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Abstract. UML class diagrams (UCDs) are the de-facto standard for-
malism for the analysis and design of information systems. By adopting
formal language techniques to capture constraints expressed by UCDs
one can exploit automated reasoning tools to detect relevant properties,
such as schema and class satisfiability and subsumption between classes.
Among the reasoning tasks of interest, the basic one is detecting full sat-
isfiability of a diagram, i.e., whether there exists an instantiation of the
diagram where all classes and associations of the diagram are non-empty
and all the constraints of the diagram are respected. In this paper we es-
tablish tight complexity results for full satisfiability for various fragments
of UML class diagrams. This investigation shows that the full satisfiabil-
ity problem is EXPTIME-complete in the full scenario, NP-complete if we
drop ISA between relationships, and NLOGSPACE-complete if we further
drop covering over classes.’

Keywords: Reasoning over Conceptual Models, Description Logics, Complexity
Analysis.

1 Introduction

UML (Unified Modeling Language - http://www.omg.org/spec/UML/) is the
de-facto standard formalism for the analysis and design of information systems.
One of the most important components of UML are class diagrams (UCDs).
UCDs describe the domain of interest in terms of objects organized in classes and
associations between them. The semantics of UCDs is by now well established,
and several works propose to represent it using various kinds of formal languages,
e.g., [2-7]. Thus, one can in principle reason on UCDs. The reasoning tasks that
one is interested in are, e.g., subsumption between two classes, i.e., the fact
that each instance of one class is necessarily also an instance of another class,
satisfiability of a specific class (or association) in the diagram, i.e., the fact
that the information encoding that class (or association) in the diagram is not
contradictory, diagram satisfiability, which requires that at least one class in the
diagram is satisfiable, and full satisfiability of the diagram [8, 9], i.e., the fact that

L A preliminary and shortened version of this paper has been presented at the 2009
Int. Workshop on Logic in Databases (LID 2009), with informal proceedings printed
as a technical report [1].



there exists an instantiation of the diagram where all classes and associations of
the diagram are non-empty.

The latter property is of importance since the presence of some unsatisfiable
class or association actually means either that the diagram contains unnecessary
information that should be removed, or that there is some modeling error that
leads to the loss of satisfiability.

In this paper, we adopt the well established formalization of UCDs in terms
of Description Logics (DLs). DLs [10] are decidable logics that are specifically
tailored for capturing various forms of conceptual data models (cf. [11-16, 5]),
and they allow one to exploit state-of-the-art DL reasoners [17] to provide auto-
mated reasoning support over such data models.

The complexity of reasoning over UCDs has been addressed in [5] where it has
been shown that in the presence of the standard UML/EER constructs, such as
ISA, disjointness and covering between entities and associations, cardinality con-
straints (also called participation constraints) for associations, and multiplicity
constraints for attributes makes checking class satisfiability and schema satisfi-
ability EXPTIME-complete. This result has been strengthened in [6] to UCDs?
with simple 1SA between associations (and both disjointness and completeness
constraints on class hierarchies only), where it was also shown that by drop-
ping ISA between associations reasoning becomes NP-complete, and by further
forbidding completeness in class hierarchies it drops to NLOGSPACE-complete.

The only works that addressed explicitly the complexity of full satisfiability
of UCDs are [8, 9], which include a classification of UCDs based on inconsistency
triggers. Each inconsistency trigger is a pattern for recognizing possible incon-
sistencies of the diagram based on the interaction between different modelling
constraints. [8,9] introduce various algorithms for checking full satisfiability of
UCDs with different expressive power, together with an analysis of their com-
putational complexity (i.e., upper bounds are provided). In particular, checking
full satisfiability in the following scenarios is showed to be in:

1. EXpTIME, if the standard constructs are used;
2. NP, if 1sA between associations and multiple and overwriting inheritance of
attributes is dropped—i.e., each attribute has a fixed type;
P, if diagrams are further restricted by forbidding completeness constraints;
4. PSPACE (instead of EXPTIME), if standard constructs are uses (as in sce-
nario 1) but types for attributes associated to sub-classes are sub-types of
types for the respective attributes associated to super-classes;
5. NP and P in the scenarios 2 and 3, respectively, if we further allow for
attributes with types restricted as in 4.

©w

The main contributions of this paper can be summarised as follows:

— We show tight complexity results for checking full satisfiability proving that
the problem is EXpTIME-complete in the standard scenario 1, NP-complete
in the scenario 2 and NLOGSPACE-complete (instead of P) in the scenario 3;

2 The results in [6] are formulated in terms of the Entity-Relationship model, but they
also carry directly over to UML class diagrams.



— We prove that full satisfiability in the scenario 4 is EXPTIME-hard, thus
showing that the PSPACE algorithm presented in [8,9] must be incomplete.

Our results build on the formalization of UCDs in terms of DLs given in [5,6].
In fact, our upper bounds for full satisfiability are an almost direct consequence
of the corresponding upper bounds of the DL formalization. On the other hand,
the obtained lower bounds for full satisfiability are more involved, and in some
cases require a careful analysis of the corresponding proof for class satisfiability.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is EXPTIME-complete. In Section 3, we recall the FOL semantics of UCDs.
In Sections 4 and 5, we provide our results on full satisfiability for various variants
of UCDs. Finally, in Section 6, we draw some conclusions.

2 Full Satisfiability in the Description Logic ALC

We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [10]. The basic elements of ALC are atomic concepts and roles, denoted
by A and P, respectively. Complex concepts C, D are defined as follows:

C,D == A | -C | CND | 3PC

The semantics of ALC, as usual in DLs, is specified in terms of interpreta-
tions. An interpretation T = (AZ,-1), with a non-empty domain AZ and an
interpretation function -, assigns to each concept C a subset C of AT, and
to each role name P a binary relation PZ in AT x A such that the following
conditions are satisfied:

AT C AT, (CnD)* =CTn D7,
(~C)T = AT\ (7, (3P.C)* = {a € AT | 3b.(a,b) € PTAb e CT}.

We use the standard abbreviations Cy U Cy := —(=Cy M —Cy), and VP.C' :=
—=3P.~C, with the corresponding semantics.

An ALC terminological box (TBox) T is a finite set of (concept inclusion)
assertions of the form C T D. An interpretation Z satisfies an assertion of
the form C T D if and only if CT C DZ. A TBox T is satisfiable if there is
an interpretation Z, called a model of T, that satisfies every assertion in 7. A
concept C' is satisfiable w.r.t. a TBox T if there is a model Z of T such that
CT #£ (). It can be shown that TBox satisfiability and concept satisfiability w.r.t.
a TBox are reducible to each other in polynomial time. Moreover, reasoning
w.r.t. ALC TBoxes is EXPTIME-complete (see e.g., [10]).

We now define the notion of full satisfiability of a TBox and show that for
ALC it has the same complexity as classical satisfiability.

Definition 1 (TBox Full Satisfiability). An ACC TBox T is said to be fully
satisfiable if there exists a model T of T such that AT # 0, for every atomic
concept A in T. We say that T is a full model of T.



We first prove that full satisfiability in ALC is ExpT1iME-hard.

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to
full satisfiability of ALC TBozxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [18],
C is satisfiable w.r.t. 7 if and only if C'M Ay is satisfiable w.r.t. the TBox 71
consisting of the single assertion, A1 C []o,co,er(7C1UC2) M <<, VP AT,
where A7 is a fresh atomic concept and Py, ..., P, are all the atomic roles in T
and C. In order to reduce the latter problem to full satisfiability, we extend 7Ty
to 7o =T1 U{Ac CE CM Ay}, with Ac a fresh atomic concept, and prove that:
C' 1M A7 is satisfiable w.r.t. 71 if and only if 73 is fully satisfiable.
“=” Let Z be a model of 77 such that (C 1 Ar)T # (. We construct an
interpretation of Tz, J = (AT U {d*?},-7), with d*? ¢ AT, such that:

A¥:AI, Ag:(CI_IAT)I,

AT = AT U {dtP}, for each atomic concept A in T and C,

PJ = PT  for each atomic role P in 7 and C.
Obviously, the extension of every atomic concept is non-empty in J. Next, we
show that J is a model of T3, by relying on the fact (easily proved by structural
induction) that DZ C D7, for each subconcept D of concepts in 77 or of C.
Then, it is easy to show that J satisfies the two assertion in 7s.

"< Conversely, every full model J of T is also a model of 71 with (CT A7) #
0, as AL C (CAr)7. O

Theorem 3. Full satisfiability of ALC TBoxes is EXPTIME-complete.

Proof. The EXPTIME membership is straightforward since full satisfiability of
an ALC TBox T can be reduced to satisfiability of the TBox 7 U J;<,<,{T C
3P’ A;}, where Aq,..., A, are all the atomic concepts in 7, and P’ is a fresh
atomic role. The EXPT1ME-hardness follows from Lemma 2. O

We now modify the reduction of Lemma 2 so that it applies also to primitive
ALC™ TBoxes, i.e., TBoxes that contain only assertions of the form:

AC B, AC B, ACBUDB, ACVP.B, AC3P.B,
where A, B, B’ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC™ TBoxes is EXPTIME-
complete.

Proof. The EXPTIME membership follows from Theorem 3. For proving the
ExXPTIME-hardness, we use a result in [5] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC™
TBoxes. Let T~ = {A; C D; | 1 < j < m} be a primitive ALC™ TBox, and
Ap an atomic concept. By the proof of Lemma 2, we have that Ay is satisfiable
w.r.t. 7~ if and only if the TBox 75 consisting of the assertions

Ar-C  [] 4;uDj) n []| VP.Ar-, AT Ag A,
A;ED;eT— 1<i<n



is fully satisfiable, with A—, A{, fresh atomic concepts.
TS is not a primitive ALC™ TBox, but it is equivalent to the TBox containing
the assertions:

A6 C AT_ AT— C _\A1 LDy AT— C VPl AT—

Ay C A Ar- C=A,, UD, Ar_ CVP,. Ar_,

Finally, to get a primitive ALC™ TBox, 7, , we replace each assertion of the
form AT— E _‘Aj ] Dj by AT— E le L BJQ, le E _\Aj, and B]2 E Dj, with le
and sz fresh atomic concepts, for j € {1,...,m}.

We show now that 75 is fully satisfiable iff 7, is fully satisfiable:

(=) Let Z = (AZ,.T) be a full model of T] . We extend Z to an interpretation
J of Ty . Let AT = AT U {d*+,d™}, with {d*,d~} N AT = {), and define -7
as follows:

AT =A% A7 = Ay,
A7 = AT U {d"}, for every other atomic concept A in 7,

B! = (=4;)7 and B?” = DY, foreach Ay  CBIUB? €Ty,
P7 = PTu{(d",d")}, for each atomic role P in 7, .

It is easy to see that J is a full model of 7.
(<) Trivial, since every model of 75~ is a model of 75. O

3 Formalizing UML Class Diagrams

In this section, we briefly describe UCDs and provide their semantics in terms
of First Order Logic (the formalization adopted here is based on previous pre-
sentations in [5, 15]).

A class in UCDs denotes a set of objects with common features. Formally,
a class C corresponds to a unary predicate C. An n-ary association (also called
relationship) in UCDs represents a relation between instances n > 2 classes.
Names of associations (as names of classes) are unique in a UCD. A binary
association between two classes C1 and Cy is graphically rendered as in Fig. 1.
The multiplicity constraint n;..n, (also called participation constraint) written
on one end of the binary association specifies that each instance of the class C
participates at least n; times and at most n, times in the association R, and the
multiplicity constraint m;..m,, specifies an analogous constraint for each instance
of the class C5. When a multiplicity constraint is omitted, it is intended to be 0..x.
Formally, an association R between the classes C; and Cs is captured by a binary
predicate R that satisfies the FOL axiom V1, za. (R(x1, z2) = C1(z1) ACa(x2)),
while multiplicities are formalized by the following FOL assertions:

Va. (Ci(z) = I>ny. R(2,y) A I<n,y. R(x,y))
Vy. (Co(y) = I>m. R(z,y) A J<m, 2. R(2,y)),
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Fig. 3. A class hierarchy in UML

where we use counting quantifiers to abbreviate the FOL formula encoding the
multiplicity constraints.

A more general form of multiplicity is the so called refinement of multiplicity
constraints for sub-classes participating in associations. With such a construct we
are able to change (and thus refine) the multiplicity constraints for sub-classes.
Refinement involving a binary association, R, between classes C; and Cs, and a
sub-class of C1, say Cf, can be formalized with the following FOL axioms:

V. (Ci(z) = C1(z)), V. (C)(z) — I>nry- R(x,y) A J<nry. R(z,y)).

An association class describes properties of the association, such as at-
tributes, operations, etc. (see Fig. 2). A binary association between classes C
and Cy with a related association class Cp is formalized in FOL by reifying the
association into a unary predicate Cr with two binary predicates P, P5, one
for each component of the association. We enforce the following semantics, for
ie{1,2}:

V. (Cr(z) — Jy. Pi(z,y)),
Vx, (Cr(z) A z(fc7y)—>0())
z,y,y . (Cr(z) A Pi(x,y) A Pi(x,y') =y =1y),
Vyl,ym 2, %" (Cr(@) A Cr(@") A (Nigqr,2y Pi(@,90) A Pi(a', ) — o = ).

For associations with a related class, the multiplicity constraints are formalized
by the following FOL assertions:

Vy1.(C1(y1) = Fz>n, 2. (Cr(2) A Pr(2,91)) A J<n, 2. (Cr(2) A Pi(z,91))),
Vyg.(CQ(yQ) — ﬂzmla’}. (CR(!L‘) A\ PQ(.T,yQ)) A\ Egmu.’lﬁ. (CR(.’lﬁ) A\ PQ(.T, y2>)) .

Classes can have attributes, formalized similarly to binary associations, re-
lating the class with values of a given type. As for associations, we can specify
multiplicity constraints over attributes.



Table 1. Complexity of Full Satisfiability in UML (sub)languages

Constraints Complexity
Language Classes Associations/Attributes of Full
ISA disjoint complete|ISA multiplicity refinement Satisfiability
UCDyuu v v v v v v ExpTIME [Th.7]
UCDpoor v v v X v v NP [Th.9]
UCDyer v v X X v v NLOGSPACE [Th.11]

A generalization (called also ISA constraint) between two classes C; and C,
formalized as Va.Cy(z) — C(z), specifies that each instance of C; is also an
instance of C'. Several generalizations can be grouped together to form a class
hierarchy, as shown in Fig. 3. Such a hierarchy is formally captured by means of
the FOL axioms Vz. C;(z) — C(x) for i € {1,...,n}. Disjointness and complete-
ness constraints can also be enforced on a class hierarchy, by adding suitable
labels to the diagram. Disjointness among the classes C1, ..., C), is expressed by
Va. Ci(z) = Nj_i —~Cj(x), fori € {1,...,n—1}. The completeness constraint,
expressing that each instance of C' is an instance of at least one of Cy,...,C}, is
captured by Vz.C(z) — \/i_, Ci(z). We can also have generalization, disjoint-
ness and completeness constraints between associations and between association
classes with the obvious semantics.

In this paper, we denote with UCDy¢,; the class diagram language that com-
prises all the standard constructs as discussed above (i.e., what we called sce-
nario 1 in Section 1). With UCDy,,; we denote the language without general-
ization between associations (i.e., scenario 2 in Section 1), and with UCD,.s we
further drop completeness constraints over classes (i.e., scenario 3 in Section 1).
The constructors allowed in these languages are summarized in Table 1, together
with the tight complexity results obtained in this paper.

4 Full Satisfiability of UML Class Diagrams

Three notions of UCD satisfiability have been proposed in the literature [19, 5, 6,
20,9]. First, diagram satisfiability refers to the existence of a model, i.e., a FOL
interpretation that satisfies all the FOL assertions associated to the diagram and
where at least one class has a nonempty extension. Second, class satisfiability
refers to the existence of a model of the diagram where the given class has a
nonempty extension. Third, we can check whether there is a model of an UML
diagram that satisfies all classes and all relationships in a diagram. This last
notion of satisfiability, referred here as full satisfiability and introduced in [8,
9] is thus stronger than diagram satisfiability, since a model of a diagram that
satisfies all classes is, by definition, also a model of that diagram.

Definition 5 (UML Full Satisfiability). A UCD, D, is fully satisfiable if
there is a FOL interpretation, I, that satisfies all the constraints expressed in D
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and such that CT # 0 for every class C in D, and RT # () for every association
R inD. We say that T is a full model of D.

We now address the complexity of full satisfiability for UCDs with the stan-
dard set of constructs, i.e., UCDy,y. For the lower bounds, we use the results
presented in Section 2 and reduce full satisfiability of primitive ALC™ TBoxes
to full satisfiability of UCDyy;;. This reduction is based on the ones used in [5, 6]
for the lower complexity bound of schema satisfiability in the extended Entity-
Relationship model, but the proof of their correctness is more involved here.

Given a primitive ALC™ TBox T, construct a UCDy,; diagram X (7)) as fol-
lows: for each atomic concept A in T, introduce a class A in X(7). Additionally,
introduce a class O that generalizes (possibly indirectly) all the classes in X(7T)
that encode an atomic concept in 7. For each atomic role P, introduce a class
Cp, which reifies the binary relation P. Further, introduce two functional asso-
ciations P;, and P, that represent, respectively, the first and second component
of P. The assertions in 7 are encoded as follows:

— For each assertion of the form A C B, introduce a generalization between
the classes A and B.

— For each assertion of the form A C —B, construct the hierarchy in Fig. 4.

— For each assertion of the form A C B U By, introduce an auziliary class B,
and construct the diagram shown in in Fig. 5.

— For each assertion of the form A C VP.B, add the auxiliary classes Cp, ,
Cp,y, Ap,, and APB, and the associations Papi, Pip;, and P4ps, and
construct the diagram shown in Fig. 6.



— For each assertion of the form A C 3P.B, add the auxiliary class Cp,, and
the associations P4p1 and P4ps, and construct the diagram shown in Fig. 7.

Notice that X(7") is a UCD in UCDyy;.

Lemma 6. A primitive ALC™ TBox T is fully satisfiable if and only if the UCD
X(T), constructed as above, is fully satisfiable.

Proof. “<” Let J = (A7,-7) be a full model of X(T). We construct a full
model Z = (AZ,.T) of T by taking AT = A7 . Further, for every concept name
A and for every atomic role P in 7, we define respectively A7 = A and
PT = (P[)Y o Py (r, ory denotes the composition of two binary relations
r1 and r9). Let us show that Z satisfies every assertion in 7.

— For assertions of the form A C B, AC —B, and A C By LI By, the statement
easily follows from the construction of Z.

— For assertions of the form A C VP.B and A C JP.B, the proof uses argu-
ments similar to those in the proof of Lemma 1 in [6].

“=7 Let T = (AZ,-T) be a full model of T, and let role(7) be the set of
role names in 7. We extend Z to an instantiation J = (A7,-7) of X(T), by
assigning suitable extensions to the auxiliary classes and associations in X(7T).
Let AY = ATUT'UA, where: A = MAQVP.BGT{GAPB»GAPB}» such that ATNA =

0, and I' = Wpe ore () AP, With Ap = Pty Uacvrser{(aas,,b), (aAPBa5)}
where b is an arbitrary instance of B, and 6 an arbitrary element of AZ. We set
09 = AT U A, A7 = AT for each class A corresponding to an atomic concept
in 7, and CY = Ap for each P € role(T). Additionally, the extensions of the
associations P; and P, are defined as follows: Plj = {((01,02),01) | (01,02) €
O3y, P ={((01,02),09) | (01,02) € CZ}. We now show that 7 is a full model
of X(T).

— For the portions of X(7) due to TBox assertions of the form A C B, A C —B,
and A C By U By, the statement follows from the construction of 7.

— For each TBox assertion in 7 of the form A C VP.B, let us define the
extensions for the auziliary classes and associations as follows:

AF = ATU{a, ). A% =09\ A%,
7‘7 —
CgAB ={(0,0)€CY |o€ AgB}7 Cp,, =1(0,0) € Cf |loe A‘}ZB},

Pip ={((0,0"),0) € P/ Joe AL}, Py ={((0,0"),0) € P{ o€ A},
Pips ={((0,0),0") € P o€ AL }.

It is not difficult to see that J satisfies the fragment of X(7) as shown
in Fig. 6. It remains to show that each class and each association has a
non-empty extension. This is clearly the case for classes that encode atomic
concepts in T. For the classes Ap,, Ap,, Cp,,, and Cp,, we have that

J _ 17 J e d?
aap, € Ap,. ai, €Ap,, (aap,,b) €Cp, ., (aAPB,O) €Cp,, -
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Fig. 8. Reducing UML full satisfiability to class satisfiability

For the associations Py, P, Papi, Paps, and Pjp; we have that
((aAPB b), CLAPB) € PXBl < Plj’ ((aApB ) 6)7aApB) € PgBla ((a’APB .0),b) €
Pilpy C Py
— For each TBox assertion in T of the form A C 3P.B, let us define:
CgAB ={(0,0) € CY | 0 € AT and o’ € B?},
Pip ={((0,0),0) € P | (0,0) € CF, .},
Py ={((0,0),0) € Py | (0,0') € CF,

PapJ -
We have that CgAB # () as there exists a pair (a,b) € Ap with a € A, and
b € BZ. Since C’gAB # (), we have that Py, # 0 and Py, # 0. 0

Theorem 7. Full satisfiability of UCDy, diagrams is EXPTIME-complete.

Proof. We establish the upper bound by a reduction to class satisfiability in
UCDs, which is known to be ExpTIME-complete [5]. Given a UCD D, with
classes C1,...,C,, we construct a UCD D’ by adding to D a new class C
and new associations R;, for i € {1,...,n}, as shown in the left part of Fig. 8.
Furthermore, to check that every association is populated we use reification,
i.e., we replace each association P in the diagram D between the classes C;
and C; (such that neither C; nor C; is constrained to participate at least once
to P) with a class Cp and two functional associations P; and P, to represent
each component of P. Finally, we add the constraints shown in the right part of
Fig. 8. Intuitively, we have that if there is a model Z of the extended diagram
D’ in which CZ # (), then the multiplicity constraint 1..x on the association Rp
forces the existence of at least one instance o of C'p. By the functionality of P,
and P, there are at least two elements o; and o;, such that o; € CZE, 0j € C’jI,
(0,0;) € PE and (0,0;) € Pf. Then, one instance of P can be the pair (0;,0;).
Conversely, if there is a full model J of D, it is easy to extend it to a model 7
of D’ that satisfies C.

The ExpTiME-hardness follows from Lemma 6 and Theorem 4. a

Note that, the proof of the above theorem does not involve attributes. Thus, the
ExXPTIME complexity result is valid for both scenarios 1 and 4 in Section 1.

5 Full Satisfiability of Restricted UML Class Diagrams

In this section, we investigate the complexity of the full satisfiability problem
for the two sub-languages UCDy,,; and UCD,..s defined in Section 3. By building



on the techniques used for the satisfiability proofs in [6], we show that also in
this case checking for full satisfiability does not change the complexity of the
problem.

We consider first UCDy,,; diagrams, by showing that deciding full satisfia-
bility is NP-complete. For the lower bound, we provide a polynomial reduction
of the 3sAT problem (which is known to be NP-complete) to full satisfiability of
UCDbool CDs.

Let an instance of 3SAT be given by a set ¢ = {c1,..., ¢} of 3-clauses over
a finite set II of propositional variables. Each clause is such that ¢; = £} V€2V (3,
for i € {1,...,m}, where each E;? is a literal, i.e., a variable or its negation. We
construct an UCDy,,; diagram D, as follows: Dy contains the classes Cy, C,
one class C; for each clause ¢; € ¢, and two classes Cj, and C-,, for each variable
p € II. To describe the constraints imposed by Dy, we provide the corresponding
DL inclusion assertions, since they are more compact to write than an UCD. For
every i € {1,...,m}, j € {1,2,3}, and p € II, we have the assertions

Cy ECT C; ECr Cuy EC;
Cp CCyr C¢ CC; C;, C CZ% L Cg% L Ce?
C,CCy CrEC,UC,, C.p, TG
Clearly, the size of Dy is polynomial in the size of ¢.

Lemma 8. A set ¢ of 3-clauses is satisfiable if and only if the UCDyoo; class
diagram Dy, constructed as above, is fully satisfiable.

Proof. “=" Let J [= ¢. Define an interpretation Z = ({0, 1}, -), with

C‘%’ ={0,1}
ct =C€I1 UC’ZIQ Uszs, for ¢; = 0} vV 2V 3
{1} lfj }ZZ CI C«Ilﬁ im CIi
cT = ’ = .
{0}, otherwise ¢ ! "

Clearly, CT # () for every class C representing a clause or a literal, and for
C = Cv. Moreover, as at least one literal ﬁf in each clause is such that J = €g,
then 1 € C7 for every i € {1,...,m}, and therefore 1 € CdI). It is straightforward
to check that Z satisfies 7.

“<” Let T = (A%,-T) be a full model of D,. We construct a model J of ¢ by
taking an element o € C’dz) , and setting, for every variable p € IT, J = p if and
only if 0 € Cg. Let us show that J = ¢. Indeed, for each i € {1,...,m}, since
o€ C’g and by the generalization Cy, C C;, we have that o € CZ, and by the

completeness constraint C; © Cp U Cpz U Cs, there is some j; € {1,2,3} such

that o € C’ZJ If E{i is a variable, then J Zf by construction, and thus J E ¢;.

Otherwise, if Ef = —p for some variable p, then, by the disjointness constraint
C-, C =C), we have that o ¢ C’g. Thus, J = —p, and therefore, J |= ¢;. O

Theorem 9. Full satisfiability of UCDpoo; is NP-complete



Proof. To prove the NP upper bound, we reduce full satisfiability to class sat-
isfiability, which, for the case of UCDe, is known to be in NP [6]. We use an
encoding similar to the one used in the proof of Theorem 7 (see Fig. 8).

The NP-hardness follows from Lemma 8. a

We turn now to UCD,.s class diagrams and show that full satisfiability in
this case is NLOGSPACE-complete. We provide a reduction of the REACHABIL-
ITY problem on (acyclic) directed graphs, which is known to be NLOGSPACE-
complete (see e.g., [21]) to the complement of full satisfiability of UCD,.s CDs.

Let G = (V,E,s,t) be an instance of REACHABILITY, where V is a set of
vertices, F C V x V is a set of directed edges, s is the start vertex, and ¢ the
terminal vertex. We construct an UCD,s diagram D¢ from G as follows:

— D¢ has two classes C! and C2, for each vertex v € V' \ {s}, and one class
C; corresponding to the start vertex s.

— For each edge (u,v) € E with u # s and v # s, D contains the following
constraints (again expressed as DL inclusion assertions): C1 C Cl, C2 C C2.

— For each edge (s,v) € E, D¢ contains the following constraints: Cs T C},
C, CC2.

— For each edge (u,s) € E, Dg contains the following constraints: C. C Cs,
C?2C C,.

— The classes C} and C? are constrained to be disjoint in D, expressed by:
Ctl C —\CtQ.

The following lemma establishes the correctness of the reduction.

Lemma 10. t is reachable from s in G iff Dg is not fully satisfiable.

Proof. “=” Let m = vy,...,v, be a path in G with v; = s and v, = t. We
claim that the class Cs in the constructed diagram D¢ is unsatisfiable. Suppose
otherwise that there is a model Z of D¢ with o € CZ, for some 0 € AZ. From 7, a
number of generalization constraints hold in D¢, i.e., CZ C C’}I and CT C C’EI.
Thus, we obtain that o € (C})% and o € (C?)%, which violates the disjointness
between the classes C} and C?, in contradiction to Z being a model of Dg.
Hence, C; is unsatisfiable, and therefore D¢ is not fully satisfiable.

“<” Let us consider the contrapositive. Assume that ¢ is not reachable from
s in G. We construct a full model Z of Dg. Let AT = {ds} UU, e\ oy 1d0: 45}
Define inductively a sequence of interpretations as follows:

70 ,
70 = (AT, %), such that: CT" = {d,}, Ci* = {di},Vi e {1,2},v € V\{s},
Ittt = (AI,~ITL+1), such that: Cszn+1 = CcI"u U(u7s)€E(C’iI U
n 7;In+ 1 7II‘n i n
CZ )v Cv = Cv U U(u,v)eE,u;és Cu U U(s,v)EE CSI

The definition induces a monotone operator over a complete lattice, and hence
it has a fixed point. Let Z be defined by such a fixed point. It is easy to check
that Z is such that for all ¢ € {1,2}, and u,v € V' \ {s} the following holds:

n

1. For each class C!, we have that di € C!Z.



2. d, € CT. ’ 4
3. For all d € AT d € cit implies d € CT iff v is reachable from u in G.
4. For all di, € AT, di € CIT for i # j iff s is reachable from u in G, and v is

reachable from s in G.
5. ds € CiT iff v is reachable from s in G.

From (1) and (2) we have that all classes in D¢ are populated in Z. It remains
to show that Z satisfies Dg. A generalization between the classes C% and C?
corresponds to the edge (u,v) € E. This means that v is reachable from v in
G, and therefore, by (3) we have that C:Z C CiZ. A similar argument holds for
generalizations involving the class C. Furthermore, the classes C} and C? are
disjoint under Z. To show this, suppose that there is an element d € A such
that d € C}2 NCZZL. Then by (5), d # ds, as t is not reachable from s. Moreover,
d # di for all i € {1,2} and v € V \ {s}. Indeed, suppose w.l.o.g. that i = 1.
Then, by (4), d} € C?7 iff s is reachable from v, and ¢ is reachable from s, which
leads to a contradiction. Hence, C}Z N C2% = . O

Theorem 11. Full-satisfiability of UCD,.s class diagrams is NLOGSPACE-
complete.

Proof. The NLOGSPACE membership follows from the NLOGSPACE membership
of class satisfiability [6], and a reduction similar to the one used in Theorem 9.
Since NLOGSPACE = CONLOGSPACE (by the Immerman-Szelepcsényi theorem;
see, e.g., [21]), and as the above reduction is logspace bounded, it follows that
full consistency of UCD,.y class diagrams is NLOGSPACE-hard. a

6 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether there is at least one model of the diagram where
each class and association is non-empty. Our results (reported in Table 1) show
that the complexity of checking full satisfiability is EXPTIME-complete both
in the full scenario (UCDy,;) and in the case where attributes are dropped,
NP-complete if we drop 1SA between relationships (UCD0;), and NLOGSPACE-
complete if we further drop covering over classes (UCD,.f), thus matching the
complexity of the classical class diagram satisfiability check. These complexity
bounds extend the ones presented in [6] for class/schema satisfiability to full
satisfiability. We show a similar result also for the problem of checking the full
satisfiability of a TBox expressed in the description logic ALC. As a future work,
we intend to investigate the problem under the finite model assumption.
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