
Specifying Aggregation Functions in
Multidimensional Models with OCL

Jordi Cabot1, Jose-Norberto Mazón2, Jesús Pardillo2, and Juan Trujillo2

1 INRIA - École des Mines de Nantes (France), jordi.cabot@inria.fr
2 Universidad de Alicante (Spain), {jnmazon,jesuspv,jtrujillo}@dlsi.ua.es

Abstract. Multidimensional models are at the core of data warehouse
systems, since they allow decision makers to early define the relevant
information and queries that are required to satisfy their information
needs. The use of aggregation functions is a cornerstone in the defini-
tion of these multidimensional queries. However, current proposals for
multidimensional modeling lack the mechanisms to define aggregation
functions at the conceptual level: multidimensional queries can only be
defined once the rest of the system has already been implemented, which
requires much effort and expertise. In this sense, the goal of this paper
is to extend the Object Constraint Language (OCL) with a predefined
set of aggregation functions. Our extension facilitates the definition of
platform-independent queries as part of the specification of the concep-
tual multidimensional model of the data warehouse. These queries are
automatically implemented with the rest of the data warehouse during
the code-generation phase. The OCL extensions proposed in this paper
have been validated by using the USE tool.

1 Introduction

Data warehouse systems support decision makers in analyzing large amounts
of data integrated from heterogeneous sources into a multidimensional model.
Several authors [1–4] and benchmarks for decision support systems (e.g., TPC-H
or TPC-DS [5]) have highlighted the great importance of aggregation functions
during this analysis to compute and return a unique summarized value that
represents all the set, such as sum, average or variance.

Although it is widely accepted that multidimensional structures should be
represented in an implementation-independent conceptual model in order to re-
flect real-world situations as accurately as possible [6], multidimensional queries
that satisfy information needs of decision makers are not currently expressed
at the conceptual level but only after the rest of the data warehouse system
has been developed. Therefore, the definition of these queries is implementation-
dependent which requires a lot of effort and expertise in the target implementa-
tion platform. The main drawback of this traditional way of proceeding is that
it avoids designers to properly validate if the conceptual schema meets the re-
quirements of decision makers before the final implementation. Therefore, if any
change is found out after the implementation, designers must start the whole

2

process from the early stages, thereby dramatically increasing the overall cost
of data warehouse projects. As stated by Olivé [7], this main drawback comes
from the little importance given to the informative function of the information
system, that is, to the definition of queries at the conceptual level that must be
provided to the users in order to satisfy their information needs. To overcome
this drawback in the data warehouse scenario, multidimensional queries must be
defined at the conceptual level.

The main restriction for defining multidimensional queries at the concep-
tual level is the rather limited support offered by current conceptual modeling
languages [8–11], that exhibit a lack of rich constructs for the specification of
aggregation functions. So far, researchers have focused on using a small subset of
them, namely sum, max, min, avg and count [12] (and most modeling languages
do not even cover all these basic ones). However, data warehouse systems require
aggregation functions for a richer data analysis [6, 4]. Therefore, we believe that
it is highly important to be able to provide a wide set of aggregation functions
as predefined constructs offered by the modeling language used in the specifi-
cation of the data warehouse so that the definition of multidimensional queries
can be carried out at the conceptual level. This way, designers can define and
validate them regardless the final technology platform chosen to implement the
data warehouse.

To this aim, in this paper, the standard Object Constraint Language (OCL [13])
library is extended with a new set of aggregation functions in order to facilitate
the specification of multidimensional queries as part of the definition of UML
conceptual schemas. In our work, we will use the operations in combination with
our UML profile for multidimensional modeling [14]. Nevertheless, our OCL ex-
tension is independent of the UML profile and could be used in the definition
of any standard UML model. Our new OCL operations have been tested and
implemented in the USE tool [15] in order to ensure their well-formedness and
to validate them on sample data from our running example (see Sect. 2).

Our work is aligned with current Model-Driven Development (MDD) ap-
proaches, such those of [16, 17], where the implementation of the system is sup-
posed to be (semi)automatically generated from its high-level models. The def-
inition of all multidimensional queries at the conceptual level permits a more
complete code-generation phase, including the automatic translation of these
queries from their initial platform-independent definition to the final (platform-
dependent) implementation, as we describe later in the paper. Therefore, code
can be easily generated for implementing multidimensional queries in several
languages, such as MDX or SQL.

The remainder of this paper is structured as follows: a motivating example is
presented in the next section to illustrate the benefits of our proposal throughout
the paper. Our OCL extension to model this kind of queries at the conceptual
level is presented in Sect. 3, while its validation is carried out in Sect. 4. Sect. 5
defines how to automatically implement it. Finally, Sect. 6 comments the related
work and Sect. 7 presents the main conclusions and sketches future work.

3

2 Motivating Example

To motivate the importance of our approach and illustrate its benefits, consider
the following example, which is inspired in one of the scenarios described in [18]:
an airline’s marketing department wants to analyze the flight activity of each
member of its frequent flyer program. The department is interested in seeing
what flights the company’s frequent flyers take, which planes they travel with,
what fare basis they pay, how often they upgrade, and how they earn their
frequent flyer miles3.

A possible conceptual model for this example is shown in Fig. 1 as a class
diagram annotated and displayed using the multidimensional UML profile pre-
sented in [14]. The figure represents a multidimensional model of the flight legs
taken by frequent flyers in the FrequentFlyerLegs Fact class. This class contains
several FactAttribute properties: Fare, Miles and MinutesLate. These properties
are measures that can be analyzed according to several aspects as the origin and
destination airport (Dimension class Airport), the Customer, FareClass, Flight
and Date (these two last Dimension classes are not detailed in the diagram).

Fig. 1. Conceptual multidimensional model for our frequent flyer scenario.

Given this conceptual multidimensional model, decision makers can request
a set of queries to retrieve useful information from the system. For instance,
they are probably interested in knowing the miles earned by a frequent flyer in
his/her trips from a given airport (e.g., airports located in Denver) in a given
fare class. Many other multidimensional queries can be similarly defined. These
kind of queries are usually of particular interest for the decision makers because
they (i) aggregate the data (e.g., the earned miles in the previous example) and
(ii) summarize values by means of different aggregation functions. For example,
it is likely that decision makers will be interested in knowing the total number

3 Note that, in this case study, the interest is in actual flight activity, but not in
reservation or ticketing activity.

4

of miles earned by the frequent flyer, a ranking of frequent flyers per number
of miles earned, the average number of earned miles, several percentiles on the
number of miles and so forth. Interestingly, these multidimensional queries are
related to several concepts [19]:

– Phenomenon of interest, which is the measure or set of measures to analyze
(FactAttribute properties in Fig. 1). Miles are the phenomenon of interest
in the previous defined query.

– Category attributes, which are the context for analyzing the phenomenon of
interest (Dimension and Base classes in Fig. 1). E.g., FareClass and Airport
are category attributes.

– Aggregation sets, which are subsets of the phenomenon of interest according
to several category attributes. In our sample query, the aggregation set only
contains miles obtained by frequent flyers that depart from Denver.

– Aggregation functions, which are predefined operators that can be applied
on the aggregation sets to summarize or analyze their factual data. E.g., the
sum, avg or percentile operators above-mentioned.

The first two aspects (i.e., the definition of the category attributes and the
phenomenon of interest) can be easily modeled in UML (as we have already
accomplished in Fig. 1). Furthermore, a method for defining aggregation sets
in OCL has been proposed in [16]. With regard to aggregation functions, so
far, researchers and practitioners have focused on using a small subset of them,
namely sum, max, min, avg and count [12]. Moreover, query-intensive applica-
tions, such as data warehouses or OLAP systems, require other kind of statistical
functions for a richer data analysis (e.g., see [4]). However, support for statisti-
cal functions is very limited (e.g., OCL does not even support all of the basic
aggregation functions) which hinders designers wanting to directly implement
the kind of queries presented above and preventing them from easily satisfying
the user requirements.

Therefore, we believe that it is highly important to be able to provide all
kinds of aggregation functions as predefined constructs offered by the modeling
language (UML and OCL in our case) so that the definition of multidimensional
queries can be carried out at the conceptual level in order to define and val-
idate them regardless the final technology platform chosen to implement the
data warehouse. In the rest of the paper, we propose an extension for the OCL
language to solve this issue.

3 Extending OCL with Aggregation Functions

Conceptual modeling languages based on visual formalisms are commonly man-
aged together with textual formalisms, since some model elements are not easily
or properly mapped into the graphical constructs provided by the modeling lan-
guage [20]. For UML schemas, OCL [13] is typically used for this purpose. The
goal of this section is to extend the OCL with a new set of predefined aggre-
gation functions to facilitate the definition of multidimensional queries on UML
schemas.

5

The set of core aggregation functions included in our study are those among
the most used in data analysis [4]. To simplify their presentation, we classify
these functions in three different groups, following [21, 3]:

– Distributive functions, which can be defined by structural recursion, i.e., the
input collection can be partitioned into subcollections that can be individu-
ally aggregated and combined.

– Algebraic functions, which are expressed as finite algebraic expressions over
distributive functions, e.g., average is computed using count and sum.

– Holistic functions, which are all other functions that are not distributive nor
algebraic.

These functions can be combined to provide many other advanced operators.
An example of such an operator is top(x) which uses the rank operation to return
a subset of the x highest values within a collection.

3.1 Preliminary OCL Concepts

OCL is a rich language that offers predefined mechanisms for retrieving the
values of the attributes of an object, for navigating through a set of related
objects, for iterating through collection of objects (e.g., by means of the forAll,
exist and select iterators) and so forth. As part of the language, a standard
library including a predefined set of types and a list of predefined operations
that can be applied on those types is also provided. The types can be primitive
(Integer, Real, Boolean and String) or collection types (Set, Bag, OrderedSet and
Sequence). Some examples of operations provided for those types are: and, or,
not (Boolean), +, −, ∗, >, < (Real and Integer), union, size, includes, count
and sum (Set).

All these constructs can be used in the definition of OCL constraints, deriva-
tion rules, queries and pre/post-conditions. In particular, definition of queries
follows the template:

context Class::Q(p1:T1, . . . , pn:Tn): Tresult
body: Query-ocl-expression

where the query Q returns the result of evaluating the Query−ocl−expression
by using the arguments passed as parameters in its invocation on an object of the
context type Class. Apart from the parameters p1 . . . pn, in query-ocl-expression
designers may use the implicit parameter self (of type Class) representing the
object on which the operation has been invoked.

As an example, the previous query total miles earned by a frequent flyer in
his/her trips from Denver in a given fare can be defined as follows:

context Customer::sumMiles(FareClass fc)
body: self.frequentFlyerLegs−>select(f | f.fareClass=fc and

f.origin.city.name=’Denver’)−>sum()

6

Unfortunately, many other interesting queries cannot be similarly defined
since the operators required to define such queries are not part of the standard
library (e.g. the average number of miles earned by a customer in each flight
leg, since the average operation is not defined in OCL). In the next section, we
present our extension to the OCL standard library to include them as predefined
operators available to all users of this language.

3.2 Extending the OCL Standard Library

Multidimensional queries cannot be easily defined in OCL since the aggregation
functions required to specify them are not part of the standard library and thus,
they must be manually defined by the designer every time they are needed which
is an error-prone and time-consuming activity (due to the complexity of some
aggregation functions).

To solve this problem, we propose in this section an extension to the OCL
Standard Library by predefining a list of new aggregation functions that can be
reused by designers in the definition of their OCL expressions.

The new operations are formally defined in OCL by specifying their opera-
tion contract, exactly in the same style that existing operations in the library
are defined in the OCL official specification document. Our extension does not
change the OCL metamodel and thus, it does not risk the standard level of
UML/OCL models using it. In fact, our operations could be regarded as new
user-defined operations, a possibility which is supported by most current OCL
tools. Therefore, our extension could be easily integrated in those tools.

Each operation is attached to the most appropriate (primitive or collection)
type. As usual, functions defined on a supertype can be applied on instances of
the subtypes. For each operation we indicate the context type, the signature and
the postcondition that defines the result computed by it. When required, precon-
ditions restricting the operation application are also provided. Note that some
aggregation functions may have several slightly different alternative definitions
in the literature. Due to space limitations we stick to just one of them.

These functions can be called within OCL expressions in the same way as
any other standard OCL operation. See an example in Sect. 3.3.

Distributive Functions

– MAX: Returns the element in a non-empty collection of objects of type T
with the highest value. T must support the >= operation. If several elements
share the highest value, one of them is randomly selected.

context Collection::max():T
pre: self−>notEmpty()
post: result = self−>any(e | self−>forAll(e2 | e >= e2))

– MIN: Returns the element with the lowest value in the collection of objects
of type T . T must support the <= operation. If several elements share the
lowest value, one of them is randomly selected.

7

context Collection::min():T
pre: self−>notEmpty()
post: result = self−>any(e | self−>forAll(e2 | e <= e2))

– SUM: Returns the sum value of the elements in the collection. Already part
of the OCL Standard Library, and thus, we do not need to redefine it.

– COUNT: Returns the number of elements in a collection. Equivalent to the
existing OCL size operation.

– COUNT DISTINCT: Returns the number of different elements in a col-
lection. To implement this operation we convert the collection to a set (to
remove repeated elements) and apply the OCL size operation to the resulting
set.

context Collection::countDistinct(): Integer
post: result = self−>asSet()−>size()

Algebraic Functions

– AVG: Returns the arithmetic average value of the elements in the non-empty
collection. The type of the elements in the collection must support the + and
/ operations.

context Collection::avg():Real
pre: self−>notEmpty()
post: result = self−>sum() / self−>size()

– VARIANCE: Returns the variance of the elements in the collection. The
type of the elements in the collection must support the +, −, ∗ and / op-
erations. The function accumulates the deviation of each element regarding
the average collection value (this is computed by using the iterate operator:
for each element e in the collection, the acc variable is incremented with
the square result of substracting the average value from e). Note that this
function uses the previously defined avg function.

context Collection::variance():Real
pre: self−>notEmpty()
post: result = (1/(self−>size()-1)) *

self−>iterate(e; acc:Real =0 | acc +
(e - self−>avg()) * (e - self−>avg()))

– STDDEV: Returns the standard deviation of the elements in the collection.

context Collection::stddev():Real
pre: self−>notEmpty()
post: result = self−>variance().sqrt()

– COVARIANCE: Returns the covariance value between two ordered sets
(or sequences). We present the version for OrderedSets. The version for the
Sequence type is exactly the same, only the context type changes. The stan-
dard at operation returns the position of an element in the ordered set. As

8

guaranteed by the operation precondition, both input collections must have
the same number of elements.

context OrderedSet::covariance(Y: OrderedSet):Real
pre: self−>size() = Y−>size() and self−>notEmpty()
post: let avgY:Real = Y−>avg() in

let avgSelf:Real = self−>avg() in
result = (1/self−>size()) *
self−>iterate(e; acc:Real=0 | acc +
((e - avgSelf) * (Y−>at(self−>indexOf(e)) - avgY))

Holistic Functions

– MODE: Returns the most frequent value in a collection.

context Collection::mode(): T
pre: self−>notEmpty()
post: result = self−>any(e | self−>forAll(e2 |

self−>count(e) >= self−>count(e2))

– DESCENDING RANK: Returns the position (i.e., ranking) of an ele-
ment within a Collection. We assume that the order is given by the >=
relation among the elements (the type T of the elements in the collection
must support this operator). The input element must be part of the collec-
tion. Repeated values are assigned the same rank value. Subsequent elements
have a rank increased by the number of elements in the upper level. As men-
tioned above, this is just one of the possible existing interpretations for the
rank function. Others would be similarly defined.

context Collection::rankDescending(e: T): Integer
pre: self−>includes(e)
post: result = self−>size() - self−>select(e2 | e >= e2)−>size() + 1

– ASCENDING RANK: Inverse of the previous one. The order is now given
by the <= relation.

context Collection::rankAscending(e: T): Integer
pre: self−>includes(e)
post: result = self−>size() - self−>select(e2 | e <= e2)−>size() + 1

– PERCENTILE: Returns the value of the percentile p, i.e., the value below
which a certain percent p of elements fall.

9

context Collection::percentile(p: Integer): T
pre: p >= 0 and p <= 100 and self−>notEmpty()
post: let n: Real = (self−>size()-1) * 25 / 100 + 1 in

let k : Integer = n.floor() in
let d : Real = n - k in
let s: Sequence(Integer) = self−>sortedBy(e | e) in
if k = 0 then s−>first() * 1.0
else if k = s−>size() then s−>last() * 1.0
else s−>at(k) + d * (s−>at(k+1) - s−>at(k)) endif

endif

– MEDIAN: Returns the value separating the higher half of a collection from
the lower half, i.e., the value of the percentile 50.

context Collection::median(): T
pre: self−>notEmpty()
post: result = self−>percentile(50)

3.3 Applying the Operations

As we above-commented, these operations can be used exactly in the same way
as any other standard OCL function. As an example, we show the use of our avg
function to compute the average number of miles earned by a customer in each
flight leg.

context Customer::avgMilesPerFlightLeg():Real
body: self−>frequentFlyerLegs.Miles−>avg()

4 Validation

Our OCL extension has been validated by using the UML Specification Envi-
ronment (USE) tool [15]. As a first step, we have implemented our aggregation
operations as new user-defined functions in USE. Thanks to the syntactic analy-
sis performed by USE, the syntactic correctness of our functions has been proved
in this step. Additionally, in order to also prove that our functions behave as ex-
pected (i.e. to check that they are also semantically correct), we have evaluated
them over sample scenarios and evaluated the correctness of the results (i.e., we
have compared the result returned by USE when executing queries including our
operations with the expected result as computed by ourselves).

Fig. 2 shows more details of the process. In the background of the USE en-
vironment we can see the implementation of the multidimensional conceptual
schema of Fig. 1 in USE (left-hand side) and the script that loads the data
provided in [18] (objects and links, which have been obtained by using the oper-
ations described in [16]) into the corresponding classes and associations (right-
hand side). In the foreground we show one of the queries we have used to test
our functions (in this case the query is used to check our avg function) together
with the resulting collection of data returned by the query. Interested readers

10

can download4 the scripts and data of our running example together with the
definition of our library of aggregation functions. It is worth noting that dur-
ing the validation process we have overcome some limitations of the USE tool,
since it neither provides the indexOf nor Cartesian product functions. Therefore,
functions that make use of these OCL operators needed to be slightly redefined
for their implementation in USE, e.g., the covariance function.

Fig. 2. Conceptual querying of frequent flyer legs implemented in USE

To create the queries to test our operations we have used as a base query the
query defined in Sect. 1 (miles earned by a frequent flyer in his/her trips from
Denver according to their fare). Test queries have been created by applying on
this base query a different aggregation function every time. The results returned
by the base query are shown in Table 1. Then, Tab. 2 and 3 show the results
of applying our aggregation functions5 on the collection of values of Tab. 1.
The results returned by our functions were the ones expected (according to the
underlying data) in all cases.

5 Automatic Code Generation

This section shows how our “enriched” schema can be used in the context of a
MDD process.

4 http://www.lucentia.es/index.php/OCL_Statistics_Library
5 Fare per frequent flyer is used as an additional collection to compute the covariance.

11

Table 1. Collections of miles by fare class when the departure’s city is Denver

City FareClass Miles

Denver Economy ∅
Business {61,61,61,1634,1634,1906}

First {977,977,1385}
Discount {992,1432}

Table 2. Results for distributive and algebraic statistical functions

miles sum max min avg var stddev covar.

Economy 0 N/A N/A N/A N/A N/A N/A
Business 5357 1906 61 892,8333 840200,5667 916,6246 248379,4444

First 2406 977 452 802 91875 303,1089 20650
Discount 2424 1432 992 1212 96800 311,1270 9240

In fact, conceptual schemas containing queries defined using our aggregation
functions can be directly implemented in any final technology platform by using
exactly the same existing MDD methods and tools able to generate code from
UML/OCL schemas. These methods do not need to be extended to cope with our
aggregation functions. An automatic code-generation is possible thanks to the
fact that (i) our library is defined at the model-level and thus it is technologically-
independent, and (ii) aggregation functions are specified in terms of standard
OCL operations.

More specifically, given a query operation q including an OCL aggregation
operation s, q can be directly implemented in a technology platform p (for in-
stance a relational database or a object oriented Java program) if p offers a
native support for s. In that case, we just need to replace the call to s with the
call to the corresponding operation in p as part of the usual translation process
followed to generate the code for implementing OCL queries in that platform.
Otherwise, i.e., p does not support s, we need to first unfold s in q by replacing
the call to s with the body condition of s. After the unfolding, q only contains
standard OCL functions and therefore can be implemented in p as explained in
the former case.

As an example we show in Fig. 3 the implementation of the query average
miles per flight leg specified in OCL in Sect. 3.3. Fig.3 (a) shows the implemen-
tation for a relational database, while Fig.3 (b) shows it for a Java program.

Table 3. Results for holistic statistical functions

miles mode perc.(25) median

Economy N/A N/A N/A
Business 61 61 847,5

First 977 714,5 977
Discount 992 1102 1212

12

In the database implementation, queries could be translated as views. The gen-
eration of the relational tables (for the classes and associations in the concep-
tual schema) and the views for the query operations can be generated with the
DresdenOCL tool [22] (among others). Since database management systems usu-
ally offer statistical packages for all of our functions, the avg operation in the
query is directly translated by calling the predefined SQL AVG function in the
database (see Fig.3 (a)). For the Java example, queries are translated as methods
in the class owning the query. Java classes and methods can be generated from a
UML/OCL specification using the same DresdenOCL tool or other OCL-to-Java
tools (see a list in [23]. However, in this case we need to first unfold the definition
of avg in the query since Java does not directly support aggregation operations.
The new OCL query body becomes:

context Customer::avgMilesPerFlightLeg():Real
post: result = self−>frequentFlyerLegs.Miles−>sum() /

self−>frequentFlyerLegs.Miles−>size()

This new body is the one passed over to the Java code-generation tool to
obtain the corresponding Java method, as can be seen in Fig. 3 (b). All non-
standard Java operations (e.g., sumMiles) are implemented by the own OCL-
to-Java tool during the translation (basically they traverse the AST of the OCL
expression and generate a new auxiliary method for each node in the tree without
a exact mapping to one of the predefined methods in the Java API). Obviously,
different tools will generate different Java code excerpts.

create view AvgMilesFlight as {

select avg(l.miles)

from customer c,

frequentflyerlegs l

where c.id=l.customer

}
(a) DBMS code

class Customer {

int id;

String name;

Vector<FrequentFlyerLegs> f;

...

public float avgMiles() {

return sumMiles(f)/f.size();

} }
(b) Java code

Fig. 3. Code excerpts for an OCL query using the avg function

6 Related Work

Multidimensional modeling languages (and modeling languages in general) offer
a limited support for the definition of aggregation operations at the conceptual
level. Early approaches [9, 10, 24] are only concerned about static aspects and
lack of mechanisms to properly model multidimensional query behavior. At most,
these approaches suggest a limited set of predefined aggregation functions but
without providing a formal definition. Recently, other approaches have been

13

trying to use more expressive constructs to model aggregation functions at the
conceptual level by extending the UML [8, 14, 11]. They all propose to use OCL
to complete the multidimensional model with information about the applicable
aggregation functions in order to define multidimensional queries in a proper
manner. They also suggest that aggregation functions should be defined in the
UML schema, but unfortunately, they do not provide any mechanisms to carry
it out. Therefore, to overcome this drawback, we define in this paper how to
extend OCL with new aggregation functions in order to query multidimensional
schemas at the conceptual level. A subset of these functions was presented in a
preliminary short paper [25].

7 Conclusions and Future Work

Aggregation functions should be part of the predefined constructs provided by
existing languages for multidimensional modeling to allow designers to specify
queries at the conceptual level. However, due to the current lack of support in
modeling languages, queries are not currently defined as part of the conceptual
schema but added only after the schema has been implemented in the final
platform. In this paper, we address this issue by providing an OCL extension
that predefines a set of aggregation functions that facilitate the definition of
platform-independent queries as part of the specification of the multidimensional
conceptual schema of the data warehouse. These queries can be then animated
and validated at design-time and automatically implemented along with the rest
of the system during the code-generation phase.

Our short term future work is to better integrate these aggregation functions
with OLAP operations already presented in [16] to provide a more complete
definition of the CS Furthermore, definition of multidimensional queries at the
conceptual level opens the door to the development of systematic techniques for
the treatment of aggregation problems in data analysis at the conceptual level,
as a way to evaluate the overall quality of the data warehouse at design time.
Finally, we are also concerned about developing mechanisms that help users to
define their own ad-hoc ocl queries in a more intuitive manner.

8 Acknowledgements

Work supported by the projects: TIN2008-00444, ESPIA (TIN2007-67078) from
the Spanish Ministry of Education and Science (MEC), QUASIMODO (PAC08-
0157-0668) from the Castilla-La Mancha Ministry of Education and Science
(Spain), and DEMETER (GVPRE/2008/063) from the Valencia Government
(Spain). Jose-Norberto Mazón and Jesús Pardillo are funded by MEC under
FPU grants AP2005-1360 and AP2006-00332, respectively.

References

1. Cabibbo, L., Torlone, R.: A framework for the investigation of aggregate functions
in database queries. In: ICDT. (1999) 383–397

14

2. Lenz, H.J., Thalheim, B.: OLAP databases and aggregation functions. In: SSDBM,
IEEE Computer Society (2001) 91–100

3. Lenz, H.J., Thalheim, B.: OLAP schemata for correct applications. In: TEAA.
(2005) 99–113

4. Ross, R.B., Subrahmanian, V.S., Grant, J.: Aggregate operators in probabilistic
databases. J. ACM 52(1) (2005) 54–101

5. TPC: Transaction Processing Performance Council http://www.tpc.org.
6. Rizzi, S., Abelló, A., Lechtenbörger, J., Trujillo, J.: Research in data warehouse

modeling and design: dead or alive? In: DOLAP. (2006) 3–10
7. Olivé, A.: Conceptual schema-centric development: A grand challenge for infor-

mation systems research. In: CAiSE. (2005) 1–15

8. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model
extending UML. Inf. Syst. 31(6) (2006) 541–567

9. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: A conceptual model
for data warehouses. Int. J. Cooperative Inf. Syst. 7(2-3) (1998) 215–247

10. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse model-
ing. In: DMDW. (2000) 6

11. Prat, N., Akoka, J., Comyn-Wattiau, I.: A UML-based data warehouse design
method. Decision Support Systems 42(3) (2006) 1449–1473

12. Shoshani, A.: OLAP and statistical databases: Similarities and differences. In:
PODS, ACM Press (1997) 185–196

13. Object Management Group: UML 2.0 OCL Specification. (2003)
14. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-

eling in data warehouses. Data Knowl. Eng. 59(3) (2006) 725–769
15. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based specification envi-

ronment for validating UML and OCL. Sci. Comput. Program. 69(1-3) (2007)
27–34

16. Pardillo, J., Mazón, J.N., Trujillo, J.: Extending OCL for OLAP querying on
conceptual multidimensional models of data warehouses. Information Sciences
180(5) (2010) 584–601

17. Mazón, J.N., Trujillo, J.: An MDA approach for the development of data ware-
houses. Decis. Support Syst. 45(1) (2008) 41–58

18. Kimball, R., Ross, M.: The Data Warehouse Toolkit. Wiley & Sons (2002)
19. Rafanelli, M., Bezenchek, A., Tininini, L.: The aggregate data problem: A system

for their definition and management. SIGMOD Record 25(4) (1996) 8–13
20. Embley, D., Barry, D., Woodfield, S.: Object-Oriented Systems Analysis. A Model-

Driven Approach. Youdon Press Computing Series (1992)
21. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M.,

Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1) (1997) 29–53

22. Software Technology Group - Technische Universitat Dresden: Dresden OCL
toolkit http://dresden-ocl.sourceforge.net/.

23. Cabot, J., Teniente, E.: Constraint support in mda tools: A survey. In Rensink,
A., Warmer, J., eds.: ECMDA-FA. Volume 4066 of Lecture Notes in Computer
Science., Springer (2006) 256–267

24. Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R Model for the
Multidimensional Paradigm. In: ER Workshops. (1998) 105–116

25. Cabot, J., Mazón, J.N., Pardillo, J., Trujillo, J.: Towards the conceptual specifi-
cation of statistical functions with OCL. In: CAiSE Forum. (2009) 7–12

