “pseudo-sublinear-time” algorithms, where after an appropriate preprocessing, an algorithm
solves the problem in sublinear-time. For example, if we have a set of n numbers, then after an O(n log n)
preprocessing (sorting), we can trivially solve a number of problems involving the input elements. And so,
if the after the preprocessing the elements are put in a sorted array, then in O(1) time we can find the kth
smallest element, in O(log n) time we can test if the input contains a given element x, and also in O(log n)
time we can return the number of elements equal to a given element x. Even though all these results are
folklore, this is not what we call nowadays a sublinear-time algorithm.

In this survey, our goal is to study algorithms for which the input is taken to be in any standard represen-
tation and with no extra assumptions. Then, an algorithm does not have to read the entire input but it may
determine the output by checking only a subset of the input elements. It is easy to see that for many natural
problems it is impossible to give any reasonable answer if not all or almost all input elements are checked.
But still, for some number of problems we can obtain good algorithms that do not have to look at the entire
input. Typically, these algorithms are randomized (because most of the problems have a trivial linear-time
deterministic lower bound) and they return only an approximate solution rather than the exact one (because
usually, without looking at the whole input we cannot determine the exact solution). In this survey, we
present recently developed sublinear-time algorithm for some combinatorial optimization problems.

Searching in a sorted list. It is well-known that if we can store the input in a sorted array, then we can
solve various problems on the input very efficiently. However, the assumption that the input array is sorted
is not natural in typical applications. Let us now consider a variant of this problem, where our goal is to
search for an element x in a linked sorted list containing n distinct elements1. Here, we assume that the n
elements are stored in a doubly-linked list, each list element has access to the next and preceding element
in the list, and the list is sorted (that is, if x follows y in the list, then y < x). We also assume that we have

1The assumption that the input elements are distinct is important. If we allow multiple elements to have the same key, then the
search problem requires Ω(n) time. To see this, consider the input in which about a half of the elements has key 1, another half has
key 3, and there is a single element with key 2. Then, searching for 2 requires Ω(n) time.
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access to all elements in the list, which for example, can correspond to the situation that all n list elements
are stored in an array (but the array is not sorted and we do not impose any order for the array elements).
How can we find whether a given number x is in our input or is not?

On the first glace, it seems that since we do not have direct access to the rank of any element in the list,
this problem requires Ω(n) time. And indeed, if our goal is to design a deterministic algorithm, then it is
impossible to do the search in o(n) time. However, if we allow randomization, then we can complete the
search in O(

√
n) expected time (and this bound is asymptotically tight).

Let us first sample uniformly at random a set S of Θ(
√
n) elements from the input. Since we have access

to all elements in the list, we can select the set S in O(
√
n) time. Next, we scan all the elements in S and in

O(
√
n) time we can find two elements in S, p and q, such that p ≤ x < q, and there is no element in S that

is between p and q. Observe that since the input consist of n distinct numbers, p and q are uniquely defined.
Next, we traverse the input list containing all the input elements starting at p until we find either the sought
key x or we find element q.

Lemma 1 The algorithm above completes the search in expectedO(
√
n) time. Moreover, no algorithm can

solve this problem in o(
√
n) expected time.

Proof: The running time of the algorithm if equal toO(
√
n) plus the number of the input elements between

p and q. Since S contains Θ(
√
n) elements, the expected number of input elements between p and q is

O(n/|S|) = O(
√
n). This implies that the expected running time of the algorithm is O(

√
n).

For a proof of a lower bound of Ω(
√
n) expected time, see, e.g., [15]. ut

2.1 Geometry: Intersection of Two Polygons

Let us consider a related problem but this time in a geometric setting. Given two convex polygons A and B
in R2, each with n vertices, determine if they intersect, and if so, then find a point in their intersection.

It is well known that this problem can be solved in O(n) time, for example, by observing that it can be
described as a linear programming instance in two dimensions, a problem which is known to have a linear-
time algorithm (cf. [26]). In fact, within the same time one can either find a point that is in the intersection
of A and B, or find a line L that separates A from B (actually, one can even find a bitangent separating line
L, i.e., a line separating A and B which intersects with each of A and B in exactly one point). The question
is whether we can obtain a better running time.

The complexity of this problem depends on the input representation. In the most powerful model, if
the vertices of both polygons are stored in an array in cyclic order, Chazelle and Dobkin [14] showed that
the intersection of the polygons can be determined in logarithmic time. However, a standard geometric
representation assumes that the input is not stored in an array but rather A and B are given by their doubly-
linked lists of vertices such that each vertex has as its successor the next vertex of the polygon in the
clockwise order. Can we then test if A and B intersect?

Chazelle et al. [15] gave anO(
√
n)-time algorithm that uses the approach discussed above for searching

in a sorted list. Let us first sample uniformly at random Θ(
√
n) vertices from each A and B, and let CA and

CB be the convex hulls of the sample point sets for the polygons A and B, respectively. Using the linear-
time algorithm mentioned above, in O(

√
n) time we can check if CA and CB intersects. If they do, then

the algorithm will get us a point that lies in the intersection of CA and CB , and hence, this point lies also in
the intersection of A and B. Otherwise, let L be the bitangent separating line returned by the algorithm (see
Figure 1 (a)).
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Figure 1: (a) Bitangent line L separating CA and CB , and (b) the polygon PA.

Let a and b be the points in L that belong to A and B, respectively. Let a1 and a2 be the two vertices
adjacent to a in A. We will define now a new polygon PA. If none of a1 and a2 is on the side CA of L the
we define PA to be empty. Otherwise, exactly one of a1 and a2 is on the side CA of L; let it be a1. We
define polygon PA by walking from a to a1 and then continue walking along the boundary of A until we
cross L again (see Figure 1 (b)). In a similar way we define polygon PB . Observe that the expected size of
each of PA and PB is at most O(

√
n).

It is easy to see that A and B intersects if and only if either A intersects PB or B intersects PA. We
only consider the case of checking if A intersects PB . We first determine if CA intersects PB . If yes, then
we are done. Otherwise, let LA be a bitangent separating line that separates CA from PB . We use the
same construction as above to determine a subpolygon QA of A that lies on the PB side of LA. Then, A
intersects PB if and only if QA intersects PB . Since QA has expected size O(

√
n) and so does PB , testing

the intersection of these two polygons can be done inO(
√
n) expected time. Therefore, by our construction

above, we have solved the problem of determining if two polygons of size n intersect by reducing it to a
constant number of problem instances of determining if two polygons of expected size O(

√
n) intersect.

This leads to the following lemma.

Lemma 2 [15] The problem of determining whether two convex n-gons intersect can be solved in O(
√
n)

expected time, which is asymptotically optimal.

Chazelle et al. [15] gave not only this result, but they also showed how to apply a similar approach to
design a number of sublinear-time algorithms for some basic geometric problems. For example, one can
extend the result discussed above to test the intersection of two convex polyhedra in R3 with n vertices in
O(
√
n) expected time. One can also approximate the volume of an n-vertex convex polytope to within a

relative error ε > 0 in expected timeO(
√
n/ε). Or even, for a pair of two points on the boundary of a convex

polytope P with n vertices, one can estimate the length of an optimal shortest path outside P between the
given points in O(

√
n) expected time.

In all the results mentioned above, the input objects have been represented by a linked structure: either
every point has access to its adjacent vertices in the polygon in R2, or the polytope is defined by a doubly-
connected edge list, or so. These input representations are standard in computational geometry, but a natural
question is whether this is necessary to achieve sublinear-time algorithms — what can we do if the input
polygon/polytop is represented by a set of points and no additional structure is provided to the algorithm? In
such a scenario, it is easy to see that no o(n)-time algorithm can solve exactly any of the problems discussed
above. That is, for example, to determine if two polygons with n vertices intersect one needs Ω(n) time.
However, still, we can obtain some approximation to this problem, one which is described in the framework
of property testing.
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Suppose that we relax our task and instead of determining if two (convex) polytopes A and B in Rd
intersects, we just want to distinguish between two cases: either A and B are intersection-free, or one has to
“significantly modify”A andB to make them intersection-free. The definition of the notion of “significantly
modify” may depend on the application at hand, but the most natural characterization would be to remove at
least ε n points in A and B, for an appropriate parameter ε (see [20] for a discussion about other geometric
characterization). Czumaj et al. [25] gave a simple algorithm that for any ε > 0, can distinguish between
the case when A and B do not intersect, and the case when at least ε n points has to be removed from A
and B to make them intersection-free: the algorithm returns the outcome of a test if a random sample of
O((d/ε) log(d/ε)) points from A intersects with a random sample of O((d/ε) log(d/ε)) points from B.

Sublinear-time algorithms: perspective. The algorithms presented in this section should give a flavor of
the area and give us the first impression of what do we mean by sublinear-time and what kind of results one
can expect. In the following sections, we will present more elaborate algorithms for various combinatorial
problems for graphs and for metric spaces.

3 Sublinear Time Algorithms for Graphs Problems

In the previous section, we introduced the concept of sublinear-time algorithms and we presented two basic
sublinear-time algorithms for geometric problems. In this section, we will discuss sublinear-time algorithms
for graph problems. Our main focus is on sublinear-time algorithms for graphs, with special emphasizes on
sparse graphs represented by adjacency lists where combinatorial algorithms are sought.

3.1 Approximating the Average Degree

Assume we have access to the degree distribution of the vertices of an undirected connected graph G =
(V,E), i.e., for any vertex v ∈ V we can query for its degree. Can we achieve a good approximation of
the average degree in G by looking at a sublinear number of vertices? At first sight, this seems to be an
impossible task. It seems that approximating the average degree is equivalent to approximating the average
of a set of n numbers with values between 1 and n − 1, which is not possible in sublinear time. However,
Feige [27] proved that one can approximate the average degree in O(

√
n/ε) time within a factor of 2 + ε.

The difficulty with approximating the average of a set of n numbers can be illustrated with the following
example. Assume that almost all numbers in the input set are 1 and a few of them are n−1. To approximate
the average we need to approximate how many occurrences of n−1 exist. If there is only a constant number
of them, we can do this only by looking at Ω(n) numbers in the set. So, the problem is that these large
numbers can “hide” in the set and we cannot give a good approximation, unless we can “find” at least some
of them.

Why is the problem less difficult, if, instead of an arbitrary set of numbers, we have a set of numbers
that are the vertex degrees of a graph? For example, we could still have a few vertices of degree n− 1. The
point is that in this case any edge incident to such a vertex can be seen at another vertex. Thus, even if we
do not sample a vertex with high degree we will see all incident edges at other vertices in the graph. Hence,
vertices with a large degree cannot “hide.”

We will sketch a proof of a slightly weaker result than that originally proven by Feige [27]. Let d
denote the average degree in G = (V,E) and let dS denote the random variable for the average degree of
a set S of s vertices chosen uniformly at random from V . We will show that if we set s ≥ β

√
n/εO(1)

for an appropriate constant β, then dS ≥ (1
2 − ε) · d with probability at least 1 − ε/64. Additionally,
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we observe that Markov inequality immediately implies that dS ≤ (1 + ε) · d with probability at least
1 − 1/(1 + ε) ≥ ε/2. Therefore, our algorithm will pick 8/ε sets Si, each of size s, and output the set
with the smallest average degree. Hence, the probability that all of the sets Si have too high average degree
is at most (1 − ε/2)ε/8 ≤ 1/8. The probability that one of them has too small average degree is at most
8
ε ·

ε
64 = 1/8. Hence, the output value will satisfy both inequalities with probability at least 3/4. By replacing

ε with ε/2, this will yield a (2 + ε)-approximation algorithm.
Now, our goal is to show that with high probability one does not underestimate the average degree too

much. Let H be the set of the
√
ε n vertices with highest degree in G and let L = V \H be the set of the

remaining vertices. We first argue that the sum of the degrees of the vertices in L is at least (1
2 − ε) times

the sum of the degrees of all vertices. This can be easily seen by distinguishing between edges incident to a
vertex from L and edges within H . Edges incident to a vertex from L contribute with at least 1 to the sum
of degrees of vertices in L, which is fine as this is at least 1/2 of their full contribution. So the only edges
that may cause problems are edges within H . However, since |H| =

√
ε n, there can be at most ε n such

edges, which is small compared to the overall number of edges (which is at least n − 1, since the graph is
connected).

Now, let dH be the degree of a vertex with the smallest degree in H . Since we aim at giving a lower
bound on the average degree of the sampled vertices, we can safely assume that all sampled vertices come
from the set L. We know that each vertex in L has a degree between 1 and dH . Let Xi, 1 ≤ i ≤ s, be the
random variable for the degree of the ith vertex from S. Then, it follows from Hoeffding bounds that

Pr[
s∑
i=1

Xi ≤ (1− ε) ·E[
s∑
i=1

Xi]] ≤ e
−E[

∑r
i=1 Xi]·ε

2

dH .

We know that the average degree is at least dH · |H|/n, because any vertex in H has at least degree dH .
Hence, the average degree of a vertex in L is at least (1

2 − ε) · dH · |H|/n. This just means E[Xi] ≥
(1

2 − ε) ·dH · |H|/n. By linearity of expectation we get E[
∑s

i=1Xi] ≥ s · (1
2 − ε) ·dH · |H|/n. This implies

that, for our choice of s, with high probability we have dS ≥ (1
2 − ε) · d.

Feige showed the following result, which is stronger with respect to the dependence on ε.

Theorem 3 [27] Using O(ε−1 ·
√
n/d0) queries, one can estimate the average degree of a graph within a

ratio of (2 + ε), provided that d ≥ d0.

Feige also proved that Ω(ε−1 ·
√
n/d) queries are required, where d is the average degree in the input

graph. Finally, any algorithm that uses only degree queries and estimates the average degree within a ratio
2− δ for some constant δ requires Ω(n) queries.

Interestingly, if one can also use neighborhood queries, then it is possible to approximate the average
degree using Õ(

√
n/εO(1)) queries with a ratio of (1 + ε), as shown by Goldreich and Ron [37]. The model

for neighborhood queries is as follows. We assume we are given a graph and we can query for the ith
neighbor of vertex v. If v has at least i neighbors we get the corresponding neighbor; otherwise we are told
that v has less than i neighbors. We remark that one can simulate degree queries in this model withO(log n)
queries. Therefore, the algorithm from [37] uses only neighbor queries.

For a sketch of a proof, let us assume that we know the set H . Then we can use the following approach.
We only consider vertices from L. If our sample contains a vertex from H we ignore it. By our analysis
above, we know that there are only few edges within H and that we make only a small error in estimating
the number of edges within L. We loose the factor of two, because we “see” edges from L to H only from
one side. The idea behind the algorithm from [37] is to approximate the fraction of edges from L to H and
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add it to the final estimate. This has the effect that we count any edge between L and H twice, canceling the
effect that we see it only from one side. This is done as follows. For each vertex v we sample from Lwe take
a random set of incident edges to estimate the fraction λ(v) of its neighbors that is inH . Let λ̂(v) denote the
estimate we obtain. Then our estimate for the average degree will be

∑
v∈S∩L(1+λ̂(v))·d(v)/|S∩L|, where

d(v) denotes the degree of v. If for all vertices we estimate λ(v) within an additive error of ε, the overall
error induced by the λ̂ will be small. This can be achieved with high probability querying O(log n/ε2)
random neighbors. Then the output value will be a (1 + ε)-approximation of the average degree. The
assumption that we know H can be dropped by taking a set of O(

√
n/ε) vertices and setting H to be the

set of vertices with larger degree than all vertices in this set (breaking ties by the vertex number).
(We remark that the outline of a proof given above is different from the proof in [37].)

Theorem 4 [37] Given the ability to make neighbor queries to the input graph G, there exists an algorithm
that makesO(

√
n/d0 ·ε−O(1)) queries and approximates the average degree inG to within a ratio of (1+ε).

In their paper Goldreich and Ron also discuss the more general question of approximating average
parameters in graphs. They point out that an algorithm’s ability to approximate a graph parameter is closely
related to the type of query the algorithm may ask. This raises the question, which types of queries are
natural and which graph parameters can be approximated with such natural queries. Besides the result on the
average degree discussed, they also prove that one can approximate the average distance in an unweighted
graph with O(

√
n/εO(1)) time, which can be further improved as a function of the average degree. Their

algorithm is allowed to perform distance queries that output the distance between any two query vertices in
constant time. Their model can be viewed as a special case of the distance oracle model for metric spaces
(see Section 4) as it considers shortest path metrics of undirected graphs. This restriction allows to achieve
query times sublinear in n, which is impossible for most problems in the more general model.

3.2 Minimum Spanning Trees

One of the most fundamental graph problems is to compute a minimum spanning tree. Since the minimum
spanning tree is of size linear in the number of vertices, no sublinear algorithm for sparse graphs can ex-
ists. It is also know that no constant factor approximation algorithm with o(n2) query complexity in dense
graphs (even in metric spaces) exists [40]. Given these facts, it is somewhat surprising that it is possible to
approximate the cost of a minimum spanning tree in sparse graphs [16] as well as in metric spaces [21] to
within a factor of (1 + ε).

In the following we will explain the algorithm for sparse graphs by Chazelle et al. [16]. We will prove
a slightly weaker result than in [16]. Let G = (V,E) be an undirected connected weighted graph with
maximum degree D and integer edge weights from {1, . . . ,W}. We assume that the graph is given in
adjacency list representation, i.e., for every vertex v there is a list of its at most D neighbors, which can be
accessed from v. Furthermore, we assume that the vertices are stored in an array such that it is possible to
select a vertex uniformly at random. We assume also that the values ofD andW are known to the algorithm.

The main idea behind the algorithm is to express the cost of a minimum spanning tree as the number
of connected components in certain auxiliary subgraphs of G. Then, one runs a randomized algorithm to
estimate the number of connected components in each of these subgraphs. The algorithm to estimate the
number of connected components is based on a property tester for connectivity in the bounded degree graph
model by Goldreich and Ron [35].

To start with basic intuitions, let us assume that W = 2, i.e., the graph has only edges of weight 1 or 2.
Let G(1) = (V,E(1)) denote the subgraph that contains all edges of weight (at most) 1 and let c(1) be the
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number of connected components in G(1). It is easy to see that the minimum spanning tree has to link these
connected components by edges of weight 2. Since any connected component in G(1) can be spanned by
edges of weight 1, any minimum spanning tree of G has c(1) − 1 edges of weight 2 and n− 1− (c(1) − 1)
edges of weight 1. Thus, the weight of a minimum spanning tree is

n− 1− (c(1) − 1) + 2 · (c(1) − 1) = n− 2 + c(1) = n−W + c(1) .

Next, let us consider an arbitrary integer value for W . Defining G(i) = (V,E(i)), where E(i) is the set of
edges in G with weight at most i, one can generalize the formula above to obtain that the cost MST of a
minimum spanning tree can be expressed as

MST = n−W +

W−1∑
i=1

c(i) .

This gives the following simple algorithm.

APPROXMSTWEIGHT(G, ε)
for i = 1 to W − 1

Compute estimator ĉ(i) for c(i)

output M̃ST = n−W +
∑W−1

i=1 ĉ(i)

Thus, the key question that remains is how to estimate the number of connected components. This is
done by the following algorithm.

APPROXCONNECTEDCOMPS(G, s)
{ Input: an arbitrary undirected graph G }
{ Output: ĉ: an estimation of the number of connected components of G }

choose s vertices u1, . . . , us uniformly at random
for i = 1 to s do

choose X according to Pr[X ≥ k] = 1/k
run breadth-fist-search (BFS) starting at ui until either

(1) the whole connected component containing ui
has been explored, or

(2) X vertices have been explored
if BFS stopped in case (1) then bi = 1
else bi = 0

output ĉ = n
s

∑s
i=1 bi

To analyze this algorithm let us fix an arbitrary connected component C and let |C| denote the number
of vertices in the connected component. Let c denote the number of connected components in G. We can
write

E[bi] =
∑

connected component C

Pr[ui ∈ C] ·Pr[X ≥ |C|] =
∑

connected component C

|C|
n
· 1

|C|
=
c

n
.

By linearity of expectation we obtain E[ĉ] = c.
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To show that ĉ is concentrated around its expectation, we apply Chebyshev inequality. Since bi is an
indicator random variable, we have

Var[bi] = E[b2i ]−E[bi]
2 ≤ E[b2i ] = E[bi] = c/n .

The bi are mutually independent and so we have

Var[ĉ] = Var
[n
s
·

s∑
i=1

bi
]

=
n2

s2
·

s∑
i=1

Var[bi] ≤
n · c
s

.

With this bound for Var[ĉ], we can use Chebyshev inequality to obtain

Pr[|ĉ−E[ĉ]| ≥ λn] ≤ n · c
s · λ2 · n2

≤ 1

λ2 · s
.

From this it follows that one can approximate the number of connected components within additive error
of λn in a graph with maximum degree D in O(D·logn

λ2·% ) time and with probability 1 − %. The following
somewhat stronger result has been obtained in [16]. Notice that the obtained running time is independent of
the input size n.

Theorem 5 [16] The number of connected components in a graph with maximum degree D can be approx-
imated with additive error at most ±λn in O( D

λ2 log(D/λ)) time and with probability 3/4.

Now, we can use this procedure with parameters λ = ε/(2W ) and % = 1
4W in algorithm APPROXMST-

WEIGHT. The probability that at least one call to APPROXCONNECTEDCOMPS is not within an additive
error ±λn is at most 1/4. The overall additive error is at most ±εn/2. Since the cost of the minimum
spanning tree is at least n− 1 ≥ n/2, it follows that the algorithms computes in O(D ·W 3 · log n/ε2) time
a (1± ε)-approximation of the weight of the minimum spanning tree with probability at least 3/4. In [16],
Chazelle et al. proved a slightly stronger result which has running time independent of the input size.

Theorem 6 [16] Algorithm APPROXMSTWEIGHT computes a value M̃ST that with probability at least
3/4 satisfies

(1− ε) ·MST ≤ M̃ST ≤ (1 + ε) ·MST .

The algorithm runs in Õ(D ·W/ε2) time.

The same result also holds when D is only the average degree of the graph (rather than the maximum
degree) and the edge weights are reals from the interval [1,W ] (rather than integers) [16]. Observe that, in
particular, for sparse graphs for which the ratio between the maximum and the minimum weight is constant,
the algorithm from [16] runs in constant time!

It was also proved in [16] that any algorithm estimating MST requires Ω(D ·W/ε2) time.

3.3 Constant Time Approximation Algorithms for Maximum Matching

The next result we will explain here is an elegant technique to construct constant time approximation algo-
rithms for graphs with bounded degree, as introduced by Nguyen and Onak [51].

Let G = (V,E) be an undirected graph with maximum degree D. Define a randomized (α, β)-
approximation algorithm to be an algorithm that returns with probability at least 2/3 a solution with cost at
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most αOpt + βn, where n is the size of the input and Opt denotes the cost of an optimal solution. For a
graph we will define the input size to be the cardinality of its vertex set. We will consider the problem of
computing the size of maximum matching, i.e., the size of a maximum size set M ⊆ E such that no two
edges are incident to the same vertex of G. It is known that the following simple greedy algorithm (that
returns a maximal matching) provides a 2-approximation to this problem.

GREEDYMATCHING(G)
{ Input: an undirected graph G = (V,E) }
{ Output: a matching M ⊆ E }

M ← ∅
for each edge (u, v) ∈ E do

Let V (M) be the set of vertices of edges in M
if u, v /∈ V (M) then M ←M ∪ {e}

return M

An important property of GREEDYMATCHING is that in the for-loop of the algorithm the edges are
considered in an arbitrary ordering. We further observe that at any stage of the algorithm, the set M is a
subset of the edges that have already been processed. Furthermore, if we consider an edge e then we know
that neighboring edges can only be in M if they appear in the ordering before e. Now assume that the edges
are inserted in a random order and let us try to determine for some fixed edge e whether it is contained in
the constructed greedy matching. We could, of course, simply run the algorithm to do so by exploring the
entire graph. However, our goal is to solve it using local computations that consider only the subgraph of
the input graph close to e. In order to determine whether e is in the matching it suffices to determine for all
its neighboring edges whether they are inM at the time e is considered by the algorithm. If e appears earlier
than all of its neighbors in the random ordering, then we know that e is in the matching. Otherwise, we have
to recursively solve the problem for all neighbors of e that appear before e in the random ordering. It may
seem in the first place that this reasoning does not help because we now have to determine for a bigger set of
edges whether they are in the matching. However, we also gained something: all edges we have to consider
recursively are known to appear before e in the random ordering. This makes it less likely that some of their
neighbors again appear even earlier in the sequence, which in turn means that we have to recurse for fewer
of their neighbors. Thus, typically, this process stops after a constant number of steps.

Let us now try to formalize our findings. We obtain a random ordering of the edges by picking a priority
p(e) for each edge uniformly at random from [0, 1]. The random order we consider is now defined by
increasing priorities. The benefit of this approach is that we do not have to compute a random ordering for
the whole vertex set to run the local algorithm. Instead we can draw p(e) at random whenever we consider
an edge e for the first time. If we now want to determine whether an edge e is in the matching we only
have to recurse with edges having a smaller priority than e. Thus, we have to follow all paths of decreasing
priority starting at the endpoints of e.

For a fix path of length k in the graph, the probability that the priorities along the path are decreasing is
1/k! (this can be seen by the fact that for any sequence of k distinct priorities just one of them is decreasing;
the case that probabilities are equal occurs with probability 0). Since the input graph has maximum degree
D, the number of paths of length k starting from a vertex v is at most Dk. Hence, there are at most 2Dk

paths starting at the endpoints of an edge e. For a large enough constant c this implies that for k ≥ 2cD, with
(large) constant probability there is no path of length k starting from an endpoint of e that has decreasing
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priorities. This implies that we can determine whether e is in the matching by looking at all vertices with
distance at most 2cD from the endpoints of e.

Once we have an oracle to determine whether e ∈M , we can sample edges to determine whether a given
edge e is in M or not. Using a sample of size Θ(D/ε2) we can approximate the number of edges in the
matching up to additive error εn. This gives a constant-time (2, ε)-approximation algorithm for estimating
the size of maximum matching, assuming D and ε are constant. The algorithm can be further improved
to an (1, ε)-approximation using a more complicated approximation algorithm that greedily improves the
matching using short augmenting paths. The query complexity of the improved algorithm is 2D

O(1/ε)
.

A further improvement has been done in a subsequent work by Yoshida et al. [56]. In that paper, the
authors reduce the query complexity to DO(1/ε2) +O(1/ε)O(1/ε) time. The source of improvement is here
the idea to consider the edge with lowest priority first. If this edge turns out to be in the matching then we
are already done and do not have to perform the remaining recursive calls.

Theorem 7 [51, 56] For any integer 1 ≤ k < n
2 , there is a (1 + 1

k , εn)-approximation algorithm with query
complexity DO(k2)kO(k)ε−2 for the size of the maximum matching for graphs with n vertices and degree
bound D.

3.4 Other Sublinear-time Results for Graphs

In this section, our main focus was on combinatorial algorithms for sparse graphs. In particular, we did
not discuss a large body of algorithms for dense graphs represented in the adjacency matrix model. Still,
we mention the results of approximating the size of the maximum cut in constant time for dense graphs
[30, 34], and the more general results about approximating all dense problems in Max-SNP in constant time
[2, 8, 30]. Similarly, we also would like to mention about the existence of a large body of property testing
algorithms for graphs, which in many situations can lead to sublinear-time algorithms for graph problems.
To give representative references, in addition to the excellent survey expositions [28, 32, 33, 43, 53], we
would like to mention the recent results on testability of graph properties, as described, e.g., in [3, 4, 5, 6,
11, 12, 19, 23, 36, 46].

4 Sublinear Time Approximation Algorithms for Problems in Metric Spaces

One of the most widely considered models in the area of sublinear time approximation algorithms is the
distance oracle model for metric spaces. In this model, the input of an algorithm is a set P of n points in a
metric space (P, d). We assume that it is possible to compute the distance d(p, q) between any pair of points
p, q in constant time. Equivalently, one could assume that the algorithm is given access to the n×n distance
matrix of the metric space, i.e., we have oracle access to the matrix of a weighted undirected complete graph.
Since the full description size of this matrix is Θ(n2), we will call any algorithm with o(n2) running time a
sublinear algorithm.

Which problems can and cannot be approximated in sublinear time in the distance oracle model? One
of the most basic problems is to find (an approximation) of the shortest or the longest pairwise distance in
the metric space. It turns out that the shortest distance cannot be approximated. The counterexample is a
uniform metric (all distances are 1) with one distance being set to some very small value ε. Obviously, it
requires Ω(n2) time to find this single short distance. Hence, no sublinear time approximation algorithm for
the shortest distance problem exists. What about the longest distance? In this case, there is a very simple
1
2 -approximation algorithm, which was first observed by Indyk [40]. The algorithm chooses an arbitrary
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point p and returns its furthest neighbor q. Let r, s be the furthest pair in the metric space. We claim that
d(p, q) ≥ 1

2 d(r, s). By the triangle inequality, we have d(r, p)+d(p, s) ≥ d(r, s). This immediately implies
that either d(p, r) ≥ 1

2 d(r, s) or d(p, s) ≥ 1
2 d(r, s). This shows the approximation guarantee.

In the following, we present some recent sublinear-time algorithms for a few optimization problems in
metric spaces.

4.1 Minimum Spanning Trees

We can view a metric space as a weighted complete graph G. A natural question is whether we can find
out anything about the minimum spanning tree of that graph. As already mentioned in the previous section,
it is not possible to find in o(n2) time a spanning tree in the distance oracle model that approximates the
minimum spanning tree within a constant factor [40]. However, it is possible to approximate the weight of
a minimum spanning tree within a factor of (1 + ε) in Õ(n/εO(1)) time [21].

The algorithm builds upon the ideas used to approximate the weight of the minimum spanning tree
in graphs described in Section 3.2 [16]. Let us first observe that for the metric space problem we can
assume that the maximum distance is O(n/ε) and the shortest distance is 1. This can be achieved by first
approximating the longest distance in O(n) time and then scaling the problem appropriately. Since by the
triangle inequality the longest distance also provides a lower bound on the minimum spanning tree, we
can round up to 1 all edge weights that are smaller than 1. Clearly, this does not significantly change the
weight of the minimum spanning tree. Now we could apply the algorithm APPROXMSTWEIGHT from
Section 3.2, but this would not give us an o(n2) algorithm. The reason is that in the metric case we have a
complete graph, i.e., the average degree isD = n−1, and the edge weights are in the interval [1,W ], where
W = O(n/ε). So, we need a different approach. In the following we will outline an idea how to achieve a
randomized o(n2) algorithm. To get a near linear time algorithm as in [21] further ideas have to be applied.

The first difference to the algorithm from Section 3.2 is that when we develop a formula for the minimum
spanning tree weight, we use geometric progression instead of arithmetic progression. Assuming that all
edge weights are powers of (1 + ε), we define G(i) to be the subgraph of G that contains all edges of length
at most (1 + ε)i. We denote by c(i) the number of connected components in G(i). Then we can write

MST = n−W + ε ·
r−1∑
i=0

(1 + ε)i · c(i) , (1)

where r = log1+εW − 1.
Once we have (1), our approach will be to approximate the number of connected components c(i) and use

formula (1) as an estimator. Although geometric progression has the advantage that we only need to estimate
the connected components in r = O(log n/ε) subgraphs, the problem is that the estimator is multiplied by
(1 + ε)i. Hence, if we use the procedure from Section 3.2, we would get an additive error of ε n · (1 + ε)i,
which, in general, may be much larger than the weight of the minimum spanning tree.

The basic idea how to deal with this problem is as follows. We will use a different graph traversal than
BFS. Our graph traversal runs only on a subset of the vertices, which are called representative vertices.
Every pair of representative vertices are at distance at least ε · (1 + ε)i from each other. Now, assume
there are m representative vertices and consider the graph induced by these vertices (there is a problem with
this assumption, which will be discussed later). Running algorithm APPROXCONNECTEDCOMPS on this
induced graph makes an error of ±λm, which must be multiplied by (1 + ε)i resulting in an additive error
of ±λ · (1 + ε)i ·m. Since the m representative vertices have pairwise distance ε · (1 + ε)i, we have a lower
bound MST ≥ m · ε · (1 + ε)i. Choosing λ = ε2/r would result in a (1 + ε)-approximation algorithm.
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Unfortunately, this simple approach does not work. One problem is that we cannot choose a random
representative point. This is because we have no a priori knowledge of the set of representative points. In
fact, in the algorithm the points are chosen greedily during the graph traversal. As a consequence, the deci-
sion whether a vertex is a representative vertex or not, depends on the starting point of the graph traversal.
This may also mean that the number of representative vertices in a connected component also depends on
the starting point of the graph traversal. However, it is still possible to cope with these problems and use the
approach outlined above to get the following result.

Theorem 8 [21] The weight of a minimum spanning tree of an n-point metric space can be approximated
in Õ(n/εO(1)) time to within a (1 + ε) factor and with confidence probability at least 3

4 .

4.1.1 Extensions: Sublinear-time (2 + ε)-approximation of metric TSP and Steiner trees

Let us remark here one direct corollary of Theorem 8. By the well known relationship (see, e.g., [55])
between minimum spanning trees, travelling salesman tours, and minimum Steiner trees, the algorithm for
estimating the weight of the minimum spanning tree from Theorem 8 immediately yields Õ(n/εO(1)) time
(2 + ε)-approximation algorithms for two other classical problems in metric spaces (or in graphs satisfying
the triangle inequality): estimating the weight of the travelling salesman tour and the minimum Steiner tree.

4.2 Uniform Facility Location

Similarly to the minimum spanning tree problem, one can estimate the cost of the metric uniform facility
location problem in Õ(n/εO(1)) time [10]. This problem is defined as follows. We are given an n-point
metric space (P, d). We want to find a subset F ⊆ P of open facilities such that

|F |+
∑
p∈P

d(p, F )

is minimized. Here, d(p, F ) denotes the distance from p to the nearest point in F . It is known that one
cannot find a solution that approximates the optimal solution within a constant factor in o(n2) time [54].
However, it is possible to approximate the cost of an optimal solution within a constant factor.

The main idea is as follows. Let us denote by B(p, r) the set of points from P with distance at most r
from p. For each p ∈ P let rp be the unique value that satisfies∑

q∈B(p,rp)

(rp − d(p, q)) = 1 .

Then one can show that

Lemma 9 [10]
1

4
·Opt ≤

∑
p∈P

rp ≤ 6 ·Opt ,

where Opt denotes the cost of an optimal solution to the metric uniform facility location problem.

Now, the algorithm is based on a randomized algorithm that for a given point p, estimates rp to within a
constant factor in time O(rp · n · log n) (recall that rp ≤ 1). Thus, the smaller rp, the faster the algorithm.
Now, let p be chosen uniformly at random from P . Then the expected running time to estimate rp is
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O(n log n ·
∑

p∈P rp/n) = O(n log n · E[rp]). We pick a random sample set S of s = 100 log n/E[rp]
points uniformly at random from P . (The fact that we do not know E[rp] can be dealt with by using a
logarithmic number of guesses.) Then we use our algorithm to compute for each p ∈ S a value r̂p that
approximates rp within a constant factor. Our algorithm outputs n

s ·
∑

p∈S r̂p as an estimate for the cost of
the facility location problem. Using Hoeffding bounds it is easy to prove that n

s ·
∑

p∈S rp approximates∑
p∈P rp = Opt within a constant factor and with high probability. Clearly, the same statement is true, when

we replace the rp values by their constant approximations r̂p. Finally, we observe that expected running time
of our algorithm will be Õ(n/εO(1)). This allows us to conclude with the following.

Theorem 10 [10] There exists an algorithm that computes a constant factor approximation to the cost of
the metric uniform facility location problem in O(n log2 n) time and with high probability.

4.3 Clustering via Random Sampling

The problems of clustering large data sets into subsets (clusters) of similar characteristics are one of the
most fundamental problems in computer science, operations research, and related fields. Clustering prob-
lems arise naturally in various massive datasets applications, including data mining, bioinformatics, pattern
classification, etc. In this section, we will discuss uniform random sampling for clustering problems in
metric spaces, as analyzed in two recent papers [22, 49].

(a) (b) (c)

Figure 2: (a) A set of points in a metric space, (b) its 3-clustering (white points correspond to the center points), and
(c) the distances used in the cost for the 3-median.

Let us consider a classical clustering problem known as the k-median problem. Given a finite metric
space (P, d), the goal is to find a set C ⊆ P of k centers (points in P ) that minimizes

∑
p∈P d(p, C), where

d(p, C) denotes the distance from p to the nearest point in C. The k-median problem has been studied
in numerous research papers. It is known to be NP-hard and there exist constant-factor approximation
algorithms running in Õ(nk) time. In two recent papers [22, 49], the authors asked the question about
the quality of the uniformly random sampling approach to k-median, that is, is the quality of the following
generic scheme:

(1) choose a multiset S ⊆ P of size s i.u.r. (with repetitions),
(2) run an α-approximation algorithm Aα on input S to compute a

solution C∗, and
(3) return set C∗ (the clustering induced by the solution for the sample).

The goal is to show that already a sublinear-size sample set S will suffice to obtain a good approximation
guarantee. Furthermore, as observed in [49] (see also [48]), in order to have any approximation guarantee,
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one has to consider the quality of approximation as a function of the diameter of the metric space. Therefore,
we consider a model with the diameter of the metric space ∆ given, that is, with d : P × P → [0,∆].

Using techniques from statistics and computational learning theory, Mishra et al. [49] proved that if we
sample a set S of s = Õ

((
α∆
ε

)2
(k lnn+ ln(1/δ))

)
points from P i.u.r. (independently and uniformly

at random) and run α-approximation algorithm Aα to find an approximation of the k-median for S, then
with probability at least 1 − δ, the output set of k centers has average distance to the nearest center of
at most 2 · α · med(P, k) + ε, where med(P, k) denotes the average distance to the k-median C, that is,
med(P, k) =

∑
v∈P d(v,C)

n . We will now briefly sketch the analysis due to Czumaj and Sohler [22] of a
similar approximation guarantee but with a smaller bound for s.

Let Copt denote an optimal set of centers for P and let cost(X,C) be the average cost of the clustering

of set X with center set C, that is, cost(X,C) =
∑
x∈X d(x,C)

|X| . Notice that cost(P,Copt) = med(P, k). The
analysis of Czumaj and Sohler [22] is performed in two steps.

(i) We first show that there is a set of k centers C ⊆ S such that cost(S,C) is a good approximation of
med(P, k) with high probability.

(ii) Next we show that with high probability, every solution C for P with cost much bigger than med(P, k)
is either not a feasible solution for S (i.e., C 6⊆ S) or cost(S,C)� α · med(P, k) (that is, the cost of
C for the sample set S is large with high probability).

Since S contains a solution with cost at most c ·med(P, k) for some small c, Aα will compute a solution
C∗ with cost at most α · c · med(P, k). Now we have to prove that no solution C for P with cost much
bigger than med(P, k) will be returned, or in other words, that if C is feasible for S then its cost is larger
than α · c ·med(P, k). But this is implied by (ii). Therefore, the algorithm will not return a solution with too
large cost, and the sampling is a (c · α)-approximation algorithm.

Theorem 11 [22] Let 0 < δ < 1, α ≥ 1, 0 < β ≤ 1 and ε > 0 be approximation parameters. If
s ≥ c·α

β ·
(
k + ∆

ε·β ·
(
α · ln(1/δ) + k · ln

(
k∆α
εβ2

)))
for an appropriate constant c, then for the solution set

of centers C∗, with probability at least 1− δ it holds the following

cost(V,C∗) ≤ 2 (α+ β) · med(P, k) + ε .

To give the flavor of the analysis, we will sketch (a simpler) part (i) of the analysis:

Lemma 12 If s ≥ 3∆α(1+α/β) ln(1/δ)

β·med(P,k)
then Pr

[
cost(S,C∗) ≤ 2 (α+ β) · med(P, k)

]
≥ 1− δ.

Proof: We first show that if we consider the clustering of S with the optimal set of centers Copt for P ,
then cost(S,Copt) is a good approximation of med(P, k). The problem with this bound is that in general,
we cannot expect Copt to be contained in the sample set S. Therefore, we have to show also that the optimal
set of centers for S cannot have cost much worse than cost(S,Copt).

Let Xi be the random variable for the distance of the ith point in S to the nearest center of Copt. Then,
cost(S,Copt) = 1

s

∑
1≤i≤s Xi, and, since E[Xi] = med(P, k), we also have med(P, k) = 1

s · E
[∑

Xi

]
.

Hence,

Pr
[
cost(S,Copt) > (1 + β

α) · med(P, k)
]

= Pr
[∑
1≤i≤s

Xi > (1 + β
α) ·E

[∑
1≤i≤s

Xi

]]
.
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Observe that each Xi satisfies 0 ≤ Xi ≤ ∆. Therefore, by Chernoff-Hoeffding bound we obtain:

Pr
[ ∑

1≤i≤s
Xi > (1 + β/α) ·E

[ ∑
1≤i≤s

Xi

]]
≤ e−

s·med(P,k)·min{(β/α),(β/α)2}
3 ∆ ≤ δ . (2)

This gives us a good bound for the cost of cost(S,Copt) and now our goal is to get a similar bound for
the cost of the optimal set of centers for S. Let C be the set of k centers in S obtained by replacing each
c ∈ Copt by its nearest neighbor in S. By the triangle inequality, cost(S,C) ≤ 2 · cost(S,Copt). Hence,
multiset S contains a set of k centers whose cost is at most 2 · (1 +β/α) ·med(P, k) with probability at least
1− δ. Therefore, the lemma follows because Aα returns an α-approximation C∗ of the k-median for S. ut

Next, we only state the other lemma that describe part (ii) of the analysis of Theorem 11.

Lemma 13 Let s ≥ c·α
β ·

(
k + ∆

ε·β ·
(
α · ln(1/δ) + k · ln

(
k∆α
εβ2

)))
for an appropriate constant c. Let C

be the set of all sets of k centers C of P with cost(P,C) > (2α+ 6β) · med(P, k). Then,

Pr
[
∃Cb ∈ C : Cb ⊆ S and cost(S,Cb) ≤ 2 (α+ β) med(P, k)

]
≤ δ . ut

Observe that comparing the result from [49] to the result in Theorem 11, Theorem 11 improves the
sample complexity by a factor of ∆ · log n/ε while obtaining a slightly worse approximation ratio of 2 (α+
β) med(P, k) + ε, instead of 2αmed(P, k) + ε as in [49]. However, since the polynomial-time algorithm
with the best known approximation guarantee has α = 3 + 1

c for the running time of O(nc) time [9],
this significantly improves the running time of [49] for all realistic choices of the input parameters while
achieving the same approximation guarantee. As a highlight, Theorem 11 yields a sublinear-time algorithm
that in time Õ((∆

ε · (k + log(1/δ)))2) — fully independent of n — returns a set of k centers for which the
average distance to the nearest median is at most O(med(P, k)) + ε with probability at least 1− δ.

Extensions. The result in Theorem 11 can be significantly improved if we assume the input points are in
Euclidean space Rd. In this case the approximation guarantee can be improved to (α+ β) med(P, k) + ε at
the cost of increasing the sample size to Õ( ∆·α

ε·β2 · (k d+ log(1/δ))).
Furthermore, a similar approach as that sketched above can be applied to study similar generic sample

schemes for other clustering problems. As it is shown in [22], almost identical analysis lead to sublinear
(independent on n) sample complexity for the classical k-means problem. Also, a more complex analysis
can be applied to study the sample complexity for the min-sum k-clustering problem [22].

4.4 Other Results

Indyk [40] was the first who observed that some optimization problems in metric spaces can be solved in
sublinear-time, that is, in o(n2) time. He presented (1

2 − ε)-approximation algorithms for MaxTSP and
the maximum spanning tree problems that run in O(n/ε) time [40]. He also gave a (2 + ε)-approximation
algorithm for the minimum routing cost spanning tree problem and a (1 + ε) approximation algorithm for
the average distance problem; both algorithms run in O(n/εO(1)) time.

There is also a number of sublinear-time algorithms for various clustering problems in either Euclidean
spaces or metric spaces, when the number of clusters is small. For radius (k-center) and diameter clustering
in Euclidean spaces, sublinear-time property testing algorithms [1, 23] and tolerant testing algorithms [52]
have been developed. The first sublinear algorithm for the k-median problem was a bicriteria approximation
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Figure 3: Two instance of the metric matching which are indistinguishable in o(n2) time and whose cost differ by a
factor greater than λ. The perfect matching connecting L with R is selected at random and the edge e is selected as a
random edge from the matching. We set B = n (λ− 1) + 2. The distances not shown are all equal to n3 λ.

algorithm [40]. This algorithm computes in Õ(nk) time a set of O(k) centers that are a constant factor
approximation to the k-median objective function. Later, standard constant factor approximation algorithms
were given that run in time Õ(nk) (see, e.g., [47, 54]). These sublinear-time results have been extended in
many different ways, e.g., to efficient data streaming algorithms and very fast algorithms for Euclidean k-
median and also to k-means, see, e.g., [9, 13, 17, 29, 38, 39, 44, 45, 48]. For another clustering problem, the
min-sum k-clustering problem (which is complement to the Max-k-Cut), for the basic case of k = 2, Indyk
[42] (see also [41]) gave a (1+ε)-approximation algorithm that runs in timeO(21/εO(1)

n (log n)O(1)), which
is sublinear in the full input description size. No such results are known for k ≥ 3, but recently, [24] gave
a constant-factor approximation algorithm for min-sum k-clustering that runs in time O(nk (k log n)O(k))
and a polylogarithmic approximation algorithm running in time Õ(nkO(1)).

4.5 Limitations: What Cannot be done in Sublinear-Time

The algorithms discussed in the previous sections may suggest that many optimization problems in metric
spaces have sublinear-time algorithms. However, it turns out that the problems listed in the previous sec-
tions are more like exceptions than a norm. Indeed, most of the problems have a trivial lower bound that
exclude sublinear-time algorithms. We have already mentioned in Section 4 that the problem of approxi-
mating the cost of the lightest edge in a finite metric space (P, d) requires Ω(n2), even if randomization
is allowed. The other problems for which no sublinear-time algorithms are possible include estimation of
the cost of minimum-cost matching, the cost of minimum-cost bi-chromatic matching, the cost of mini-
mum non-uniform facility location, the cost of k-median for k = n/2; all these problems require Ω(n2)
(randomized) time to estimate the cost of their optimal solution to within any constant factor [10].

To illustrate the lower bounds, we give two instances of the metric spaces which are indistinguishable
by any o(n2)-time algorithm for which the cost of the minimum-cost matching in one instance is greater
than λ times the one in the other instance (see Figure 3). Consider a metric space (P, d) with 2n points, n
points in L and n points in R. Take a random perfect matching M between the points in L and R, and then
choose an edge e ∈M at random. Next, define the distance in (P, d) as follows:

• d(e) is either 1 or B, where we set B = n (λ− 1) + 2,
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• for any e∗M \ {e} set d(e∗) = 1, and

• for any other pair of points p, q ∈ P not connected by an edge from M, d(p, q) = n3 λ.

It is easy to see that both instances define properly a metric space (P, d). For such problem instances,
the cost of the minimum-cost matching problem will depend on the choice of d(e): if d(e) = B then the
cost will be n− 1 + B > nλ, and if d(e) = 1, then the cost will be n. Hence, any λ-factor approximation
algorithm for the matching problem must distinguish between these two problem instances. However, this
requires to find if there is an edge of lengthB, and this is known to require time Ω(n2), even if a randomized
algorithm is used.

5 Conclusions

It would be impossible to present a complete picture of the large body of research known in the area of
sublinear-time algorithms in such a short paper. In this survey, our main goal was to give some flavor of
the area and of the types of the results achieved and the techniques used. For more details, we refer to the
original works listed in the references.

We did not discuss two important areas that are closely related to sublinear-time algorithms: property
testing and data streaming algorithms. For interested readers, we recommend the surveys in [7, 28, 32, 33,
43, 53] and [50], respectively.
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