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Abstract. The quality of data is a critical factor for all kinds of decision-making 
and transaction processing. While there has been a lot of research on data 
quality in the past two decades, the topic has not yet received sufficient 
attention from the Semantic Web community. In this paper, we discuss (1) the 
data quality issues related to the growing amount of data available on the 
Semantic Web, (2) how data quality problems can be handled within the 
Semantic Web technology framework, namely using SPARQL on RDF 
representations, and (3) how Semantic Web reference data, e.g. from DBPedia, 
can be used to spot incorrect literal values and functional dependency 
violations. We show how this approach can be used for data quality 
management of public Semantic Web data and data stored in relational 
databases in closed settings alike. As part of our work, we developed generic 
SPARQL queries to identify (1) missing datatype properties or literal values, 
(2) illegal values, and (3) functional dependency violations. We argue that 
using Semantic Web datasets  reduces the effort for data quality management 
substantially. As a use-case, we employ Geonames, a publicly available 
Semantic Web resource for geographical data, as a trusted reference for 
managing the quality of other data sources. 
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1   Introduction 

Data is the source for almost every business transaction or decision and also has 
become increasingly important for our social activities. With the current evolution of 
the internet from a “Web of Documents” to a “Web of Data”, huge amounts of 
business-relevant data is being published on the Web. That data may be used to 
increase automation of business operations and supporting processes of our social 
activities. Hence, it becomes critical to manage the correctness and reliability, i.e., the 
quality of data on the Web. It is a well-known fact that when using data for business 
cases, data quality problems can influence the satisfaction of customers and 
employees, produce unnecessary costs, and cause missed revenues [1]. Eventually, 
performing business processes based on poor data can be very expensive. Yet in 1998, 
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the average total costs of poor data quality have been estimated to be 8 – 12 % of a 
company’s revenues [2]. In the meanwhile, the automation of business processes and 
likewise the production and consumption of data have increased. Thus, the impact of 
poor data quality will likely be even higher today. Despite its importance to the 
overall success for the adaption of the Semantic Web, data quality is currently 
missing in the well-known Semantic Web layer cake diagram published by the World 
Wide Web Consortium (W3C) [3]. At present, there are only a few research 
approaches addressing data quality management with the use of Semantic Web 
technologies. Even less approaches provide means for quality management of data 
published on the Semantic Web.  
In this paper, we (1) define typical problems that may occur on the data instance level 
in Semantic Web resources, (2) describe how to identify data quality problems of 
literal values in the Web of Data, and (3) show how we can use Semantic Web 
technology and datasets for data quality management of knowledge bases or local 
relational sources. As part of our proposal, we present SPARQL queries for data 
quality checks that can be executed completely within the Semantic Web technology 
stack. 

2   Data Quality Management on the Semantic Web 

In data quality research, high data quality is often described as data that is “fit for use” 
[4]. This definition relies on the subjective judgment of data quality by data 
consumers. Usually data consumers consider data to be of high quality and, therefore, 
“fit for use”, when data meets their requirements. Wang, et al. have analyzed this 
perspective in more detail and identified 15 essential dimensions of data quality for 
data consumers, such as accuracy, completeness, accessibility, and relevance [4]. The 
perspective of a data consumer on data quality is of high practical relvance, in 
particular during data presentation. 

From the technical perspective, high quality data is data that is “free of defects” 
[5]. Several typologies have been developed to classify respective defects in data [6-
10]. These categorizations of data quality problems are especially suitable for the 
development of algorithms for the identification and improvement, as they provide 
insight into their technical characteristics. Because we aim at automated tools for data 
quality management and because the context of data consumption is often not 
immediately available on the Web of Data, we adopt the technical perspective on data 
quality to develop algorithms for the identification of data quality problems in 
knowledge bases. For a summary of instance-related data quality problems found in 
single-source scenarios, we refer to our previous work published in [11].  

 
In the following, we summarize the most important types of defects for Semantic 

Web data. 
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2.1   Missing Literal Values 

Missing values are values of certain properties that are missing, even though they are 
needed, either in general or within a certain context. For instance, the literal value for 
the property country might always be mandatory in address data, while the literal 
values for the property state might only be required for instances with the literal 
value “USA” in the datatype property country. In other words there are at least two 
types of missing values: (1) values that must not be missing at all, and (2) values that 
must not be missing in certain contexts. In Semantic Web data, missing literal values 
can be either in the form of (1) an empty literal attached to a datatype property, or by 
(2) the absence of a particular datatype property for a certain instance. Solution 
algorithms for the identification of missing values in Semantic Web scenarios have to 
consider both patterns. The first case will often be found when RDF data is derived 
automatically from relational sources and no sanity checks for empty attributes are 
included in the transformation process. The popular Semantic Web repository at 
http://loc.openlinksw.com/sparq, for instance, includes more than 3 Million triples 
from more than 44,000 RDF graphs with an empty literal as the object of at least one 
triple. 
It is important to note that (1) standard database-style cardinality constraints cannot 
be modeled in neither RDFS nor OWL, and that (2) the constraints in real-world 
settings are often more subtle than simple validity intervals for the frequency of a 
particular property. 

2.2   False Literal Values 

False literal values are either (1) imaginary values that do not have a corresponding 
state in reality, (2) values that may exist in reality, but do not represent the correct 
state of an object, (3) values that are supposed to represent the current state of an 
object, but use the wrong syntax or are mistyped, and (4) values that represent an 
outdated real-world state of an object. In cases where values are part of functional 
dependencies, false values may be discovered by the use of queries for the 
identification of functional dependency violations (see below). Other cases require a 
separate set of query elements that can identify illegal states solely by the definition 
of legal or illegal states for an object. In many cases, the actual set of valid values is a 
small subset of the lexical space defined by the standard datatype (e.g. xsd:string or 
xsd:int).  
Checks for false literal values can be performed with different levels of accuracy by 
(1) the definition of legal values or value ranges, (2) the definition of illegal values or 
value ranges, (3) the definition of syntax patterns for legal or illegal values, e.g. by the 
use of regular expressions, or (4) the definition of valid time ranges for sufficiently 
current values (only applicable in cases where time data about the actuality of values 
is available). In this paper, we focus on the use of legal value lists for the 
identification of illegal values. The identification of legal but outdated values is part 
of our future work, because it requires meta-data about the temporal properties of the 
datasets. 
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2.3   Functional Dependency Violations 

Functional dependencies can be defined as dependencies between the values of two or 
more different properties [12], e.g. the value for the datatype property prop:city 
may depend on the value for datatype property prop:zipcode. More formally we 
can express a functional dependency between the literal x for datatype property A and 
the dependent literal y for the datatype property B as shown in (1). 
 

A (x)  B (y) 

FDV: {y | y ∉ Vc} 

(1) 

(2) 

 (2) 
 

 
A functional dependency violation (FDV) occurs when the dependent literal y 

obtains a value outside of the correct value set Vc. Thereby, Vc can consist of exactly 
one correct value or a set of correct values. In a lot of real world cases, literal values 
are not unique, even when they aim at uniquely representing only one real-world 
entity. This circumstance is mainly caused by the existence of homonyms and other 
forms of lexical variety(e.g. British vs. American English). For example, the same 
city name may have different legal zip codes if the city name is a homonym, which is 
used for multiple different cities around the world. The city name “Neustadt”, for 
instance, which is used for at least 48 different cities according to geonames data1. 
Accordingly, it may have way more than 48 different valid zip codes. The theoretical 
problem underlying such cases is that literal value in RDF data cannot be mapped 
easily to a single conceptual entity, because this disambiguation is regularly 
prohibitively expensive in real-world settings. 

In short, homonymous literal values may have a set of legal dependent values even 
if the individual entity can only obtain a single correct value. Likewise, different 
countries may assign identical zip codes for different cities since there is no global 
authority that enforces unique zip codes worldwide. Hence, zip codes may also be 
homonyms on a global scale, unless we use a strict prefix system.  

Thus, the identification of illegal combinations of literal values has to be tolerant to 
homonyms. The major drawback of this tolerance to homonyms is that we will be 
unable to spot values that are within the set of valid lexical representations, but 
incorrect in that particular case. 

In section 3.5, we show how functional dependency violations can be identified 
using trusted knowledge bases, e.g. Semantic Web datasets, as references. We will 
provide queries that minimize undiscovered incorrect value combinations and are 
tolerant to homonymous literal values. 

                                                             
1 http://www.geonames.org/ 
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3   Identification of Data Quality Rule Violations in the Web of 
Data 

In the Semantic Web technology stack, there are multiple options to identify data 
quality problems. For instance, it is possible to use the formal semantics of an 
underlying ontology [cf. 14], such as disjointness axioms, to identify data quality 
problems in knowledge bases referring to that ontology. On the other hand, data 
quality problems can be identified by the definition of queries in SPARQL2, the query 
language for Semantic Web data. Additionally, we could define conceptual elements 
in the ontology for the annotation of data to enable data quality problem identification 
algorithms through SPARQL. In this paper, we focus on the second option. The other 
two options are subject to our future work. 

3.1   Methodology for Improving Data Quality 

Data and information quality management has been addressed in database-oriented 
research for nearly two decades. Total Data Quality Management (TDQM) as 
proposed by Wang [13] is one of the most prominent methodologies for managing 
data quality. Based on the principle that the quality of data needs to be managed 
similar to the management of product quality, it describes an adjusted lifecycle of 
quality management suitable for data. The TDQM methodology encompasses four 
phases, namely (1) the definition phase, (2) the measurement phase, (3) the analysis 
phase, and (4) the improvement phase. In the definition phase, the requirements that 
constitute high quality data are defined regarding the different perspectives of data 
stakeholders, i.e. consumers, manufacturers, suppliers, or managers. Based on these 
requirements, metrics are developed and executed in the measurement phase. The 
analysis phase covers the examination of potential data quality problems identified 
through the metrics in the measurement phase. Possible alternative solutions have to 
be identified in order to resolve the data quality problems at its origin. Besides the 
simple correction of data values, the resolution of problems can also require the 
correction of business processes producing or changing the. Eventually, the best 
solution is executed during the improvement phase. Since business processes and 
thereby data manufacturing underlies changes, the TDQM lifecycle needs to be 
repeated over time. 

In this paper, we focus on the definition and measurement phase of TDQM when 
applying DQM techniques to the Semantic Web. We define a set of data quality 
requirements through SPARQL queries that can be executed during the measurement 
phase and are useful for the subsequent analysis of the data quality problems and their 
causes. At the moment, we do not define key performance indicators (KPI) for the 
judgment of data and information quality, which can also be part of TDQM. 

                                                             
2 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ 
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3.2   Architecture  

As a major goal of our approach, we aim at defining generalized data quality rules, 
i.e. metrics for the identification of data quality problems, solely with the use of 
technologies provided by the Semantic Web technology stack. Therefore, we use the 
SPARQL query language extended by elements of Jena’s ARQ language3 due to its 
high expressivity. Hence, our data quality rules are transparent to the user and 
applicable to knowledge bases throughout the Web of Data. Besides official W3C 
specifications, we use D2RQ4 for wrapping relational data sources into the Resource 
Description Framework (RDF5). Moreover, with the use of Jena ARQ’s SERVICE 
keyword6, we are able to execute federated SPARQL queries over the Semantic Web 
and remotely retrieve linked data available from public SPARQL endpoints in real 
time. 

 
Fig. 1. Using SPARQL for data quality problem identification in the Web of Data 

 
In the following, we present our generic SPARQL data quality problem 

identification queries for the identification of missing literals, illegal literals, and 
functional dependency violations in Semantic Web knowledge bases. 

3.3   Identification of Missing Literals 

In section 2.1, we explained the different types of missing values which can occur in 
Semantic Web scenarios. In [11], we defined a query that identifies datatype 
properties that have missing literal values for a single, known datatype property. In 

                                                             
3 http://jena.sourceforge.net/ARQ/ 
4 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/ 
5 http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/ 
6 http://jena.sourceforge.net/ARQ/service.html 
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this paper, we (1) extend this query by enabling the additional detection of missing 
(but required) datatype properties attached to instances of particular classes, and (2) 
define a query for the identification of literals that are missing on the basis of a 
functional dependency, e.g. datatype properties that are mandatory within certain 
literal value combinations. 

Table 1. SPARQL queries for the identification of missing literals 

Data Quality Problem Generalized SPARQL Query 
Missing literal or datatype 
property 

SELECT ?s 
WHERE{{ 

?s a ?class1 . 
?s ?prop1 "" .} 

UNION{ 
?s a ?class1 . 
NOT EXISTS { 
?s ?prop1 ?value}}} 

  
Functionally dependent 
missing literal or datatype 
property 

SELECT ?s 
WHERE{{ 

?s a ?class1 . 
?s ?prop1 ?value1 . 

NOT EXISTS{ 
?s ?prop2 ?value2 . 

} 
}UNION{ 
?s ?prop1 ?value1 . 
?s ?prop2 "" . 
}} 

 
In case one, we select all instances ?s of class ?class1 that have an empty literal 

value for the datatype property?prop1 and/or that do not have the datatype property 
?prop1. The second query returns all instances ?s of class ?class1 that have a 
datatype property ?prop1 with the literal value ?value1 and do not have the 
datatype property ?prop2 at all or simply no literal value for it. Hence, the latter 
query only checks for missing literal values or datatype properties in instances with 
the value ?value1 for datatype property ?prop1. Thus, it can be used to check 
literals that are only mandatory when another datatype property of the same instance 
obtains a certain literal value. E.g. the property prop:state may only be 
mandatory in cases where the property prop:country has the literal value 
“USA”. 

Note that the queries shown in here are meant to be used in combination with 
queries that bind the class, properties, and / or value variables to valid values. 

3.4   Identification of Illegal Literal Values 

In this section, we focus on the identification of incorrect values of a single datatype 
property without the use of any relationships from the knowledge base at hand. 
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Without any semantic relationships to other literal values of an instance, the concise 
identification of false values is a difficult task that requires a precise definition of the 
allowed values for a datatype property. This can be done approximately by defining  
(1) the syntactical pattern for valid values or (2) a range of legal values. Accurately, 
illegal values can be identified by the definition of (3) all allowed values for a 
datatype property. The latter option can be very costly to implement since it may 
require manual effort to define or obtain an exhaustive list of legal values. In cases 
where there is a trusted reference, e.g., a knowledge base on the Semantic Web or a 
relational data source with a corresponding attribute that contains a nearly complete 
list of legal values, the manual effort can be minimized. Moreover, it can be 
promising to (4) define all illegal values for a certain datatype property. Depending on 
the ratio of legal vs. illegal literals, one option may be more efficient than the other. 
Often, it is unfeasible to define all illegal values without constraining the ability of the 
system to deal with innovation and dynamics in the domain; thus, option (4) should 
only be applied on the subset that is already retrieved through option (3) in order to 
identify strictly forbidden literal values and, therefore, reduce the amount of manual 
checks. Table 2 below shows the queries for options (3) and (4) that utilize literal 
values of a trusted reference indicating legal or illegal values respectively. 

Note that the queries shown in here are meant to be used in combination with 
queries that bind the property variables to valid values. The OPTIONAL clause in 
here is meant to be used against the trusted knowledge base. 

Table 2. Identification of illegal values with the use of a trusted knowledge base 

Data Quality Problem Generalized SPARQL Query 
Listed values of ?prop2 are 
legal 

SELECT ?s 
WHERE { 

?s ?prop1 ?value . 
OPTIONAL { 
?s2 ?prop2 ?value . 
} . 
FILTER (!bound(?s2)) . 
} 
 

Listed values of ?prop2 are 
illegal 

SELECT ?s 
WHERE { 

?s ?prop1 ?value . 
OPTIONAL { 
?s2 ?prop2 ?value . 
} . 
FILTER bound(?s2) . 
} 

3.5   Identification of Functional Dependency Violations 

In [11], we proposed an algorithm for the identification of functional dependency 
violations, which required the manual definition of legal combinations of literal 
values of two dependent datatype properties. Similar to false values it is also possible 
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to check functional dependent literal values against a trusted knowledge base that  
already contains information on these dependencies. This latter option may save a lot 
of manual work, but requires the availability of trusted data sources that contain the 
required literal combinations. In Table 3, we provide two different algorithms for the 
identification of functional dependency violations. Each of the algorithm requires a 
trusted reference source. The first algorithm presented in Table 3 returns all instances 
?s that do not have an identical value combination in the trusted knowledge base for 
the literal value combinations of ?prop1 ?value1 and ?prop2 ?value2. The 
semantics of datatype property ?prop1 should thereby be equivalent to ?prop3, 
and likewise ?prop2 to ?prop4 in order to obtain the required literal value sets.  

Table 3. SPARQL queries for the identification of functional dependency violations 

Data Quality Problem Generalized SPARQL Query 
Functional dependency check 
tolerant to homonyms, n-ary 
literal value combinations, 
and missing datatype 
properties 

SELECT ?s 
WHERE { 

?s a ?class1 . 
?s ?prop1 ?value1 . 
?s ?prop2 ?value2 . 

NOT EXISTS { 
?s2 a ?class2 . 
?s2 ?prop3 ?value1 . 
?s2 ?prop4 ?value2 . 

}} 
 

Functional dependency check 
that enforces the existence of 
datatype properties 

SELECT ?s 
WHERE {{ 

?s a ?class1 . 
NOT EXISTS{ 

?s ?prop1 ?value1 . 
?s ?prop2 ?value2 .}} 

UNION{ 
?s a ?class1 . 
?s ?prop1 ?value1 . 
?s ?prop2 ?value2 . 

NOT EXISTS{ 
?s2 a ?class2 . 
?s2 ?prop3 ?value1 . 
?s2 ?prop4 ?value2 .}}} 

 
Although the first query returns functional dependency violations that are not 

defined in the trusted reference, it does not return functional dependency violations in 
which the whole datatype property of the tested knowledge base is missing. 
Therefore, we have extended the first query by additionally defining the triples for the 
datatype properties ?prop1 and ?prop2 to be mandatory. Thus, the second query 
returns all functional dependency violations that are not listed in the trusted 
knowledge base and all instances of the tested knowledge base that have missing 
datatype properties involved in the functional dependency (?prop1 and ?prop2).  

Both queries tolerate multiple assignments of the same literal value to more than 
one literal value of the dependent datatype property as the reference holds these 
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combinations. As already stated in section 2.3, this must be tolerated due to the 
existence of homonymous values and n-ary relationships between literal values of 
different datatype properties. The drawback of this approach is that an incorrect 
instance will not be identified by the queries if the instance contains a legal 
combination that is still incorrect in the further context. For example, the combination 
of the datatype property prop:city “Neustadt” and the datatype property 
prop:country “DE” could be identified as correct, although the instance actually 
intends to represent the Austrian city “Neustadt”. Such detection errors can be 
minimized by integrating more than two datatype properties into the functional 
dependency check, thus enhancing the probability of the identification of illegal value 
combinations, e.g. the zip code of our knowledge base may clearly indicate that the 
country has to be “AT”. Accordantly, the generalized SPARQL queries as proposed 
in Table 3 may be extended by additional dependent datatype properties and their 
literal values if the trusted reference provides those properties and literals. 

3.6   Options for Integrating Trusted Knowledge Bases into Quality Checks 

Assuming that our knowledge base is stored locally, we have at least two basic 
options how to integrate Semantic Web resources as trusted data sources in our data 
quality identification metrics, namely (1) by replicating the data into local data 
sources, or (2) by querying linked data remotely, e.g. by including SPARQL 
endpoints remotely by means of the SERVICE function for query federation from 
Jena’s ARQ language7. Moreover, with wrapping technologies, such as D2RQ8, it is 
also possible to use non-Semantic-Web data as a reference for quality management 
purposes in the Semantic Web technology stack. 

Table 4. Checking the existence of city names of a local knowledge base in DBPedia 

Federated SPARQL Query 
PREFIX dbo:<http://dbpedia.org/ontology/> 
SELECT * 
WHERE { 
?s1 stockdb:location_CITY ?city . 
OPTIONAL{ 
SERVICE <http://dbpedia.org/sparql>{ 
?s2 a dbo:City . 
?s2 rdfs:label ?city . 
FILTER (lang(?city) = "en") . 
}} 
FILTER(!bound(?s2)) 
} 

 

                                                             
7 http://jena.sourceforge.net/ARQ/service.html 
8 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/ 
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4   Evaluation 

In the following, we evaluate the our proposal. First, we analyze the data quality 
problem identification techniques presented in the previous section. The techniques 
for the identification of illegal values and functional dependency violations are 
evaluated by comparison of a local knowledge base against the publicly available data 
dumps from Geonames11, a Semantic Web knowledge base for geographical data. The 
techniques for the identification of missing literal values and datatype properties have 
been sufficiently evaluated on a local knowledge base and are not considered in here. 
In a second phase, we evaluate the quality of Geonames itself. 

4.1 Evaluation of Data Quality Techniques 

We tested our queries against a local knowledge base that contains manually created 
address data. We thereby used a locally installed replication of Geonames as the 
trusted knowledge base for values and value combinations on geographical data. We 
checked whether the city names also occur in Geonames and are, therefore, 
considered legal, and whether all instances of our knowledge base have correct 
combinations of city and country names. We thereby used the city-country-
combinations in Geonames as a trusted reference.  

Table 5. Evaluation of functional dependency algorithms 

No. City Country 
Property Country 1st Algorithm 2nd Algorithm 

1 Nantes2 Yes  X X 
2 Stavern Yes Norway   
3 Neubiberg No   X 
4 Neubiberg Yes USA X X 
5 San Rafael Yes US X X 
6 Melbourne Yes Australia   
7 Las Vegas Yes France X X 

 
It must be noted that solely the existence of a certain city-country-combination was 

tested by our algorithm. It was not tested whether the combination is correct in further 
context of the data, although the used query is flexible enough to consider a third 
literal value or even more, if appropriate. 

Since Geonames only supplies the ISO-3166 2-letter country code to indicate the 
country, we had to adjust the queries slightly to convert the country codes into 
country names by using matches to literals of other datatype properties of Geonames 
that are connected to a full country name. Table 5 shows the results of the two queries 
for the identification of functional dependency violations from Table 3. The “X” 
indicates that the literal combination was detected as illegal by the algorithm. The 
data set for No. 3 had a missing datatype property for the country name. Thus, it was 
only detected by the second algorithm of table 3. 

                                                             
11 http://download.geonames.org/export/dump/ 
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The test data contained the seven instances shown in Table 5. The queries were 
executed on a Intel QuadCore CPU with 4 GB RAM. Due to the small size of the test 
data, the execution time of the queries was not part of our evaluation. We also 
evaluated the first query from Table 2 using Geonames’ full city labels 
(“asciiname”) as a legal reference for evaluating the correctness of our city names. 
The algorithm identified that “Nantes2” is not known by Geonames. To enable the 
detection of incorrect literals, such as country names used as values for the property 
for city of the tested knowledge base, the trusted reference (Geonames) should be 
filtered to names of category “P” (city, village) when querying for illegal values. 

4.2   Identification of Quality Problems in Geonames 

To evaluate whether we can trust in the quality of a knowledge base, it is appropriate 
to apply quality problem identification metrics on the trusted knowledge base itself. 
Therefore, we applied algorithms for identifying a functional dependency violation 
and missing literals to the Geonames dataset itself. To evaluate the quality of the 
property “population”, we defined an illegal combination between instances classified 
as populated places, such as country, state, region (fclass “A”) or city, village (fclass 
“P”) that have a population of “0”. Surprisingly, we observed that 93.3 % of all 
populated places in Geonames indicate a population of zero. If the value “0” means 
that the information about the accurate population is not available, then the value 
might be correct, but is still misleading to anyone who is not aware of this meaning. 
The other quality checks have shown that the properties fclass, fcode, 
asciiname, country, and timezone have only a few missing literals relative to the 
whole data set. Hence, for our quality checks it seems to be suitable to use the 
asciinames property from Geonames as a reference for legal location names. 

Table 6. Quality metrics applied to Geonames (in literals) 

Data Quality Problem # of 
Occurences 

Total #  Defect Ratio in Percent 

Populated places (fclass P or A) 
without population (0) 

2,626,026 2,814,701 93.30 % 

Missing classification (fclass) 134,155 7,069,329 1.90 % 
Missing classification (fcode) 135,253 7,069,329 1.91 % 
Missing asciiname 604 7,069,329 0.01 % 
Missing country 10,579 7,069,329 0.15 % 
Missing timezone 29,312 7,069,329 0.41 % 

4.3   Limitations 

Although the algorithms of the latter two sections may identify false values and 
functional dependency violations very accurately without the investment of much 
manual effort, the use of Semantic Web resources as trusted references has one major 
weakness, which is that the reference data must be (1) complete and (2) reliable. If the 
reference dataset is incomplete, correct values in the data will be marked as incorrect. 
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If the reference dataset contains illegal values, corresponding defects in the data to be 
analyzed will not be found. It is likely that there is at least a partial overlap between 
defects found in Semantic Web resources and relevant local datasets. For example, we 
have to expect the same common typos in DBPedia, derived from Wikipedia content, 
and local databases. One possible solution approach to this problem is the utilization 
of data quality problem identification techniques, e.g. as presented in [11], on the 
trusted source itself before starting the use of Semantic Web resources as a trusted 
reference for quality checks on local knowledge bases.  

5   Related Work 

Despite its importance, data quality has yet are received a lot of attention by Semantic 
Web researchers. A frequent misconception is that trust and data quality were the 
same. However, it is obvious that many of the data quality problems that we discuss 
in this paper are not directly related to the identity of the publisher of the data, nor to 
lack of access control or authentication. For instance, there will be a lot of public 
datasets from the governments suffering from quality issues, despite the fact that the 
origin of the data and the integrity of the transformation and transportation is not in 
doubt. In the following, we summarize relevant related work. 
Hartig and Zhao proposed a framework to assess the information quality of web data 
sources based on provenance information [15]. In addition, Hartig proposed an 
extension for the definition of trust values within Semantic Web data [16]. Bizer and 
Cyganiak described a framework to filter poor information in Web-based information 
systems according to user defined quality requirements [17]. Although these 
approaches are very promising, they do not provide much help to cure data quality 
problems in Semantic Web data sources or local data. Additionally, they are focused 
on the subjective assessment of data quality by users which may be occasionally not 
accurate enough or even wrong. 

Lei, et. al. proposed an approach to identify data quality problems in semantic 
annotations. This approach utilizes Semantic Web data to identify incorrect 
classifications [18]. The proposed approach rather focuses on the quality of semantic 
annotations during its creation, but not on the quality of knowledge bases at instance 
level. 

Other approaches use Semantic Web technology to identify and correct data 
quality problems in information systems. Brüggemann and Grüning have used 
ontologies to annotate incorrect data, e.g. redundant instances or incorrect attribute 
value combinations, to train detection algorithms for automated identification of data 
quality problems in cancer registries and data sources from the energy industry. 
Furthermore, they proposed to use domain ontologies to populate commonly accepted 
data quality rules within the domain [19]. However, they focus on a small set of data 
quality problems of information systems and neither use the potential of data already 
published on the Semantic Web, nor attempt to identify quality problems within the 
Semantic Web. Moreover, none of the above approaches solely utilizes the 
expressivity and functionality of SPARQL as a widely established pillar of the 
Semantic Web technology stack. 
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The database and data quality research community has provided several proposals 
to identify, avoid, and cleanse data quality problems primarily for relational data 
sources [20]. However, those cannot be applied directly to data on a Web of Data, nor 
do they utilize Semantic Web datasets as references. 

6   Conclusion and Outlook 

The usefulness of knowledge representation strongly depends on the underlying data 
quality. Likewise, the success of the Semantic Web will depend on the quality of the 
published data. It is clear that the Semantic Web itself will never be a complete nor 
consistent knowledge representation, and that every consumer will have to apply 
filtering and cleansing techniques prior to using Semantic Web data. However, the 
ratio of noise and errors on one hand and the technical effort for filtering and 
cleansing the data for a given purpose will highly affect the value of Semantic Web 
data. Thus, it is very important to address data quality issues on a Web scale as part of 
the core Semantic Web technology stack. Unfortunately, there is currently a very 
limited amount of research on data quality on and for the Semantic Web.  
In this paper, we have presented an approach to evaluate the quality of knowledge 
bases solely by using SPARQL queries. We provided generic queries for the 
identification of (1) missing literal values or datatype properties, (2) illegal literal 
values, and (3) functional dependency violations. Queries for the latter two data 
quality problems were built to make use of already available knowledge bases as a 
trusted reference. Including access of knowledge published in the Semantic Web in 
the data quality management process seems very promising for reducing the manual 
effort for data quality management. The major drawback of our approach is the 
uncertainty about the quality of the used knowledge bases available in the Semantic 
Web. Thus, we started to evaluate the quality of Geonames and have identified 
several data quality problems. 

Our future work will address the extension of the evaluation of Geonames and 
other Semantic Web resources, such as DBPedia. Moreover, we plan to evaluate the 
quality of geographical data in DBPedia by using Geonames as a trusted knowledge 
base, and vice versa. We also plan to apply our approach for the quality assurance of 
master data of a local information system. To gain insight into the practical usefulness 
of Semantic Web resources for data quality management, we also plan to develop 
information quality scoring approaches built on top of our existing queries. 

References 

1. Redman, T. C.: Data quality for the information age. Artech House, Boston (1996) 
2. Redman, T. C.: The impact of poor data quality on the typical enterprise. Communications 

of the ACM, 41, 79--82 (1998) 
3. Brett, S.: World Wide Web Consortium (W3C), http://www.w3.org/2007/Talks/0130-sb-

W3CTechSemWeb/layerCake-4.png, retrieved on Mar 08th (2010) 



Using Semantic Web Resources for Data Quality Management      15 

4. Wang, R. Y., Strong, D. M.: Beyond accuracy: what data quality means to data consumers. 
Journal of Management Information Systems, 12(4), 5--33 (1996) 

5. Redman, T. C.: Data quality: the field guide. Digital Press, Boston (2001) 
6. Rahm, E., Do, H.-H.: Data Cleaning: Problems and Current Approaches. IEEE Data 

Engineering Bulletin 23(4), 3--13 (2000) 
7. Oliveira, P., Rodrigues, F., Henriques, P.R., and Galhardas, H.: A Taxonomy of Data 

Quality Problems, In: Proc. 2nd Int. Workshop on Data and Information Quality (in 
conjunction with CAiSE'05), Porto, Portugal (2005) 

8. Oliveira, P., Rodrigues, F., Henriques, P. R.: A Formal Definition of Data Quality Problems. 
In: International Conference on Information Quality (2005) 

9. Leser, U., and Naumann, F.: Informationsintegration: Architekturen und Methoden zur 
Integration verteilter und heterogener Datenquellen, dpunkt-Verlag, Heidelberg (2007) 

10. Kashyap, V., and Sheth, A.P.: Semantic and Schematic Similarities Between Database 
Objects: A Context-Based Approach, Very Large Data Base Journal (5), 276--304 (1996) 

11.Fürber, C., Hepp, M.: Using SPARQL and SPIN for Data Quality Management on the 
Semantic Web. 13th International Conference on Business Information Systems (BIS2010). 
Springer LNBIP (forthcoming), Berlin, Germany (2010) 

12.Olson, J.: Data quality: the accuracy dimension. Morgan Kaufmann; Elsevier Science, 
Oxford (2003) 

13.Wang, R.Y.: A product perspective on total data quality management. Commun. ACM 41 
(1998) 58-65 

14. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge 
Acquisition 5 (1993) 199-220 

15.Hartig, O., Zhao, J.: Using Web Data Provenance for Quality Assessment. First International 
Workshop on the role of Semantic Web in Provenance Management (Co-located with the 
8th International Semantic Web Conference, ISWC-2009), Washington D.C., USA. (2009) 

16.Hartig, O.: Querying Trust in RDF Data with tSPARQL. In: Aroyo, L., Traverso, P., 
Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., 
Simperl, E. (eds.): 6th Annual European Semantic Web Conference (ESWC2009), Vol. 
5554. Springer, Heidelberg (2009) 5-20 

17.Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy 
framework. Web Semant. 7 (2009) 1-10 

18.Lei, Y., Nikolov, A.: Detecting Quality Problems in Semantic Metadata without the 
Presence of a Gold Standard. EON, Vol. 329. CEUR-WS.org (2007) 51-60 

19. Brüggemann, S., Grüning, F.: Using Ontologies Providing Domain Knowledge for Data 
Quality Management In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.): 
Networked Knowledge - Networked Media Springer Berlin / Heidelberg (2009) 187-203 

20.Batini, C., Scannapieco, M.: Data quality : concepts, methodologies and techniques. 
Springer, Berlin (2006) 


