
Integrity Assurance for RESTful XML

Sebastian Graf1, Lukas Lewandowski1, and Marcel Waldvogel1

Department of Computer and Information Science, University of Konstanz
78457 Konstanz, Germany

{Sebastian.Graf,Lukas.Lewandowski,Marcel.Waldvogel}@uni-konstanz.de

Abstract. The REpresentational State Transfer (REST) represents an
extensible, easy and elegant architecture for accessing web-based re-
sources. REST alone and in combination with XML is fast gaining mo-
mentum in a diverse set of web applications. REST is stateless, as is
HTTP on which it is built. For many applications, this not enough, es-
pecially in the context of concurrent access and the increasing need for
auditing and accountability. We present a lightweight mechanism which
allows the application to control the integrity of the underlying resources
in a simple, yet flexible manner. Based on an opportunistic locking ap-
proach, we show in this paper that XML does not only act as an exten-
sible and direct accessible backend that ensures easy modifications due
to the allocation of nodes, but also gives scalable possibilities to perform
on-the-fly integrity verification based on the tree structure.

1 Introduction

1.1 The Multiple Facets of XML

The eXtensible Markup Language (XML) [2] represents one major paradigm in
nowadays WWW environments. Not only used as a quasi standard when it comes
to configuration issues and handling of meta information, XML is also used as
a direct data source regarding the preparation and visualization of information.
Famous representatives for these use cases are XHTML as well as SVG or KML.
These different XML dialects show the necessity of human-readable file formats,
and, accompanied with an enriched tool-set like XPath [8], XQuery/Update [5],
and XSLT [9], highlight the applicability in many different areas.

Another perspective to the evolution of XML as a direct accessible data
storage format can be observed in modern storage systems. Not only have modern
common (object-)relational database systems the ability to store and retrieve
native XML. The ease of use, flexibility, and adaptability gave also birth to
several non-relational databases [15] that indeed have an essential reason to
exist nowadays.

Besides the utilization of XML as a data-format backend in visualizations
and storage applications, XML is also used for providing integrated unified ac-
cess regarding entire workflows of querying and modifying data, especially in
the WWW. Apache Cocoon [23] and XForms [3] are main represents, along mul-
tiple others, when it comes to an all-in-one XML based solution of retrieving,
transforming and presenting data.

http://kops.ub.uni-konstanz.de/volltexte/2010/12350
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-123507
http://people.few.eur.nl/frasincar/workshops/wism2010/


1.2 Stateless Access to Resources with REST

The REpresentational State Transfer [11] constitutes a new and elegant approach
to access distributed resources. Instead of encapsulating requests in containers
like SOAP, REST is accessing resources directly in a stateless manner: No ses-
sion handling and transaction check is performed, each request is encapsulated,
atomic and bound to a direct resource.

This easy way of handling and accessing distributed resource as well as the
clean definition of methods to interact with these distributed resources are the
ingredients for the success of REST.

The usage of REST is defined on three independent axis, (a) the REST
verbs, (b) the REST resources, and (c) the REST parameters (cf. (1)). Every
request is bound to a verb. The verb determines the kind of action related to
the requested resource and the corresponding parameters. REST verbs are POST
requests to create/append a resource, PUT requests to place new content on
a given resource (e.g. update), DELETE requests for removal operations and GET
requests for common read-only access. These simple operations defined in HTTP
are the key ingredients of a RESTful application.

Besides the verbs, REST is based on direct accessible resources which are
direct parts of the URI. A resource is always a concrete manifestation of data
which can be accessed with all REST verbs in a similar way.

The third important part of REST are the parameters. Parameters can con-
tain any meta information for accessing data, for instance queries or additional
commands. They are always optional and bound to a resource. Thus, a parameter
can be used to filter or adapt the operation performed on a REST verb.

GET︸ ︷︷ ︸
V erb

http : //host/data.xml︸ ︷︷ ︸
Resource

?query = descendant− or − self :: x︸ ︷︷ ︸
Parameter

(1)

The URL above shows a simple REST access on XML. Obviously, REST
matches perfectly with XML as resource handler. Due to the architecture of the
requests, any tree-like structure can be accessed directly without any limitations
via any URI.

XML equipped with unique identifiers, either based on node-levels like OR-
DPATH [18] or on any tree-based encoding, is able to answer requests directly
on the node-level as well as on the XML itself. This enables REST to access
XML substructures directly via resources without any implementation of neces-
sary parameters since direct node access has to be based otherwise on queries
for example.

1.3 Contribution and Problem Statement

RESTful access to resources is easy to provide and offers a high flexibility in its
utilization. However, the simplicity of REST comes at a price: Considering mul-
tiple, concurrent modifications on the resource, a RESTful backend can render
the semantic state of the resource invalid if an operation can not be performed in



an atomic manner and therefore must be split into multiple consecutive requests.
Besides, as REST is a stateless technique, any session or transaction based ap-
proach will not satisfy the paradigms of a RESTful application. To the best of
our knowledge, there is currently no approach that is able to check the entire in-
tegrity of a RESTful resource against consecutive requests from disjoint clients.
Nevertheless, we believe that such an integrity check increase the usability of
REST without degenerating it to a non-stateless approach.

In this paper we propose a technique based on opportunistic locking to pro-
vide data integrity on tree-structured data regarding the handling of consecutive
as well as concurrent REST requests. First, we generate a checksum for the tree
based on Merkle Trees [16]. These checksums are the key for integrity checks for
any RESTful access on XML resource. Thus, we enable RESTful applications to
verify the integrity within each request while adhering to the stateless paradigm
of REST.

1.4 Related Work

The set of REST and XML has been explored in various ways. Wilde [21] en-
courages the usage of REST even for not web-related resources. Objects that
cannot be represented as web content are encapsulated in XML to provide a
common way to be accessed. [19] describes an approach about the XML dialect
BPEL that is capable of acting RESTful. This approach fits perfectly in our use
case of transaction integrity checking. Kramis et al. [12] described an approach
which allows the access of any XML document in a common way. However, even
if temporal aspects are considered no integrity check is performed. The common
access of XML data is also described in [1]. For communicating between fixed
and mobile clients, XML-RPC is used for a session based approach. [20] enables
REST to work transactional based on allocations of transactions as separate re-
sources. This approach works directly on single resources only but could result
in race conditions.

As our approach utilizes the structure of an XML resource, that corresponds
to disjoint subtrees as well as the direct allocation of nodes, we evaluate pos-
sibilities to ensure structural integrity of tree structures. Based on the Merkle
Trees [16], there are multiple different approaches to ensure integrity [4]. All
of these approaches make use of recursive structural computations. Checksum
methods employing the same idea can be used to provide integrity in our XML
structures.

Validation approaches that are directly related to XML are not solely struc-
ture based. Some of them utilize a scheme based validation [10]. However, since
we focus on concurrent operations on the nodes, a check against a DTD does
not satisfy our needs. Even concurrent updates can result in a valid XML which
is not valid in the semantic context of the sequential requests.

[7] uses XML as a base for defining a language that provides data integrity.
However, stateless communication is not considered an alternative in this ap-
proach. [6] improved this approach to check the integrity of distributed web
communication systems. This system neither relies on stateless communication,



1

2

3

4

5 6

7

8 9

10

11

12 13

14

15 16

GET� �� �
V erb

http : //host/data.xml/2� �� �
Node 2 including subtree

GET� �� �
V erb

http : //host/data.xml/3� �� �
Node 3 including subtree

GET� �� �
V erb

http : //host/data.xml/11� �� �
Node 11 including subtree

Fig. 1: RESTful access to tree

nor does it utilize any additional information from the underlying resource that
in turn could contain benefiting information. Finally, [22] proposes a protocol
based approach to provide security and integrity of the retrieved data.

2 Integrity Check for REST-enabled XML Resources

The verification of integrity regarding consecutive REST accesses on tree based
data is mainly based on two aspects: First, the definition of a RESTful access to
the resource in a way that it can explore the tree structure in a native manner
and second, an integrity check of the tree structure including a checksum based
resource allocation scheme.

2.1 Unified RESTful access to tree based structures

The motivation for our verification approach is to ensure concurrent data accesses
while adhering to the strict stateless architecture defined by REST. Besides, we
additionally integrate full RESTful paradigms in our approach. These paradigms
are represented within our URI specification as follows:

– A URI can request one XML by its resource name. In that case the root
node including the entire tree is returned.

– Each node in the XML can be accessed with a unique identifier (similar to
Temporal REST [12] or ORDPATH [18]). If a resource is offering such a
feature, the unique identifier can be accessed over REST as a direct resource
as well. The choice of the encoding of the unique identifier is independent
from our approach. In case of node-level access, the desired node plus the
underlying subtree is returned.

Figure 1 shows document accesses based on our definition. Obviously, cou-
pling REST requests with unique identifiers per node is straightforward. How-
ever, it is important to understand that requests are only valid for the requested
node as well as the related substructure. As our approach utilizes the structure
of the tree to perform integrity verification, requests coupled to one node are
not allowed to access ancestor nodes or the corresponding subtrees. Therefore,



related to REST parameters, that for instance can contain XQuery/Update [5],
we only allow the usage of the forward axis in the related subtree. However, this
is not a constraint at all as most of the modification and query languages rely
on XPath, and each XPath expression can be evaluated only by utilizing the
forward axis [17].

2.2 Integrity check of the tree

As we are working with XML, we utilize the tree structure not only in terms of
the direct allocation of nodes as resources. When it comes to on-the-fly verifi-
cation of the integrity of the XML resource we rely on recursive algorithms [16]
to generate checksums for each node. (2) below denotes the structure of the
checksummed tree.

n.hash = H(H(n.content) ‖ n.child(0).hash ‖ n.child(1).hash ‖ . . .) (2)

Thereby, n represents the node and H(x) is a hash function with input x.1

The checksum of a node relies on its hash value and therefore is defined as
the hash value of the content of a node combined with the hash value of all of its
child nodes. The selection of the specific hash algorithm itself can be adapted to
the specific use case of the resource in the application: If the resource has to be
responsive, a fast hash function should be chosen. If the structure is in need of
high integrity, a more stable hash function should be considered. The approach
itself is as stable as the used hash function.

Figure 2a shows such a checksummed tree structure. Checksums are gener-
ated based on a recursive relation where each node inherits the integrity of its
corresponding subtree. Therefore, the complete subtree rooted at a node can
be verified in a single step by checking the node’s hash value. Projected on the
already described RESTful access where one resource can be a XML tree as well
as a qualified node, the checksum of a node is guarding the entire integrity of a
resource node plus the underlaying subtree.

Any modification related to the structure of a (sub-)tree or the content of a
single node results in the regeneration of the corresponding checksums. Fig. 2b
shows an example for the checksum regeneration while algorithm 1 describes
the algorithm. Each time a request is performed, the checksum delivered with
the request is compared to the one of the requested resource. If both checksums
differ, an error is returned. In case of a modification in the tree, all checksums on
the path to the root are recomputed with the help of the corresponding siblings.

In the example of Fig. 2b, the white node labeled 67 is the node which is
inserted in the tree. The nodes labeled 5, 6, 7 and 10 (depicted in grey with a
white border) are only touched for read operations. These read operations are
necessary to perform the update of the parent nodes 4, 3, 2 and 1 since the
checksums are always based on the checksums of the related children as well.

1 To improve processing overhead for nodes with high degree, the sequence of children
can also be internally structured and hashed into a hierarchy.



xcv312c312ax3n0m345v1117234g56bd

zus699gv19ak8h5y

573n997d

dvse

67bg
1

2

3

4

5 6

7

8 9

10

11

12 13

14

15 16

(a) Checksummed Tree

xcv312c312ax3n0m345v1117234g56bd mbkl

zus699gv19aksl24

573nlr9c

nms3

946b
1

2

3

4

5 6

7

8 9

10

11

12 13

14

15 1667

(b) Modified Checksummed Tree

Fig. 2: Recursive regeneration of checksum while inserting new node as a leaf

This example highlights that, due to the recursive structure, only the check-
sums of the nodes on the path to the root need to be modified during an update
operation. In the worst case all nodes on the path to the root need to be updated
depending on the modified leaf. Obviously, the cost of a modifying access to the
tree corresponds to the height of the tree. Therefore, as we only need to update
the checksums on the path up to the root, we are able to do an on-the-fly update
of the checksums while traversing the tree from the node that was modified up
to the root of the tree.

It is important to understand that we make use of the structure of the data.
Since all requests occur on the tree, we do not have to regenerate every check-
sum of the entire data space within single modifications. All nodes that are
not directly affected by a modification request are excluded from any updating
mechanisms as long as they are located in disjoint subtrees.

2.3 Request-based integrity validation

The structure of the tree itself carries the prove of integrity at every point in time.
Therefore and due to the atomicity of REST requests we can provide validation
of consecutive REST requests that access the same resource. After each request
the checksum of the requested resources is returned. Thus, if the request is based
on an entire XML tree, the checksum of the root node and the current status
of the entire tree is returned to the client. If a request affects a node resource,
the checksum of the subtree rooted at the corresponding node is returned to the
client. As communication base for the checksum within the REST requests, the
ETag field of the HTTP specification is used.

Validating the expected state of a resource is often related to previous, con-
secutive requests/modifications on the same resource: A client requests resources,
checks the delivered data and tries to perform subsequent operations on it. With
the first request, a checksum of the requested resource – that can be the entire
XML as well as a substructure based on an unique node – is delivered together
with the requested data in the ETag field of the HTTP header. This checksum
is returned to the server in the consecutive request. If the request is modifying
the data, a new checksum is computed and again the checksum is returned with



Algorithm 1: Handle Request
Input: HTTPRequest request, Hash function H
Output: HTTPResponse response
begin

Node n←− request.resource
if request.checksum = n.checksum then

opReturn = opOnData(n, request.verb, request.parameter)
if opReturn 6= wasV alidOp then

response←− new ErrorResponse(opReturn.errorCode)
else

if opReturn = wasModifyingOp then
Node m←− n
repeat

m.checksum←− H(content(m)) ‖ h
h←− m.checksum
for r ∈ m.siblings do

h←− h ‖ H(r)

m←− m.parent
until m 6= root
m.checksum←− H(content(m)) ‖ h

response←− new SuccessResponse(200, success, n.checksum)

else
response←− new ErrorResponse(412, Precondition failed)

return response
end

the following response. If the server observes a different checksum for the same
requested resource, the HTTP error 412 (Precondition Failed) is returned to the
client thus the client is informed about the concurrent modification of the data.

Figure 3 depicts a consecutive, concurrent check-then-act situation that high-
lights our approach. First, client 1 gets the resource with id 3 in the tree. The
hash value 997d is returned to the client together with the requested resource.
A second request is performed by client 2 but on the node with id 4. This node
is a child of the node requested by client 1. The returned checksum for this node
is 8h5y.

Subsequently, client 1 performs a POST operation to insert a new leaf in
the subtree maintained by client 1. The new node has the id 67 and all the
checksums on the path to the root are updated before the request is solved and
a suitable HTTP code which depict success of the operation is returned to the
client. The related new checksum (lr9c) of the requested resource with id 3 is
returned to the client in the ETag of the response. The corresponding HTTP
communication protocol is listed in table 1a.

In the meantime, client 2 tries to access the resource with id 4. Since the
request is shipped with the checksum of its last request 8h5y, the server compares
the two checksums from the concurrent requests on the same resource (8h5y and



Client 1 Client 2 Server

GET Client 1

Post Client 1
valid

Post Client 2
not valid

GET Client 2

34
5v

11
17

23
4g

56
bd

19
ak

8h
5y

99
7d

3

4

5
6

7

8
9

34
5v

11
17

23
4g

56
bd

m
bk

l

19
ak

sl2
4

lr9
c

3

4

5
6

7

8
9

67

Fig. 3: Concurrent REST requests

sl24 ). Due to the modification of the same subtree within the request of client 1,
the checksum of node 4 changed. Therefore, the request from client 2 is denied
due to the disparity of the checksum shipped with the request and the checksum
currently associated with node 4. Client 2 first has to become aware of the
changes in the data and retrieve the new checksums for the requested resources
before new checksum-guarded requests become valid. The HTTP communication
protocol corresponding to this is listed in table 1b

This example workflow shows that our approach ensures data verification
in a RESTful manner. As long as clients only request the subtree of a specific
node, our integrity approach can even handle multiple accesses. Furthermore,
our checksum approach can easily be modified in a kind that within every re-
quest/response a checksum is shipped without direct interaction from the server
site. This would enable clients to perform checking against data integrity by
themselves. If derived checksums differ, the client has to find out what concur-
rent operation was modifying the related resource or the underlying subtree.

3 Conclusion and Future Work

The proposed setup of REST and XML was implemented using JAX-RX [14]
as interface and Treetank [13] as well as BaseX [15] as XML resource. Our
implementation substantiates our assumption that our approach leverages trust
in stateless data handling by a simple though powerful validation mechanism by
resolving the lack of confidence in the data accessed over REST with an in-data
integrity verification.

Regarding further extensions of our approach, we believe that our approach
can make use of more sophisticated hashing adaptions as well. With an intelli-
gent hashing strategy it is possible to reduce the overhead of adapting the hash
values in a tree every time a modification occurs even though these modifications



Table 1: Example of concurrent HTTP communication
(a) Communication for client 1

HTTP Request HTTP Response

GET
http://. . . /3

ETag(997d)
<node>
. . .
</node>

POST ETag(997d)
http://. . . /3/firstChild
<node>
. . .
</node>

ETag(lr9c)
201 CREATED

(b) Communication for client 2
HTTP Request HTTP Response

GET
http://. . . /4

ETag(8h5y)
<node>
. . .
</node>

POST ETag(8h5y)
http://. . . /4
<node>
. . .
</node>

ETag(sl24)
412 PRECONDITION FAILED

are rather small. Furthermore, since we are restricting our access at the moment
to fixed resources and therefore substructures in tree, we want to increase the
flexibility of our approach regarding the computation of checksums and concur-
rent accesses in the tree to track consecutive requests on different nodes. To
provide such auditing features, we plan to equip our approach with a versioned
backend to track consecutive modifications on distributed data. This envolves
even more power to our integrity approach since with every modification the
related integrity structure can be secured as well.

Checking the integrity of accessed data is one of the most important tasks
regarding distributed applications. Although REST offers a great flexibility we
believe that we can ensure the confident access to the data in a way that is
not restricting REST but gives the possibility to overcome the uncertainness of
stateless data access.

References

1. Alvarez-Cavazos, F., Garcia-Sanchez, R., Garza-Salazar, D., Lavariega, J.C.,
Gomez, L.G., Sordia, M.: Universal access architecture for digital libraries. In:
Conference of the Centre for Advanced Studies on Collaborative Research (2005)

2. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Textuality, T.B.: Extensible markup
language (xml) - version 1.0 (1997)

3. Cardone, R., Soroker, D., Tiwari, A.: Using xforms to simplify web programming.
In: International Conference on World Wide Web (2005)

4. Carminati, B., Ferrari, E., Bertino, E.: Securing xml data in third-party distribu-
tion systems. In: ACM International Conference on Information and Knowledge
Management (2005)

5. Chamberlin, D., Florescu, D., Robie, J., et al.: XQuery update facility (2006)
6. Chi, C.H., Liu, L., Yu, X.: Data Integrity Related Markup Language and HTTP

Protocol Support for Web Intermediaries. Embedded and Ubiquitous Computing
(2006)



7. Chi, C.h., Wu, Y.: An xml-based data integrity service model for web interme-
diaries. In: International Workshop on Web Content Caching and Distribution
(2002)

8. Clark, J., DeRose, S., et al.: XML path language (XPath) version 1.0 (1999)
9. Clark, J., et al.: XSL transformations (XSLT) version 1.0 (1999)
10. Fan, W., Libkin, L.: On xml integrity constraints in the presence of dtds. Journal

of the ACM (2002)
11. Fielding, R.T.: Architectural styles and the design of network-based software ar-

chitectures. Ph.D. thesis, University of California, Irvine (2000)
12. Giannakaras, G., Kramis, M.: Temporal REST—How to really exploit XML. In:

IADIS International Conference WWW/Internet (2008)
13. Graf, S.: Treetank, a native xml storage. Tech. rep., University of Konstanz (2009)
14. Graf, S., Lewandowski, L., Gruen, C.: Jax-rx, unified rest access to xml resources.

Tech. rep., University of Konstanz (2010)
15. Holupirek, A., Grün, C., Scholl, M.H.: Basex and deepfs joint storage for filesystem

and database. In: International Conference on Extending Database Technology
(2009)

16. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology (1987)

17. Olteanu, D., Meuss, H., Furche, T., Bry, F.: Symmetry in xpath. In: EDBT Work-
shop on XML Data Management (2002)

18. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: Ordpaths:
insert-friendly xml node labels. In: ACM SIGMOD International Conference on
Management of Data (2004)

19. Pautasso, C.: Bpel for rest. In: International Conference on Business Process Man-
agement (2008)

20. da Silva Maciel, L.A.H., Hirata, C.M.: An optimistic technique for transactions
control using rest architectural style. In: ACM Symposium on Applied Computing
(2009)

21. Wilde, E.: Putting things to REST. Tech. rep. (2007)
22. Yao, D., Koglin, Y., Bertino, E., Tamassia, R.: Decentralized authorization and

data security in web content delivery. In: ACM Symposium on Applied Computing
(2007)

23. Ziegeler, C.: Cocoon: Building XML Applications. Pearson Education (2002)


	Integrity Assurance for RESTful XML
	Sebastian Graf (University of Konstanz), Lukas Lewandowski (University of Konstanz), Marcel Waldvogel (University of Konstanz)

	Text1: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-123507URL: http://kops.ub.uni-konstanz.de/volltexte/2010/12350
	Text2: Paper for the Seventh International Workshop on Web Information Systems Modeling (WISM 2010), November 1-4, 2010, Vancouver, BC, Canada 


