Skip to main content

Using Preaggregation to Speed Up Scaling Operations on Massive Spatio-temporal Data

  • Conference paper
Conceptual Modeling – ER 2010 (ER 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6412))

Included in the following conference series:

  • 1202 Accesses

Abstract

A frequent operation in e-Science is downscaling of some data item or part thereof, such as obtaining a 1 GB overview from a 10 TB dataset. Scaling is expensive as it normally requires a full scan of the area. Speeding up such operations, therefore, is performance critical.

A common optimization technique used for map imagery is to materialize selected downscaled versions. However, there is no support for 3D, such as x/y/t timeseries or x/y/z geophysics data. To overcome this, we propose a preaggregation technique for multi-dimensional gridded (”raster”) data. Preaggregates are selected based on a given query workload while considering disk space constraints. Upon evaluation, queries use the next best preaggregate and perform the remaining scaling.

We present the preaggregate selection algorithm and argue its efficiency based on a performance analysis covering 2-D and 3-D use cases. Further, we show how our approach outperforms the well-known 2-D image pyramids widely used in Web mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, P., Holsten, S.: A comparative analysis of array models for databases. Technical report, Jacobs University Bremen (2010)

    Google Scholar 

  2. Burt, P., Adelson, E.: The laplacian pyramid as a compact code. IEEE Transactions on Communications COM-31, 532–540 (1983)

    Article  Google Scholar 

  3. Garcia, A., Baumann, P.: Modeling fundamental geo-raster operations with array algebra. In: Proc. SSTDM 2007, October 28-31, pp. 607–612 (2007)

    Google Scholar 

  4. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Rec. 25(2), 205–216 (1996)

    Article  Google Scholar 

  5. Hornsby, K., Egenhofer, M.J.: Shifts in detail through temporal zooming. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.) DEXA 1999. LNCS, vol. 1677, pp. 487–491. Springer, Heidelberg (1999)

    Google Scholar 

  6. Hornsby, K., Egenhofer, M.J.: Identity-based change: A foundation for spatio-temporal knowledge representation. Intl. J. Geogr. Inf. Science 14, 207–224 (2000)

    Article  Google Scholar 

  7. Lopez, I.F.V.: Scalable algorithms for large temporal aggregation. In: Proc. ICDE 2000, p. 145 (2000)

    Google Scholar 

  8. n.n. Geographic Information - Coverage Geometry and Functions. Number 19123:2005. ISO (2005)

    Google Scholar 

  9. n.n. rasdaman query language guide, 8.1 edition (2009)

    Google Scholar 

  10. Peuquet, D.J.: Making space for time: Issues in space-time data representation. Geoinformatica 5(1), 11–32 (2001)

    Article  MATH  Google Scholar 

  11. Sapia, C.: On modeling and predicting query behavior in olap systems. In: Proc. DMDW 1999, June 14-15 (1999)

    Google Scholar 

  12. Shukla, A., Deshpande, P., Naughton, J.F.: Materialized view selection for multidimensional datasets. In: Proc. VLDB 1998, pp. 488–499 (1998)

    Google Scholar 

  13. Spokoiny, A., Shahar, Y.: An active database architecture for knowledge-based incremental abstraction of complex concepts from continuously arriving time-oriented raw data. J. Intell. Inf. Syst. 28(3), 199–231 (2007)

    Article  Google Scholar 

  14. Wiederhold, G., Jajodia, S., Litwin, W.: Dealing with granularity of time in temporal databases. In: Andersen, R., Solvberg, A., Bubenko Jr., J.A. (eds.) CAiSE 1991. LNCS, vol. 498, pp. 124–140. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gutierrez, A.G., Baumann, P. (2010). Using Preaggregation to Speed Up Scaling Operations on Massive Spatio-temporal Data. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds) Conceptual Modeling – ER 2010. ER 2010. Lecture Notes in Computer Science, vol 6412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16373-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16373-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16372-2

  • Online ISBN: 978-3-642-16373-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics