
Using Semantic Web Resources for Data Quality
Management

Christian Fürber and Martin Hepp

E-Business & Web Science Research Group, Werner-Heisenberg-Weg 39,
85577 Neubiberg, Germany

christian@fuerber.com, mhepp@computer.org

Abstract. The quality of data is a critical factor for all kinds of decision-making
and transaction processing. While there has been a lot of research on data
quality in the past two decades, the topic has not yet received sufficient
attention from the Semantic Web community. In this paper, we discuss (1) the
data quality issues related to the growing amount of data available on the
Semantic Web, (2) how data quality problems can be handled within the
Semantic Web technology framework, namely using SPARQL on RDF
representations, and (3) how Semantic Web reference data, e.g. from DBPedia,
can be used to spot incorrect literal values and functional dependency
violations. We show how this approach can be used for data quality
management of public Semantic Web data and data stored in relational
databases in closed settings alike. As part of our work, we developed generic
SPARQL queries to identify (1) missing datatype properties or literal values,
(2) illegal values, and (3) functional dependency violations. We argue that
using Semantic Web datasets reduces the effort for data quality management
substantially. As a use-case, we employ Geonames, a publicly available
Semantic Web resource for geographical data, as a trusted reference for
managing the quality of other data sources.

Keywords: Semantic Web, Ontologies, Data Quality Management, Ontology-
Based Data Quality Management, Metadata Management, SPARQL, Linked
Data, Geonames, Trust

1 Introduction

Data is the source for almost every business transaction or decision and also has
become increasingly important for our social activities. With the current evolution of
the internet from a “Web of Documents” to a “Web of Data”, huge amounts of
business-relevant data is being published on the Web. That data may be used to
increase automation of business operations and supporting processes of our social
activities. Hence, it becomes critical to manage the correctness and reliability, i.e., the
quality of data on the Web. It is a well-known fact that when using data for business
cases, data quality problems can influence the satisfaction of customers and
employees, produce unnecessary costs, and cause missed revenues [1]. Eventually,
performing business processes based on poor data can be very expensive. Yet in 1998,

2 Christian Fürber and Martin Hepp

the average total costs of poor data quality have been estimated to be 8 – 12 % of a
company’s revenues [2]. In the meanwhile, the automation of business processes and
likewise the production and consumption of data have increased. Thus, the impact of
poor data quality will likely be even higher today. Despite its importance to the
overall success for the adaption of the Semantic Web, data quality is currently
missing in the well-known Semantic Web layer cake diagram published by the World
Wide Web Consortium (W3C) [3]. At present, there are only a few research
approaches addressing data quality management with the use of Semantic Web
technologies. Even less approaches provide means for quality management of data
published on the Semantic Web.
In this paper, we (1) define typical problems that may occur on the data instance level
in Semantic Web resources, (2) describe how to identify data quality problems of
literal values in the Web of Data, and (3) show how we can use Semantic Web
technology and datasets for data quality management of knowledge bases or local
relational sources. As part of our proposal, we present SPARQL queries for data
quality checks that can be executed completely within the Semantic Web technology
stack.

2 Data Quality Management on the Semantic Web

In data quality research, high data quality is often described as data that is “fit for use”
[4]. This definition relies on the subjective judgment of data quality by data
consumers. Usually data consumers consider data to be of high quality and, therefore,
“fit for use”, when data meets their requirements. Wang, et al. have analyzed this
perspective in more detail and identified 15 essential dimensions of data quality for
data consumers, such as accuracy, completeness, accessibility, and relevance [4]. The
perspective of a data consumer on data quality is of high practical relvance, in
particular during data presentation.

From the technical perspective, high quality data is data that is “free of defects”
[5]. Several typologies have been developed to classify respective defects in data [6-
10]. These categorizations of data quality problems are especially suitable for the
development of algorithms for the identification and improvement, as they provide
insight into their technical characteristics. Because we aim at automated tools for data
quality management and because the context of data consumption is often not
immediately available on the Web of Data, we adopt the technical perspective on data
quality to develop algorithms for the identification of data quality problems in
knowledge bases. For a summary of instance-related data quality problems found in
single-source scenarios, we refer to our previous work published in [11].

In the following, we summarize the most important types of defects for Semantic

Web data.

Using Semantic Web Resources for Data Quality Management 3

2.1 Missing Literal Values

Missing values are values of certain properties that are missing, even though they are
needed, either in general or within a certain context. For instance, the literal value for
the property country might always be mandatory in address data, while the literal
values for the property state might only be required for instances with the literal
value “USA” in the datatype property country. In other words there are at least two
types of missing values: (1) values that must not be missing at all, and (2) values that
must not be missing in certain contexts. In Semantic Web data, missing literal values
can be either in the form of (1) an empty literal attached to a datatype property, or by
(2) the absence of a particular datatype property for a certain instance. Solution
algorithms for the identification of missing values in Semantic Web scenarios have to
consider both patterns. The first case will often be found when RDF data is derived
automatically from relational sources and no sanity checks for empty attributes are
included in the transformation process. The popular Semantic Web repository at
http://loc.openlinksw.com/sparq, for instance, includes more than 3 Million triples
from more than 44,000 RDF graphs with an empty literal as the object of at least one
triple.
It is important to note that (1) standard database-style cardinality constraints cannot
be modeled in neither RDFS nor OWL, and that (2) the constraints in real-world
settings are often more subtle than simple validity intervals for the frequency of a
particular property.

2.2 False Literal Values

False literal values are either (1) imaginary values that do not have a corresponding
state in reality, (2) values that may exist in reality, but do not represent the correct
state of an object, (3) values that are supposed to represent the current state of an
object, but use the wrong syntax or are mistyped, and (4) values that represent an
outdated real-world state of an object. In cases where values are part of functional
dependencies, false values may be discovered by the use of queries for the
identification of functional dependency violations (see below). Other cases require a
separate set of query elements that can identify illegal states solely by the definition
of legal or illegal states for an object. In many cases, the actual set of valid values is a
small subset of the lexical space defined by the standard datatype (e.g. xsd:string or
xsd:int).
Checks for false literal values can be performed with different levels of accuracy by
(1) the definition of legal values or value ranges, (2) the definition of illegal values or
value ranges, (3) the definition of syntax patterns for legal or illegal values, e.g. by the
use of regular expressions, or (4) the definition of valid time ranges for sufficiently
current values (only applicable in cases where time data about the actuality of values
is available). In this paper, we focus on the use of legal value lists for the
identification of illegal values. The identification of legal but outdated values is part
of our future work, because it requires meta-data about the temporal properties of the
datasets.

4 Christian Fürber and Martin Hepp

2.3 Functional Dependency Violations

Functional dependencies can be defined as dependencies between the values of two or
more different properties [12], e.g. the value for the datatype property prop:city
may depend on the value for datatype property prop:zipcode. More formally we
can express a functional dependency between the literal x for datatype property A and
the dependent literal y for the datatype property B as shown in (1).

A (x)  B (y)

FDV: {y | y ∉ Vc}

(1)

(2)

 (2)

A functional dependency violation (FDV) occurs when the dependent literal y

obtains a value outside of the correct value set Vc. Thereby, Vc can consist of exactly
one correct value or a set of correct values. In a lot of real world cases, literal values
are not unique, even when they aim at uniquely representing only one real-world
entity. This circumstance is mainly caused by the existence of homonyms and other
forms of lexical variety(e.g. British vs. American English). For example, the same
city name may have different legal zip codes if the city name is a homonym, which is
used for multiple different cities around the world. The city name “Neustadt”, for
instance, which is used for at least 48 different cities according to geonames data1.
Accordingly, it may have way more than 48 different valid zip codes. The theoretical
problem underlying such cases is that literal value in RDF data cannot be mapped
easily to a single conceptual entity, because this disambiguation is regularly
prohibitively expensive in real-world settings.

In short, homonymous literal values may have a set of legal dependent values even
if the individual entity can only obtain a single correct value. Likewise, different
countries may assign identical zip codes for different cities since there is no global
authority that enforces unique zip codes worldwide. Hence, zip codes may also be
homonyms on a global scale, unless we use a strict prefix system.

Thus, the identification of illegal combinations of literal values has to be tolerant to
homonyms. The major drawback of this tolerance to homonyms is that we will be
unable to spot values that are within the set of valid lexical representations, but
incorrect in that particular case.

In section 3.5, we show how functional dependency violations can be identified
using trusted knowledge bases, e.g. Semantic Web datasets, as references. We will
provide queries that minimize undiscovered incorrect value combinations and are
tolerant to homonymous literal values.

1 http://www.geonames.org/

Using Semantic Web Resources for Data Quality Management 5

3 Identification of Data Quality Rule Violations in the Web of
Data

In the Semantic Web technology stack, there are multiple options to identify data
quality problems. For instance, it is possible to use the formal semantics of an
underlying ontology [cf. 14], such as disjointness axioms, to identify data quality
problems in knowledge bases referring to that ontology. On the other hand, data
quality problems can be identified by the definition of queries in SPARQL2, the query
language for Semantic Web data. Additionally, we could define conceptual elements
in the ontology for the annotation of data to enable data quality problem identification
algorithms through SPARQL. In this paper, we focus on the second option. The other
two options are subject to our future work.

3.1 Methodology for Improving Data Quality

Data and information quality management has been addressed in database-oriented
research for nearly two decades. Total Data Quality Management (TDQM) as
proposed by Wang [13] is one of the most prominent methodologies for managing
data quality. Based on the principle that the quality of data needs to be managed
similar to the management of product quality, it describes an adjusted lifecycle of
quality management suitable for data. The TDQM methodology encompasses four
phases, namely (1) the definition phase, (2) the measurement phase, (3) the analysis
phase, and (4) the improvement phase. In the definition phase, the requirements that
constitute high quality data are defined regarding the different perspectives of data
stakeholders, i.e. consumers, manufacturers, suppliers, or managers. Based on these
requirements, metrics are developed and executed in the measurement phase. The
analysis phase covers the examination of potential data quality problems identified
through the metrics in the measurement phase. Possible alternative solutions have to
be identified in order to resolve the data quality problems at its origin. Besides the
simple correction of data values, the resolution of problems can also require the
correction of business processes producing or changing the. Eventually, the best
solution is executed during the improvement phase. Since business processes and
thereby data manufacturing underlies changes, the TDQM lifecycle needs to be
repeated over time.

In this paper, we focus on the definition and measurement phase of TDQM when
applying DQM techniques to the Semantic Web. We define a set of data quality
requirements through SPARQL queries that can be executed during the measurement
phase and are useful for the subsequent analysis of the data quality problems and their
causes. At the moment, we do not define key performance indicators (KPI) for the
judgment of data and information quality, which can also be part of TDQM.

2 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

6 Christian Fürber and Martin Hepp

3.2 Architecture

As a major goal of our approach, we aim at defining generalized data quality rules,
i.e. metrics for the identification of data quality problems, solely with the use of
technologies provided by the Semantic Web technology stack. Therefore, we use the
SPARQL query language extended by elements of Jena’s ARQ language3 due to its
high expressivity. Hence, our data quality rules are transparent to the user and
applicable to knowledge bases throughout the Web of Data. Besides official W3C
specifications, we use D2RQ4 for wrapping relational data sources into the Resource
Description Framework (RDF5). Moreover, with the use of Jena ARQ’s SERVICE
keyword6, we are able to execute federated SPARQL queries over the Semantic Web
and remotely retrieve linked data available from public SPARQL endpoints in real
time.

Fig. 1. Using SPARQL for data quality problem identification in the Web of Data

In the following, we present our generic SPARQL data quality problem

identification queries for the identification of missing literals, illegal literals, and
functional dependency violations in Semantic Web knowledge bases.

3.3 Identification of Missing Literals

In section 2.1, we explained the different types of missing values which can occur in
Semantic Web scenarios. In [11], we defined a query that identifies datatype
properties that have missing literal values for a single, known datatype property. In

3 http://jena.sourceforge.net/ARQ/
4 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/
5 http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
6 http://jena.sourceforge.net/ARQ/service.html

Using Semantic Web Resources for Data Quality Management 7

this paper, we (1) extend this query by enabling the additional detection of missing
(but required) datatype properties attached to instances of particular classes, and (2)
define a query for the identification of literals that are missing on the basis of a
functional dependency, e.g. datatype properties that are mandatory within certain
literal value combinations.

Table 1. SPARQL queries for the identification of missing literals

Data Quality Problem Generalized SPARQL Query
Missing literal or datatype
property

SELECT ?s
WHERE{{

?s a ?class1 .
?s ?prop1 "" .}

UNION{
?s a ?class1 .
NOT EXISTS {
?s ?prop1 ?value}}}

Functionally dependent
missing literal or datatype
property

SELECT ?s
WHERE{{

?s a ?class1 .
?s ?prop1 ?value1 .

NOT EXISTS{
?s ?prop2 ?value2 .

}
}UNION{
?s ?prop1 ?value1 .
?s ?prop2 "" .
}}

In case one, we select all instances ?s of class ?class1 that have an empty literal

value for the datatype property?prop1 and/or that do not have the datatype property
?prop1. The second query returns all instances ?s of class ?class1 that have a
datatype property ?prop1 with the literal value ?value1 and do not have the
datatype property ?prop2 at all or simply no literal value for it. Hence, the latter
query only checks for missing literal values or datatype properties in instances with
the value ?value1 for datatype property ?prop1. Thus, it can be used to check
literals that are only mandatory when another datatype property of the same instance
obtains a certain literal value. E.g. the property prop:state may only be
mandatory in cases where the property prop:country has the literal value
“USA”.

Note that the queries shown in here are meant to be used in combination with
queries that bind the class, properties, and / or value variables to valid values.

3.4 Identification of Illegal Literal Values

In this section, we focus on the identification of incorrect values of a single datatype
property without the use of any relationships from the knowledge base at hand.

8 Christian Fürber and Martin Hepp

Without any semantic relationships to other literal values of an instance, the concise
identification of false values is a difficult task that requires a precise definition of the
allowed values for a datatype property. This can be done approximately by defining
(1) the syntactical pattern for valid values or (2) a range of legal values. Accurately,
illegal values can be identified by the definition of (3) all allowed values for a
datatype property. The latter option can be very costly to implement since it may
require manual effort to define or obtain an exhaustive list of legal values. In cases
where there is a trusted reference, e.g., a knowledge base on the Semantic Web or a
relational data source with a corresponding attribute that contains a nearly complete
list of legal values, the manual effort can be minimized. Moreover, it can be
promising to (4) define all illegal values for a certain datatype property. Depending on
the ratio of legal vs. illegal literals, one option may be more efficient than the other.
Often, it is unfeasible to define all illegal values without constraining the ability of the
system to deal with innovation and dynamics in the domain; thus, option (4) should
only be applied on the subset that is already retrieved through option (3) in order to
identify strictly forbidden literal values and, therefore, reduce the amount of manual
checks. Table 2 below shows the queries for options (3) and (4) that utilize literal
values of a trusted reference indicating legal or illegal values respectively.

Note that the queries shown in here are meant to be used in combination with
queries that bind the property variables to valid values. The OPTIONAL clause in
here is meant to be used against the trusted knowledge base.

Table 2. Identification of illegal values with the use of a trusted knowledge base

Data Quality Problem Generalized SPARQL Query
Listed values of ?prop2 are
legal

SELECT ?s
WHERE {

?s ?prop1 ?value .
OPTIONAL {
?s2 ?prop2 ?value .
} .
FILTER (!bound(?s2)) .
}

Listed values of ?prop2 are
illegal

SELECT ?s
WHERE {

?s ?prop1 ?value .
OPTIONAL {
?s2 ?prop2 ?value .
} .
FILTER bound(?s2) .
}

3.5 Identification of Functional Dependency Violations

In [11], we proposed an algorithm for the identification of functional dependency
violations, which required the manual definition of legal combinations of literal
values of two dependent datatype properties. Similar to false values it is also possible

Using Semantic Web Resources for Data Quality Management 9

to check functional dependent literal values against a trusted knowledge base that
already contains information on these dependencies. This latter option may save a lot
of manual work, but requires the availability of trusted data sources that contain the
required literal combinations. In Table 3, we provide two different algorithms for the
identification of functional dependency violations. Each of the algorithm requires a
trusted reference source. The first algorithm presented in Table 3 returns all instances
?s that do not have an identical value combination in the trusted knowledge base for
the literal value combinations of ?prop1 ?value1 and ?prop2 ?value2. The
semantics of datatype property ?prop1 should thereby be equivalent to ?prop3,
and likewise ?prop2 to ?prop4 in order to obtain the required literal value sets.

Table 3. SPARQL queries for the identification of functional dependency violations

Data Quality Problem Generalized SPARQL Query
Functional dependency check
tolerant to homonyms, n-ary
literal value combinations,
and missing datatype
properties

SELECT ?s
WHERE {

?s a ?class1 .
?s ?prop1 ?value1 .
?s ?prop2 ?value2 .

NOT EXISTS {
?s2 a ?class2 .
?s2 ?prop3 ?value1 .
?s2 ?prop4 ?value2 .

}}

Functional dependency check
that enforces the existence of
datatype properties

SELECT ?s
WHERE {{

?s a ?class1 .
NOT EXISTS{

?s ?prop1 ?value1 .
?s ?prop2 ?value2 .}}

UNION{
?s a ?class1 .
?s ?prop1 ?value1 .
?s ?prop2 ?value2 .

NOT EXISTS{
?s2 a ?class2 .
?s2 ?prop3 ?value1 .
?s2 ?prop4 ?value2 .}}}

Although the first query returns functional dependency violations that are not

defined in the trusted reference, it does not return functional dependency violations in
which the whole datatype property of the tested knowledge base is missing.
Therefore, we have extended the first query by additionally defining the triples for the
datatype properties ?prop1 and ?prop2 to be mandatory. Thus, the second query
returns all functional dependency violations that are not listed in the trusted
knowledge base and all instances of the tested knowledge base that have missing
datatype properties involved in the functional dependency (?prop1 and ?prop2).

Both queries tolerate multiple assignments of the same literal value to more than
one literal value of the dependent datatype property as the reference holds these

10 Christian Fürber and Martin Hepp

combinations. As already stated in section 2.3, this must be tolerated due to the
existence of homonymous values and n-ary relationships between literal values of
different datatype properties. The drawback of this approach is that an incorrect
instance will not be identified by the queries if the instance contains a legal
combination that is still incorrect in the further context. For example, the combination
of the datatype property prop:city “Neustadt” and the datatype property
prop:country “DE” could be identified as correct, although the instance actually
intends to represent the Austrian city “Neustadt”. Such detection errors can be
minimized by integrating more than two datatype properties into the functional
dependency check, thus enhancing the probability of the identification of illegal value
combinations, e.g. the zip code of our knowledge base may clearly indicate that the
country has to be “AT”. Accordantly, the generalized SPARQL queries as proposed
in Table 3 may be extended by additional dependent datatype properties and their
literal values if the trusted reference provides those properties and literals.

3.6 Options for Integrating Trusted Knowledge Bases into Quality Checks

Assuming that our knowledge base is stored locally, we have at least two basic
options how to integrate Semantic Web resources as trusted data sources in our data
quality identification metrics, namely (1) by replicating the data into local data
sources, or (2) by querying linked data remotely, e.g. by including SPARQL
endpoints remotely by means of the SERVICE function for query federation from
Jena’s ARQ language7. Moreover, with wrapping technologies, such as D2RQ8, it is
also possible to use non-Semantic-Web data as a reference for quality management
purposes in the Semantic Web technology stack.

Table 4. Checking the existence of city names of a local knowledge base in DBPedia

Federated SPARQL Query
PREFIX dbo:<http://dbpedia.org/ontology/>
SELECT *
WHERE {
?s1 stockdb:location_CITY ?city .
OPTIONAL{
SERVICE <http://dbpedia.org/sparql>{
?s2 a dbo:City .
?s2 rdfs:label ?city .
FILTER (lang(?city) = "en") .
}}
FILTER(!bound(?s2))
}

7 http://jena.sourceforge.net/ARQ/service.html
8 http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

Using Semantic Web Resources for Data Quality Management 11

4 Evaluation

In the following, we evaluate the our proposal. First, we analyze the data quality
problem identification techniques presented in the previous section. The techniques
for the identification of illegal values and functional dependency violations are
evaluated by comparison of a local knowledge base against the publicly available data
dumps from Geonames11, a Semantic Web knowledge base for geographical data. The
techniques for the identification of missing literal values and datatype properties have
been sufficiently evaluated on a local knowledge base and are not considered in here.
In a second phase, we evaluate the quality of Geonames itself.

4.1 Evaluation of Data Quality Techniques

We tested our queries against a local knowledge base that contains manually created
address data. We thereby used a locally installed replication of Geonames as the
trusted knowledge base for values and value combinations on geographical data. We
checked whether the city names also occur in Geonames and are, therefore,
considered legal, and whether all instances of our knowledge base have correct
combinations of city and country names. We thereby used the city-country-
combinations in Geonames as a trusted reference.

Table 5. Evaluation of functional dependency algorithms

No. City Country
Property Country 1st Algorithm 2nd Algorithm

1 Nantes2 Yes X X
2 Stavern Yes Norway
3 Neubiberg No X
4 Neubiberg Yes USA X X
5 San Rafael Yes US X X
6 Melbourne Yes Australia
7 Las Vegas Yes France X X

It must be noted that solely the existence of a certain city-country-combination was

tested by our algorithm. It was not tested whether the combination is correct in further
context of the data, although the used query is flexible enough to consider a third
literal value or even more, if appropriate.

Since Geonames only supplies the ISO-3166 2-letter country code to indicate the
country, we had to adjust the queries slightly to convert the country codes into
country names by using matches to literals of other datatype properties of Geonames
that are connected to a full country name. Table 5 shows the results of the two queries
for the identification of functional dependency violations from Table 3. The “X”
indicates that the literal combination was detected as illegal by the algorithm. The
data set for No. 3 had a missing datatype property for the country name. Thus, it was
only detected by the second algorithm of table 3.

11 http://download.geonames.org/export/dump/

12 Christian Fürber and Martin Hepp

The test data contained the seven instances shown in Table 5. The queries were
executed on a Intel QuadCore CPU with 4 GB RAM. Due to the small size of the test
data, the execution time of the queries was not part of our evaluation. We also
evaluated the first query from Table 2 using Geonames’ full city labels
(“asciiname”) as a legal reference for evaluating the correctness of our city names.
The algorithm identified that “Nantes2” is not known by Geonames. To enable the
detection of incorrect literals, such as country names used as values for the property
for city of the tested knowledge base, the trusted reference (Geonames) should be
filtered to names of category “P” (city, village) when querying for illegal values.

4.2 Identification of Quality Problems in Geonames

To evaluate whether we can trust in the quality of a knowledge base, it is appropriate
to apply quality problem identification metrics on the trusted knowledge base itself.
Therefore, we applied algorithms for identifying a functional dependency violation
and missing literals to the Geonames dataset itself. To evaluate the quality of the
property “population”, we defined an illegal combination between instances classified
as populated places, such as country, state, region (fclass “A”) or city, village (fclass
“P”) that have a population of “0”. Surprisingly, we observed that 93.3 % of all
populated places in Geonames indicate a population of zero. If the value “0” means
that the information about the accurate population is not available, then the value
might be correct, but is still misleading to anyone who is not aware of this meaning.
The other quality checks have shown that the properties fclass, fcode,
asciiname, country, and timezone have only a few missing literals relative to the
whole data set. Hence, for our quality checks it seems to be suitable to use the
asciinames property from Geonames as a reference for legal location names.

Table 6. Quality metrics applied to Geonames (in literals)

Data Quality Problem # of
Occurences

Total # Defect Ratio in Percent

Populated places (fclass P or A)
without population (0)

2,626,026 2,814,701 93.30 %

Missing classification (fclass) 134,155 7,069,329 1.90 %
Missing classification (fcode) 135,253 7,069,329 1.91 %
Missing asciiname 604 7,069,329 0.01 %
Missing country 10,579 7,069,329 0.15 %
Missing timezone 29,312 7,069,329 0.41 %

4.3 Limitations

Although the algorithms of the latter two sections may identify false values and
functional dependency violations very accurately without the investment of much
manual effort, the use of Semantic Web resources as trusted references has one major
weakness, which is that the reference data must be (1) complete and (2) reliable. If the
reference dataset is incomplete, correct values in the data will be marked as incorrect.

Using Semantic Web Resources for Data Quality Management 13

If the reference dataset contains illegal values, corresponding defects in the data to be
analyzed will not be found. It is likely that there is at least a partial overlap between
defects found in Semantic Web resources and relevant local datasets. For example, we
have to expect the same common typos in DBPedia, derived from Wikipedia content,
and local databases. One possible solution approach to this problem is the utilization
of data quality problem identification techniques, e.g. as presented in [11], on the
trusted source itself before starting the use of Semantic Web resources as a trusted
reference for quality checks on local knowledge bases.

5 Related Work

Despite its importance, data quality has yet are received a lot of attention by Semantic
Web researchers. A frequent misconception is that trust and data quality were the
same. However, it is obvious that many of the data quality problems that we discuss
in this paper are not directly related to the identity of the publisher of the data, nor to
lack of access control or authentication. For instance, there will be a lot of public
datasets from the governments suffering from quality issues, despite the fact that the
origin of the data and the integrity of the transformation and transportation is not in
doubt. In the following, we summarize relevant related work.
Hartig and Zhao proposed a framework to assess the information quality of web data
sources based on provenance information [15]. In addition, Hartig proposed an
extension for the definition of trust values within Semantic Web data [16]. Bizer and
Cyganiak described a framework to filter poor information in Web-based information
systems according to user defined quality requirements [17]. Although these
approaches are very promising, they do not provide much help to cure data quality
problems in Semantic Web data sources or local data. Additionally, they are focused
on the subjective assessment of data quality by users which may be occasionally not
accurate enough or even wrong.

Lei, et. al. proposed an approach to identify data quality problems in semantic
annotations. This approach utilizes Semantic Web data to identify incorrect
classifications [18]. The proposed approach rather focuses on the quality of semantic
annotations during its creation, but not on the quality of knowledge bases at instance
level.

Other approaches use Semantic Web technology to identify and correct data
quality problems in information systems. Brüggemann and Grüning have used
ontologies to annotate incorrect data, e.g. redundant instances or incorrect attribute
value combinations, to train detection algorithms for automated identification of data
quality problems in cancer registries and data sources from the energy industry.
Furthermore, they proposed to use domain ontologies to populate commonly accepted
data quality rules within the domain [19]. However, they focus on a small set of data
quality problems of information systems and neither use the potential of data already
published on the Semantic Web, nor attempt to identify quality problems within the
Semantic Web. Moreover, none of the above approaches solely utilizes the
expressivity and functionality of SPARQL as a widely established pillar of the
Semantic Web technology stack.

14 Christian Fürber and Martin Hepp

The database and data quality research community has provided several proposals
to identify, avoid, and cleanse data quality problems primarily for relational data
sources [20]. However, those cannot be applied directly to data on a Web of Data, nor
do they utilize Semantic Web datasets as references.

6 Conclusion and Outlook

The usefulness of knowledge representation strongly depends on the underlying data
quality. Likewise, the success of the Semantic Web will depend on the quality of the
published data. It is clear that the Semantic Web itself will never be a complete nor
consistent knowledge representation, and that every consumer will have to apply
filtering and cleansing techniques prior to using Semantic Web data. However, the
ratio of noise and errors on one hand and the technical effort for filtering and
cleansing the data for a given purpose will highly affect the value of Semantic Web
data. Thus, it is very important to address data quality issues on a Web scale as part of
the core Semantic Web technology stack. Unfortunately, there is currently a very
limited amount of research on data quality on and for the Semantic Web.
In this paper, we have presented an approach to evaluate the quality of knowledge
bases solely by using SPARQL queries. We provided generic queries for the
identification of (1) missing literal values or datatype properties, (2) illegal literal
values, and (3) functional dependency violations. Queries for the latter two data
quality problems were built to make use of already available knowledge bases as a
trusted reference. Including access of knowledge published in the Semantic Web in
the data quality management process seems very promising for reducing the manual
effort for data quality management. The major drawback of our approach is the
uncertainty about the quality of the used knowledge bases available in the Semantic
Web. Thus, we started to evaluate the quality of Geonames and have identified
several data quality problems.

Our future work will address the extension of the evaluation of Geonames and
other Semantic Web resources, such as DBPedia. Moreover, we plan to evaluate the
quality of geographical data in DBPedia by using Geonames as a trusted knowledge
base, and vice versa. We also plan to apply our approach for the quality assurance of
master data of a local information system. To gain insight into the practical usefulness
of Semantic Web resources for data quality management, we also plan to develop
information quality scoring approaches built on top of our existing queries.

References

1. Redman, T. C.: Data quality for the information age. Artech House, Boston (1996)
2. Redman, T. C.: The impact of poor data quality on the typical enterprise. Communications

of the ACM, 41, 79--82 (1998)
3. Brett, S.: World Wide Web Consortium (W3C), http://www.w3.org/2007/Talks/0130-sb-

W3CTechSemWeb/layerCake-4.png, retrieved on Mar 08th (2010)

Using Semantic Web Resources for Data Quality Management 15

4. Wang, R. Y., Strong, D. M.: Beyond accuracy: what data quality means to data consumers.
Journal of Management Information Systems, 12(4), 5--33 (1996)

5. Redman, T. C.: Data quality: the field guide. Digital Press, Boston (2001)
6. Rahm, E., Do, H.-H.: Data Cleaning: Problems and Current Approaches. IEEE Data

Engineering Bulletin 23(4), 3--13 (2000)
7. Oliveira, P., Rodrigues, F., Henriques, P.R., and Galhardas, H.: A Taxonomy of Data

Quality Problems, In: Proc. 2nd Int. Workshop on Data and Information Quality (in
conjunction with CAiSE'05), Porto, Portugal (2005)

8. Oliveira, P., Rodrigues, F., Henriques, P. R.: A Formal Definition of Data Quality Problems.
In: International Conference on Information Quality (2005)

9. Leser, U., and Naumann, F.: Informationsintegration: Architekturen und Methoden zur
Integration verteilter und heterogener Datenquellen, dpunkt-Verlag, Heidelberg (2007)

10. Kashyap, V., and Sheth, A.P.: Semantic and Schematic Similarities Between Database
Objects: A Context-Based Approach, Very Large Data Base Journal (5), 276--304 (1996)

11.Fürber, C., Hepp, M.: Using SPARQL and SPIN for Data Quality Management on the
Semantic Web. 13th International Conference on Business Information Systems (BIS2010).
Springer LNBIP (forthcoming), Berlin, Germany (2010)

12.Olson, J.: Data quality: the accuracy dimension. Morgan Kaufmann; Elsevier Science,
Oxford (2003)

13.Wang, R.Y.: A product perspective on total data quality management. Commun. ACM 41
(1998) 58-65

14. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition 5 (1993) 199-220

15.Hartig, O., Zhao, J.: Using Web Data Provenance for Quality Assessment. First International
Workshop on the role of Semantic Web in Provenance Management (Co-located with the
8th International Semantic Web Conference, ISWC-2009), Washington D.C., USA. (2009)

16.Hartig, O.: Querying Trust in RDF Data with tSPARQL. In: Aroyo, L., Traverso, P.,
Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M.,
Simperl, E. (eds.): 6th Annual European Semantic Web Conference (ESWC2009), Vol.
5554. Springer, Heidelberg (2009) 5-20

17.Bizer, C., Cyganiak, R.: Quality-driven information filtering using the WIQA policy
framework. Web Semant. 7 (2009) 1-10

18.Lei, Y., Nikolov, A.: Detecting Quality Problems in Semantic Metadata without the
Presence of a Gold Standard. EON, Vol. 329. CEUR-WS.org (2007) 51-60

19. Brüggemann, S., Grüning, F.: Using Ontologies Providing Domain Knowledge for Data
Quality Management In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.):
Networked Knowledge - Networked Media Springer Berlin / Heidelberg (2009) 187-203

20.Batini, C., Scannapieco, M.: Data quality : concepts, methodologies and techniques.
Springer, Berlin (2006)

