
Timed-Ephemerizer: Make Assured Data Appear
and Disappear

Qiang Tang

DIES, Faculty of EEMCS, University of Twente, the Netherlands
q.tang@utwente.nl

Abstract. The concept of Ephemerizer, proposed by Perlman, is a mech-
anism for assured data deletion. Ephemerizer provides a useful service
that expired data deleted from the persistent storage devices will be un-
recoverable, even if later on some of the private keys in the system are
compromised. However, no security model has ever been proposed for
this primitive and existing protocols have not been studied formally. In
practice, a potential shortcoming of existing Ephemerizer protocols is that
they are supposed to provide only assured deletion but not assured initial
disclosure. In other words, there is no guarantee on when the data will
be initially disclosed. In this paper, we formalize the notion of Timed-
Ephemerizer which can be regarded as augmented Ephemerizer and can
provide both assured initial disclosure and deletion for sensitive data. We
propose a new Timed-Ephemerizer protocol and prove its security in the
proposed security model.

1 Introduction

Rapid growth of information technology has greatly facilitated individuals and
enterprizes to generate and store information (business transaction details, elec-
tronic health records, personal profiles, etc.). It is common that backups of the
same piece of data will be placed on many different persistent storage devices,
such as hard disks, tapes, and USB tokens. To protect the confidentiality, sensi-
tive data are often firstly encrypted then stored on various devices, while the
cryptographic keys also need to be stored and backuped on some persistent
storage devices. With respect to storing data in persistent storage devices, there
are two concerns.

1. It is relatively easy to recover data from persistent storage devices, even
when the data has been deleted. As such, the US government specification
has suggested to overwrite non-classified information three times [10].

2. Backups of encrypted sensitive data and cryptographic keys often reside
in many devices. Consequently, it is difficult to make sure that all relevant
backups have been deleted.

The above observations imply that an adversary may simultaneously obtain a
copy of encrypted data and relevant cryptographic keys due to the potential

management carelessness. Especially, this may be fairly easy for a malicious in-
sider in organizations. As a result, even with encryption implemented, sensitive
data may still be in potential danger.

To protect sensitive data from illegitimate leakage, Ephemerizer, proposed
by Perlman [12,13], has shown a promising direction. For an application with
Ephemerizer, data is encrypted using the public keys from both the data con-
sumer and the Ephemerizer, and the ciphertext resides in the data consumer’s
persistent storage devices. If the data consumer wants to recover the data, it
can decrypt the ciphertext with the help from the Ephemerizer. If we assume
that the plaintext data will only reside in volatile storages1 and the Ephemerizer
will securely delete the expired ephemeral keys periodically, the decryption can
only occur before the expiration of the relevant key pair of the Ephemerizer. In
other words, a Ephemerizer protocol will provide assured deletion for sensitive
data.

Contribution. In the literature, no security model has ever been proposed for
Ephemerizer and existing protocols have not been analyzed formally. Some
protocols have been shown suffering from security vulnerabilities (as surveyed
in Section 2). In addition, we show that the Ephemerizer protocol in [9] suffers
from serious security vulnerabilities in Appendix B. In practice, a potential
shortcoming of existing Ephemerizer protocols is that they are only supposed
to provide assured deletion but not assured initial disclosure. In other words,
there is no guarantee on when the data will be initially disclosed.

We formalize the notion of Timed-Ephemerizer, aimed to provide an as-
sured disclosure policy enforcement for the lifecycle of sensitive data, where
the lifecycle is marked by the initial disclosure and the deletion after expiration.
Conceptually, the new primitive can be regarded as augmented Ephemerizer
by combining Ephemerizer (for assured deletion)[12,13] and Timed-Release En-
cryption (for assured initial disclosure)[8]. In other words, Ephemerizer can be
seen as a Timed-Ephemerizer without the timed re-lease property. Furthermore,
we propose a new Timed-Ephemerizer protocol and prove its security in our
model.

Organization. The rest of the paper is organized as follows. In Section 2 we briefly
review the relevant works on Ephemerizer and Timed-Release Encryption. In
Section 3 we introduce the concept of Timed-Ephemerizer and formalize the
security properties. In Section 4 we propose a new Timed-Ephemerizer protocol
and prove its security. In Section 5 we conclude the paper.

1 In contrast to persistent storage devices, it is more difficult for an adversary to corrupt
volatile storage devices (for example, most forms of modern random access memory)
because the data in such devices will disappear when the electricity/power is gone.
However, it is worth noting that this could be very subtle in the presence of side
channel attacks, especially when considering the cold boot attacks [6].

2 Related Work

2.1 Ephemerizer Protocols

Perlman [12,13] proposes two Ephemerizer protocols without providing rigor-
ous security proofs. One protocol uses a blind encryption technique, which is
a kind of homomorphic property between two encryption schemes. The other
protocol uses a triple encryption technique, where data is encrypted using a
symmetric key which is sequentially encrypted using the public key of the data
consumer, the public key of the Ephemerizer, and the public key of the data
consumer. However, this protocol has been shown suffering from a fatal vulner-
ability by Nair et al. [9]. In addition, Nair et al. [9] observe that both protocols
proposed by Perlman do not provide support for fine-grained user settings
on the lifetime of the data. As a solution, Nair et al. propose a protocol using
identity-based public-key encryption. However, they have not provided a se-
curity analysis in a formal security model. In Appendix B, we show that their
protocol also suffers from fatal vulnerabilities.

2.2 Timed-Release Encryption

The concept of Timed-Release Encryption (TRE), i.e. sending a message which
can only be decrypted after a pre-defined release time, is attributed to May [8].
Later on, Rivest, Shamir, and Wagner further elaborate on this concept and gave
a number of its applications including electronic auctions, key escrow, chess
moves, release of documents over time, payment schedules, press releases [14].
Hwang, Yum, and Lee [7] extend the concept of TRE schemes to include the
Pre-Open Capability which allows the message sender to assist the receiver to
decrypt the ciphertext before the pre-defined disclosure time. Later on, Dent and
Tang [5] propose a refined model and comprehensive analysis for this extended
primitive.

There are two approaches to embed a timestamp in a ciphertext. One ap-
proach, proposed in [14], is that a secret is transformed in such a way that all
kinds of machines (serial or parallel) take at least a certain amount of time to
solve the underlying computational problems (puzzle) in order to recover the
secret. The release time is equal to the time at which the puzzle is released plus
the minimum amount of time that it would take to solve the puzzle. However,
this means that not all users are capable of decrypting the ciphertext at the re-
lease time as they may have different computing power. The other approach is
to use a trusted time server, which, at an appointed time, will assist in releasing
a secret to help decrypt the ciphertext (e.g. [3,14]). Using this approach, the
underlying schemes require interaction between the server and the users, and
should prevent possible malicious behaviour of the time server. In this paper,
we will adopt the second approach because, regardless of the computing power
of all involved entities, it can provide assured disclosure time under appropriate
assumptions.

3 The Concept of Timed-Ephemerizer

Informally, a Timed-Ephemerizer protocol guarantees that data will only be
available during a pre-defined lifecycle, beyond which no adversary can recover
the data even if it has compromised all existing private keys in the system.
Compared with Ephemerizer protocols [9,12,13], a Timed-Ephemerizer protocol
explicitly provides the guarantee that data can only be available after the pre-
defined initial disclosure time.

3.1 The Algorithm Definitions

Generally, a Timed-Ephemerizer protocol involves the following types of enti-
ties: time server, data generator, data consumer, and Ephemerizer.

– Time server, which will publish timestamps periodically. We assume that the
time server acts properly in generating its parameters and publishing the
timestamps. However, concerning the privacy of data, we take into account
the fact that the time server may be curious, i.e. it may try to decrypt the
ciphertext.

– Data generator, which will make her data available to a data consumer. The
data generator defines the lifecycle of her data.

– Data consumer, which will access the data generator’s data. A data con-
sumer could be curious in the way that it may try to access data before the
initial disclosure time.

– Ephemerizer, which is trusted to publish and revoke ephemeral public/private
key pairs periodically. However, the Ephemerizer could be curious in the
sense that it may try to decrypt the ciphertext.

Remark 1. Compared with an Ephemerizer protocol, a Timed-Ephemerizer pro-
tocol has one additional entity, namely the time server. One may have the
observation that the Ephemerizer can be required to release timestamps so that
the time server can be eliminated. However, we argue that the separation of
functionalities provides a higher level of security in general. First of all, the time
server only needs to publish timestamps without any additional interaction
with other entities. In practice, the risk that time server is compromised is less
than that for the Ephemerizer. Secondly, the risk that both the Ephemerizer and
the time server are compromised is less than that any of them is compromised.

A Timed-Ephemerizer protocol consists of the following polynomial-time
algorithms. Let ` be the security parameter.

– SetupT(`): Run by the time server, this algorithm generates a public/private
key pair (PKT,SKT).

– TimeExt(t,SKT): Run by the time server, this algorithm generates a times-
tamp TSt. It is assumed that the time server publishes TSt at the point t.
Throughout the paper, the notation t < t′ means t is earlier than t′.

– SetupE(`): Run by the Ephemerizer, this algorithm generates a set of tuples
(PKtephj

,SKtephj
, teph j) for j ≥ 1, where (PKtephj

,SKtephj
) is a public/private key pair

and teph j is the expiration time of the key pair. The Ephemerizer will securely
delete SKtephj

at the point teph j . We assume that there is only one ephemeral
key pair for any expiration time teph j . In addition, we assume teph j < tephk if
j < k.

– SetupU(`): Run by a data consumer, this algorithm generates a public/private
key pair (PKU,SKU).

– Generate(M, tint,PKU,PKtephj
,PKT): Run by the data generator, this algorithm

outputs a ciphertext C. For the message M, tint is the initial disclosure time
and teph j is the expiration time. We explicitly assume that both (tint, teph j) and
C should be sent to the data consumer.

– Retrieve(C,TStint ,SKU; SKtephj
): Interactively run between the data consumer

and the Ephemerizer, this algorithm outputs a plaintext M or an error sym-
bol ⊥ to the data consumer. We explicitly make the following assumption.
The data consumer has (C,TStint ,SKU) as the input and sends teph j to the
Ephemerizer in advance, so that the Ephemerizer uses SKtephj

as the input
for the upcoming algorithm execution.

Remark 2. In the algorithm definitions, besides the explicitly specified parame-
ters, other public parameters could also be specified and be implicitly part of
the input. We omit those parameters for the simplicity of description.

With a Timed-Ephemerizer protocol, the workflow is similar to that of an
Ephemerizer protocol.

1. The data generator runs the algorithm Generate to encrypt her data. The
difference is that this algorithm involves the public key of the time server.

2. The data consumer runs the algorithm Retrieve to decrypt the ciphertext
with the help from the Ephemerizer. The difference is that this algorithm
involves a timestamp from the time server.

3.2 The Security Definitions

We first describe some conventions for writing probabilistic algorithms and ex-
periments. The notation u ∈R S means u is randomly chosen from the set S. IfA
is a probabilistic algorithm, then v $←A(f1,f2,···)(x, y, · · ·) means that v is the result
of running A, which takes x, y, · · · as input and has any polynomial number
of oracle queries to the functions f1, f2, · · · . As a standard practice, the security
of a protocol is evaluated by an experiment between an attacker and a chal-
lenger, where the challenger simulates the protocol executions and answers the
attacker’s oracle queries. Without specification, algorithms are always assumed
to be polynomial-time.

A Timed-Ephemerizer protocol is aimed to guarantee that data will only
be available during its lifecycle, while neither before the initial disclosure time

nor after the expiration time. We assume that the validation of public keys in
the protocol can be verified by all the participants. Nonetheless, we generally
assume that an outside adversary is active, which means that the adversary
may compromise the protocol participants and fully control the communica-
tion channels (i.e. capable of deleting, relaying, and replacing the messages
exchanged between the participants). Considering the threats against confiden-
tiality, we identify three categories of adversaries.

– Type-I adversary: This type of adversary wants to access data before its
initial disclosure time. Type-I adversary represents a curious data consumer
and also a malicious outside entity which has compromised the Ephemerizer
and the data consumer before the initial disclosure time of the data.

– Type-II adversary: This type of adversary wants to access data after its
expiration time. Type-II adversary represents a malicious outside entity
which has compromised the time server, the Ephemerizer, and the data
consumer after the expiration time of the data.

– Type-III adversary: This type of adversary represents a curious time server
and a curious Ephemerizer, and also a malicious outside entity which has
compromised the Ephemerizer and the data consumer

The implications of a Type-I adversary and a Type-II adversary are clear for a
Timed-Ephemerizer protocol. Nonetheless, the existence of a Type-III adversary
still makes sense even in the presence of these two types of adversary. Compared
with a Type-I adversary, a Type-III adversary has the advantage of accessing
the private key (and all timestamps) of the time server; while compared with
a Type-II adversary, a Type-III adversary has the advantage of accessing all the
private keys of the Ephemerizer. However, a Type-III adversary does not have
direct access to the data consumer’s private key.

Remark 3. It is worth stressing that when the adversary compromises an entity
(the time server, the Ephemerizer, or the data consumer) it will obtain the private
keys possessed by that entity. For example, if the Ephemerizer is compromised
at the point t, then it will obtain all the private keys SKtephj

for teph j > t. However,
we do not take into account the compromise of ephemeral session secrets during
the executions of algorithms.

Definition 1. A Timed-Ephemerizer protocol achieves Type-I semantic security if any
polynomial-time adversary has only a negligible advantage in the following semantic
security game (as shown in Figure 1), where the advantage is defined to be |Pr[b′ =
b] − 1

2 |.
In more detail, the attack game between the challenger and the adversaryA

performs as follows. In this game the challenger simulates the functionality of
the time server.

1. The challenger runs SetupT to generate (PKT,SKT), runs SetupE to generate
(PKtephj

,SKtephj
) for j ≥ 1, and runs SetupU to generate (PKU,SKU). Except for

SKT, all private keys and all public parameters are given to the adversary.

1. (PKT ,SKT) $← SetupT(`); (PKtephj
, SKtephj

) for j ≥ 1 $← SetupE(`); (PKU , SKU) $← SetupU(`)

2. (M0,M1, t∗int,PKtephi
) $←A(TimeExt)(SKtephj

for j ≥ 1, SKU)

3. b $← {0, 1};Cb
$← Generate(Mb, t∗int,PKU ,PKtephi

,PKT)

4. b′ $←A(TimeExt)(Cb,SKtephj
for j ≥ 1,SKU)

Fig. 1. Semantic Security against Type-I Adversary

2. The adversary can adaptively query the TimeExt oracle, for which the ad-
versary provides a time t and gets a timestamp TSt from the challenger. At
some point, the adversary sends the challenger two equal-length plaintext
M0,M1 on which it wishes to be challenged, and two timestamps (t∗int, tephi).
The only restriction is that the TimeExt oracle should not have been queried
with t ≥ t∗int.

3. The challenger picks a random bit b ∈ {0, 1} and gives the adversary Cb as
the challenge, where

Cb = Generate(Mb, t∗int,PKU,PKtephi
,PKT).

4. The adversary can continue to query the TimeExt oracle with the same
restriction as in Step 2.

5. Eventually, the adversary outputs b′.

In the above attack game, the adversary is Type-I because it has access to
SKU and SKtephj

for any j ≥ 1

Remark 4. The restriction in steps 2 and 4 of the above game, namely “the
TimeExt oracle should not have been queried with t ≥ t∗int.”, implies that the
adversary tries to recover a message before the initial disclosure time. This
coincides with the definition of Type-I adversary.

Definition 2. A Timed-Ephemerizer protocol achieves Type-II semantic security if any
polynomial time adversary has only a negligible advantage in the following semantic
security game (as shown in Figure 2), where the advantage is defined to be |Pr[b′ =
b] − 1

2 |.

1. (PKT ,SKT) $← SetupT(`); (PKtephj
, SKtephj

) for j ≥ 1 $← SetupE(`); (PKU , SKU) $← SetupU(`)

2. (M0,M1, t∗int,PKtephi
) $←A(Retrieve)(SKT , SKtephj

for j > i,SKU)

3. b $← {0, 1};Cb
$← Generate(Mb, t∗int,PKU ,PKtephi

,PKT)

4. b′ $←A(Retrieve)(Cb,SKT ,SKtephj
for j > i, SKU)

Fig. 2. Semantic Security against Type-II Adversary

In more detail, the attack game between the challenger and the adversaryA
performs as follows. In this game the challenger simulates the functionalities of
both the Ephemerizer and the data consumer.

1. The challenger runs SetupT to generate (PKT,SKT), runs SetupE to generate
(PKtephj

,SKtephj
) for j ≥ 1, and runs SetupU to generate (PKU,SKU). The private

key SKT and all public parameters are given to the adversary.
2. The adversary can adaptively issue the following two types of Retrieve

oracle queries.
(a) D-type Retrieve oracle query: In each oracle query, the adversary imper-

sonates the Ephemerizer and provides (tint, teph j) and C to the challenger,
which then uses (C,TStint ,SKU) as input and runs the Retrieve algorithm
with the adversary to decrypt C by assuming that the initial disclosure
time is tint and the expiration time is teph j .

(b) E-type Retrieve query: In each oracle query, the adversary impersonates
the data consumer to the Ephemerizer and sends teph j to the challenger,
which uses SKtephj

as the input and runs the Retrieve algorithm with the
adversary.

At some point, the adversary sends the challenger two equal-length plain-
text M0,M1 on which it wishes to be challenged, and two timestamps
(t∗int, tephi). In this phase, the adversary can query for SKU and SKtephj

for
any j > i with the following restriction: if SKU has been queried, then any
E-type Retrieve oracle query with the input teph j for any j ≤ i is forbidden.

3. The challenger picks a random bit b ∈ {0, 1} and gives the adversary Cb as
the challenge, where

Cb = Generate(Mb, t∗int,PKU,PKtephi
,PKT).

4. The adversary can continue to issue oracle queries as in Step 2 with the same
restriction.

5. The adversaryA outputs b′.

In the above attack game, the adversary is Type-II because it has access to
the private keys SKT, SKU, and SKtephj

for any j > i.

Remark 5. In the above game, the privilege, that the adversary can issue the two
types of Retrieve oracle queries, reflects the fact that the adversary has com-
plete control over the communication link between the data consumer and the
Ephemerizer. In practice, such an adversary can initiate the Retrieve algorithm
with both the Ephemerizer and the data consumer. The first case is modeled
by the E-type Retrieve query, while the second case is modeled by the D-type
Retrieve query.

Remark 6. The restriction in the above game, namely “if SKU has been queried,
then E-type Retrieve oracle query with the input teph j for any j ≤ i is forbidden.”,
reflects the fact that the adversary tries to recover a message after its expiration

time tephi (when the ephemeral keys SKtephj
for any j ≤ i should have been

securely deleted by the Ephemerizer). This coincides with the definition of
Type-II adversary.

Definition 3. A Timed-Ephemerizer protocol achieves Type-III semantic security if any
polynomial time adversary has only a negligible advantage in the following semantic
security game (as shown in Figure 3), where the advantage is defined to be |Pr[b′ =
b] − 1

2 |.

1. (PKT ,SKT) $← SetupT(`); (PKtephj
, SKtephj

) for j ≥ 1 $← SetupE(`); (PKU , SKU) $← SetupU(`)

2. (M0,M1, t∗int,PKtephi
) $←A(Retrieve)(SKT , SKtephj

for j ≥ 1)

3. b $← {0, 1};Cb
$← Generate(Mb, t∗int,PKU ,PKtephi

,PKT)

4. b′ $←A(Retrieve)(Cb,SKT ,SKtephj
for j ≥ 1)

Fig. 3. Semantic Security against Type-III Adversary

In more detail, the attack game between the challenger and the adversaryA
performs as the following. In this game the challenger simulates the function-
ality of the data consumer.

1. The challenger runs SetupT to generate (PKT,SKT), runs SetupE to generate
(PKtephj

,SKtephj
) for j ≥ 1, and runs SetupU to generate (PKU,SKU). The private

key SKT, all ephemeral private keys SKtephj
for j ≥ 1, and all public parameters

are given to the adversary.
2. The adversary can adaptively issue the D-type Retrieve oracle query (de-

fined as above). At some point, the adversary sends the challenger two
equal-length plaintext M0,M1 on which it wishes to be challenged, and two
timestamps (t∗int, tephi).

3. The challenger picks a random bit b ∈ {0, 1} and gives the adversary Cb as
the challenge, where

Cb = Generate(Mb, t∗int,PKU,PKtephi
,PKT).

4. The adversary can continue to query the Retrieve oracle as in Step 2.
5. The adversaryA outputs b′.

In the above attack game, the adversary is Type-III because it has access to
the private keys SKT and SKtephj

for any j ≥ 1.

Remark 7. In the above game, expect for the data consumer’s private key, the
adversary is allowed to access all other secrets. In particular, this means that
the adversary can compromise both the time server and the Ephemerizer at any
time. This coincides with the definition of Type-III adversary.

4 A New Timed-Ephemerizer Protocol

4.1 Preliminary of Pairing

We review the necessary knowledge about pairing and the related assumptions.
More detailed information can be found in the seminal paper [2]. A pairing (or,
bilinear map) satisfies the following properties:

1. G and G1 are two multiplicative groups of prime order p;
2. g is a generator of G;
3. ê : G×G→ G1 is an efficiently-computable bilinear map with the following

properties:
– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab.
– Non-degenerate: ê(g, g) , 1.

The Bilinear Diffie-Hellman (BDH) problem in G is as follows: given a tuple
g, ga, gb, gc ∈ G as input, output ê(g, g)abc ∈ G1. An algorithmA has advantage ε
in solving BDH in G if

Pr[A(g, ga, gb, gc) = ê(g, g)abc] ≥ ε.
Similarly, we say that an algorithm A has advantage ε in solving the decision
BDH problem in G if

|Pr[A(g, ga, gb, gc, ê(g, g)abc) = 0] − Pr[A(g, ga, gb, gc,T) = 0]| ≥ ε.
where the probability is over the random choice of a, b, c ∈ Zp, the random
choice of T ∈ G1, and the random bits ofA.

Definition 4. We say that the (decision) (t, ε)-BDH assumption holds inG if no t-time
algorithm has advantage at least ε in solving the (decision) BDH problem in G.

Besides these computational/decisional assumptions, the Knowledge of Ex-
ponent (KE) assumption is also used in a number of papers (e.g. [1,4]). The KE
assumption is defined as follows.

Definition 5. For any adversary A, which takes a KE challenge (g, ga) as input and
returns (C,Y) where Y = Ca, there exists an extractorA′, which takes the same input
asA returns c such that gc = C.

4.2 The Proposed Construction

The philosophy behind the proposed protocol is similar to the blind encryp-
tion technique [12,13]. The data generator encrypts the data jointly using the
ephemeral public key of the Ephemerizer and the public key of the time server,
then the ciphertext is encrypted using the public key of the data consumer.
The main difference (and advantage) is that we avoid using blind encryption
technique while using an efficient re-randomization technique with the XOR
(⊕) operation.

Let ` be the security parameter and {0, 1}n be the message space of data
consumer, where n is a polynomial in `. The polynomial-time algorithms are
defined as follows.

– SetupT(`): This algorithm generates the following parameters: a multiplica-
tive group G of prime order p, a generator g of G, and a multiplicative
group G1 of the same order as G, a polynomial-time computable bilinear
map ê : G × G → G1, a cryptographic hash function H1 : {0, 1}∗ → G,
and a long-term public/private key pair (PKT,SKT) where SKT ∈R Zp and
PKT = gSKT . The time server also publishes (G,G1, p, g, ê,H1). Suppose the
time server possesses the identity IDT.

– TimeExt(t,SKT): This algorithm returns TSt = H1(IDT ||t)SKT .

– SetupE(`): Suppose that the Ephemerizer possesses the identity IDE. The
Ephemerizer uses the same set of parameter (G,G1, p, g, ê) as by the time
server and selects the supported expiration times teph j (1 ≤ j ≤ N) where
N is an integer. The Ephemerizer generates a master key pair (PK(0)

E ,SK(0)
E),

where SK(0)
E ∈R Zp and PK(0)

E = gSK(0)
E , and two hash functions

H2 : {0, 1}∗ → G, H3 : G1 → {0, 1}n,
and sets, for 1 ≤ j ≤ N,

PK(0)
tephj

= IDE||teph j , SK(0)
tephj

= H2(IDE||teph j)
SK(0)

E .

The Ephemerizer generates another master key pair (PK(1)
E ,SK(1)

E) for an
identity-based public key encryption schemeE1 with the encryption/decryption
algorithms (Encrypt1,Decrypt1), and generates the ephemeral key pairs
(PK(1)

tephj
, SK(1)

tephj
) for 1 ≤ j ≤ N, where PK(1)

tephj
= IDE||teph j . Suppose the mes-

sage space and ciphertext space of the encryption scheme E1 areY andW,
respectively.
The Ephemerizer keeps a set of tuples (PKtephj

,SKtephj
, teph j) for j ≥ 1, where

PKtephj
= (PK(0)

tephj
,PK(1)

tephj
), SKtephj

= (SK(0)
tephj
,SK(1)

tephj
)

The Ephemerizer publishes the long-term public keys PK(0)
E ,PK(1)

E .

– SetupU(`): This algorithm generates a public/private key pair (PKU,SKU)
for a public key encryption scheme E2 with the encryption/decryption al-
gorithms (Encrypt2,Decrypt2). Suppose the message space of E2 is X and
the ciphertext space isD. The data consumer publishes the following hash
functions H4,H5,H6,H7,H8,H9.

H4 : G ×G→ G, H5 : X → G ×G ×G × {0, 1}n,
H6 : X ×G ×G ×G × {0, 1}n ×D ×G ×G ×G × {0, 1}n → {0, 1}n,
H7 : Y ×G ×G ×G × {0, 1}n ×W ×G ×G ×G × {0, 1}n → {0, 1}n,

H8 : Y ×G ×G ×G × {0, 1}n → {0, 1}n, H9 : Y → G ×G ×G × {0, 1}n.

– Generate(M, tint,PKU,PKtephj
,PKT): This algorithm outputs a ciphertext C,

where

r1, r2 ∈R Zp, X ∈R X, C1 = gr1 , C2 = gr2 , C3 = H4(C1||C2)r1 ,

C4 = M ⊕ H3(ê(H2(PK(0)
tephj

),PK(0)
E)r1 · ê(H1(IDT ||tint),PKT)r2)

= M ⊕ H3(ê(H2(IDE||teph j),C1)SK(0)
E · ê(H1(IDT ||tint),C2)SKT),

C5 = Encrypt2(X,PKU), C6 = H5(X) ⊕ (C1||C2||C3||C4),

C7 = H6(X||C1||C2||C3||C4||C5||C6), C = (C5,C6,C7).

– Retrieve(C,TStint ,SKU; SKtephj
):

1. The data consumer decrypts C5 to obtain X, and aborts if the following
inequation is true.

C7 , H6(X||(C6 ⊕ H5(X))||C5||C6)

Otherwise it computes C1||C2||C3||C4 = H5(X) ⊕ C6. The data consumer
then computes and sends (C′,TStint) to the Ephemerizer, where

M′ ∈R {0, 1}n, C′1 = C1, C′2 = C2, C′3 = C3, C′4 = M′ ⊕ C4,

Y ∈R Y, C′5 = Encrypt1(Y,PK(1)
tephj

), C′6 = H9(Y) ⊕ (C′1||C′2||C′3||C′4),

C′7 = H7(Y||C′1||C′2||C′3||C′4||C′5||C′6), C′ = (C′5,C
′
6,C

′
7).

2. If the ephemeral key SKtephj
= (SK(0)

tephj
,SK(1)

tephj
) has not expired, the Ephemer-

izer decrypts C′5 to obtain Y, and aborts if

C′7 , H7(Y||(C′6 ⊕ H9(Y))||C′5||C′6)

It then computes C′1||C′2||C′3||C′4 = H9(Y) ⊕ C′6, and aborts if

ê(C′3, g) , ê(C′1,H4(C′1||C′2))

Finally, it sends C′′ to the data consumer, where

C
′′

= H8(Y||C′1||C′2||C′3||C′4) ⊕ C′4 ⊕ H3(ê(C′1,SK(0)
tephj

) · ê(TStint ,C
′
2))

= H8(Y||C′1||C′2||C′3||C′4) ⊕M′ ⊕M.

3. The data consumer recovers M = H8(Y||C′1||C′2||C′3||C′4) ⊕M′ ⊕ C′′ .

As in the case of the hybrid PKI-IBC protocol [9], the proposed protocol
also adopts the concept of identity-based encryption [2,15]. As a result, the
Ephemerizer avoids publishing a large volume of ephemeral public keys, which
is however the case in [12,13]. Compared with the protocol in [9], the concrete
difference is that the master private key SKE = (SK(0)

E ,SK(1)
E) is only required to

be ephemeral, i.e. after generating the ephemeral private keys, the Ephemerizer
can delete SKE.

Remark 8. In the execution of Retrieve, the timestamp TStint is a required input.
Intuitively, before the time server publishes the timestamp, it is infeasible for
the data consumer and the Ephemerizer to run Retrieve to recover the message.
Lemma 1 in the next section formalizes this intuition.

Remark 9. For a Timed-Ephemerizer protocol, the semantic securities against
Type-I and Type-III adversaries are relatively easy to achieve, given the existing
timed-release encryption techniques. The difficulty lies in the semantic security
against Type-II adversary, which fully controls the communication channel and
is capable of adaptively compromising all parties in the system. In fact, this has
resulted in the complexity of the above protocol.

4.3 The Security Analysis

The following three lemmas show that the proposed protocol is secure against
all three types of adversaries. Their proofs are in the Appendix A.

Lemma 1. The proposed scheme achieves semantic security against Type-I adversary
based on the BDH assumption in the random oracle model.

Lemma 2. The proposed scheme achieves semantic security against Type-II adversary
based on the BDH and the KE assumptions in the random oracle model given that the
public key encryption schemes E1 and E2 are one-way permutation.

Lemma 3. The proposed scheme achieves semantic security against Type-III adversary
in the random oracle model given that the public key encryption schemes E1 and E2 are
one-way permutation.

5 Conclusion

In this paper we revisited the concept of Ephemerizer proposed by Perlman,
and formalized the notion of Timed-Ephemerizer, aimed to provide an assured
lifecycle for sensitive data, and proposed a new Timed-Ephemerizer protocol
and proved its security in the proposed security model. For this new concept of
Timed-Ephemerizer, a number of interesting research questions remain open.
We list two of them here. One is to investigate more efficient and secure proto-
cols for Timed-Ephemerizer. Especially, note that the random oracle paradigm
has been heavily used in the security analysis of the proposed protocol. It is
interesting to design secure protocols without using random oracles. The other
interesting research question is to use Timed-Ephemerizer as a tool to solve
practical security problems. Note that, as an application of Ephemerizer, Perl-
man [11] proposes a file system that supports high availability of data with
assured delete.

References

1. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In M. K. Franklin, editor, Advances in Cryptology —
CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer, 2004.

2. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
J. Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 213–229. Springer, 2001.

3. J. Cathalo, B. Libert, and J.-J. Quisquater. Efficient and non-interactive timed-release
encryption. In S. Qing, W. Mao, J. Lopez, and G. Wang, editors, Proceedings of the 7th
International Conference on Information and Communications Security, volume 3783 of
Lecture Notes in Computer Science, pages 291–303. Springer-Verlag, 2005.

4. Ivan Damgård. Towards practical public key systems secure against chosen ci-
phertext attacks. In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO 1991,
volume 576 of LNCS, pages 445–456. Springer, 1991.

5. A. W. Dent and Q. Tang. Revisiting the security model for timed-release encryption
with pre-open capability. In J. A. Garay, A. K. Lenstra, M. Mambo, and R. Peralta,
editors, Information Security, 10th International Conference, ISC 2007, volume 4779 of
Lecture Notes in Computer Science, pages 158–174. Springer, 2007.

6. J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest We Remember: Cold Boot
Attacks on Encryption Keys. In P. C. van Oorschot, editor, Proceedings of the 17th
USENIX Security Symposium, pages 45–60. USENIX Association, 2008.

7. Y. Hwang, D. Yum, and P. Lee. Timed-release encryption with pre-open capability
and its application to certified e-mail system. In J. Zhou, J. Lopez, R. Deng, and
F. Bao, editors, Proceedings of the 8th International Information Security Conference (ISC
2005), volume 3650 of Lecture Notes in Computer Science, pages 344–358. Springer,
2005.

8. T. C. May. Time-release crypto, 1993.
9. S. K. Nair, M. T. Dashti, B. Crispo, and A. S. Tanenbaum. A Hybrid PKI-IBC Based

Ephemerizer System. In H. S. Venter, M. M. Eloff, L. Labuschagne, J. H. P. Eloff,
and R. von Solms, editors, New Approaches for Security, Privacy and Trust in Complex
Environments, Proceedings of the IFIP TC-11 22nd International Information Security
Conference (SEC 2007), volume 232 of IFIP, pages 241–252. Springer, 2007.

10. Department of Defense of the United States. National Industrial Security Program
Operating Manual (NISPOM), 2006. DoD 5220.22-M.

11. R. Perlman. File system design with assured delete. In SISW ’05: Proceedings of the
Third IEEE International Security in Storage Workshop, pages 83–88. IEEE Computer
Society, 2005.

12. R. Perlman. The Ephemerizer: Making Data Disappear. Journal of Information System
Security, 1(1):51–68, 2005.

13. R. Perlman. The Ephemerizer: Making Data Disappear. Technical Report TR-2005-
140, Sun Microsystems, Inc., 2005.

14. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report Tech. Report MIT/LCS/TR-684, MIT LCS, 1996.

15. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryp-
tology, Proceedings of CRYPTO ’84, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1985.

16. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
http://shoup.net/papers/, 2006.

Appendix A: Proofs for the Lemmas

Proof sketch of Lemma 1. Suppose an adversaryA has the advantage ε in the
attack game depicted in Figure 1.

Game0: In this game, the challenger faithfully simulates the protocol execu-
tion and answers the oracle queries fromA. We assume the challenger simulates
the hash function H1 as follows. The challenger maintains a list of vectors, each
of them containing a request message, an element of G (the hash-code for this
message), and an element of the form IDT ||t. After receiving a request message,
the challenger first checks its list to see whether the request message is already
in the list. If the check succeeds, the challenger returns the stored element of G;
otherwise, the challenger returns gy, where y a randomly chosen element ofZp,
and stores the new vector in the list. Other hash functions are simulated in a
similar way.

On receiving a TimeExt oracle query with the input t, the challenger answers
PKy

T given that H1(IDT ||t) = gy. Let δ0 = Pr[b′ = b], as we assumed at the
beginning, |δ0 − 1

2 | = ε.

Game1: In this game, the challenger performs in the same way as in Game0
except for the generation of the challenge Cb.

r∗1, r
∗
2 ∈R Zp, X∗ ∈R X, R ∈ G1, C∗1 = gr∗1 , C∗2 = gr∗2 , C∗3 = H4(C∗1||C∗2)r∗1 ,

C∗4 = Mb ⊕ H3(R), C∗5 = Encrypt2(X∗,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C∗2||C∗3||C∗4),

C∗7 = H6(X∗||C∗1||C∗2||C∗3||C∗4||C∗5||C∗6), Cb = (C∗5,C
∗
6,C

∗
7).

Let δ1 be the probability that the challenger successfully ends and b′ = b in
Game1. As R ∈R G1 and H3 is modeled as a random oracle, the equation |δ1− 1

2 | =
0 holds.

With respect to the generation of Cb, from Game0 to Game1, the only mod-
ification is that ê(H2(IDE||tephi),C

∗
1)SK(0)

E · ê(H1(IDT ||t∗int),C
∗
2)SKT has been replaced

with R, where R ∈R G1. As a result, Game1 is identical to Game0 unless
ê(H2(IDE||tephi),C

∗
1)SK(0)

E · ê(H1(IDT ||t∗int),C
∗
2)SKT has been queried to H3. Note that

SK(0)
E is not required in answering the TimeExt oracle queries. We immediately

obtain |δ1 − δ0| = ε′ where ε′ is negligible based on the BDH assumption. The
lemma now follows. ut

Proof sketch of Lemma 2. Suppose an adversaryA has the advantage ε in the
attack game depicted in Figure 1. The security proof is done through a sequence
of games [16].

Game0: In this game, the challenger faithfully simulates the protocol execu-
tion and answers the oracle queries fromA. Let δ0 = Pr[b′ = b], as we assumed
at the beginning, |δ0 − 1

2 | = ε.
Before moving ahead, we first describe the following claims. The verifica-

tions of these two claims can be done straightforwardly in the random oracle
model given the encryption schemes E1 and E2 are one-way permutation.

Claim. Before the adversary queries SKU, given a D-type Retrieve query with
the input (C = (C5,C6,C7), tint, tephi), given that any of C5 = C∗5, C6 = C∗6, or
C7 = C∗7 holds, then the challenger will accept the request with only a negligible
probability if one of them does not hold.

Claim. Given an E-type Retrieve query with the input (C′ = (C′5,C
′
6,C

′
7),TStint , tephi)

2,
given that any of C′5, C′6, or C′7 is equal to the corresponding element from the
output of a D-type Retrieve query, then the challenger will accept the request
with only a negligible probability if any of them is not equal to the corresponding
element of the same output.

Claim. Given an E-type Retrieve query with the input (C′ = (C′5,C
′
6,C

′
7),TStint , tephi),

given that C′ is not the output of a D-type Retrieve query, then the the probability
C′1 = C∗1 is negligible.

Game1: In this game, the challenger performs in the same way as in Game0
except for the following event Evn: For any E-type Retrieve query with the
input (C′ = (C′5,C

′
6,C

′
7), tephi), the challenger rejects the request if C′1 = C∗1, where

Y = Decrypt1(C′5,SK(1)
tephi

) and C′1||C′2||C′3||C′4 = H9(Y) ⊕ C′6, and C′ is not one of the
output of D-type Retrieve queries.

Let δ1 be the probability that the challenger successfully ends and b′ = b
in Game1. From the third claim we made in Game0, we have |δ1 − δ0| = ε1 is
negligible.

Game2: In this game, the challenger performs in the same way as in Game1
except for the following. For any E-type Retrieve query with the input (C′ =
(C′5,C

′
6,C

′
7),TStint , tephi), the challenger returns T ∈ {0, 1}n if C′1 = C∗1 where Y =

Decrypt1(C′5,SK′tephi
) and C′1||C′2||C′3||C′4 = H9(Y) ⊕ C′6.

The game Game2 is identical to Game1 unless the following event Evn
occurs: For some aforementioned E-type Retrieve oracle query with the in-
put (C′ = (C′5,C

′
6,C

′
7),TStint , tephi), the adversary has queried H8 with the input

Y||C′1||C′2||C′3||C′4. As the encryption scheme E2 is one-way permutation and the
hash functions are random oracles, the probability Pr[Evn] is negligible. Let δ2
be the probability that the challenger successfully ends and b′ = b in Game2.
Therefore, we have |δ2 − δ1| ≤ ε2 = Pr[Evn] is negligible.

Game3: In this game, the challenger performs in the same way as in Game2
except for answering the Retrieve oracle queries.

1. Given an E-type Retrieve query with the input (C′ = (C′5,C
′
6,C

′
7),TStint , tephi),

where C′ is not the output of a D-type Retrieve query, the challenger first

2 Note that in the formal definition of the semantic security against Type-II adversary,
the input to an E-type Retrieve query is tephi . However, as Retrieve is an interactive
algorithm and the adversary is assumed to control the communication channels, hence,
we let the adversary to choose other inputs. Specifically, in our protocol, the adversary
can choose (C′ = (C′5,C

′
6,C

′
7) and tephi).

checks whether or not there is an query

Ỹ||C̃′1||C̃′2||C̃′3||C̃′4||C̃′5||C̃′6
to the oracle H7 such that C′5 = Encrypt1(Ỹ,PK(2)

tephi
),

C′6 = C̃′6, H9(Ỹ) ⊕ C′6 = C̃′1||C̃′2||C̃′3||C̃′4, and C′7 = H7(Ỹ||C̃′1||C̃′2||C̃′3||C̃′4||C̃′5||C̃′6).

If the input exists, the challenger proceeds. If ê(C̃′3, g) , ê(C̃′1,H4(C̃′1||C̃′2)), it
aborts; otherwise it returns C′′ , where

C
′′

= H8(Ỹ||C̃′1||C̃′2||C̃′3||C̃′4) ⊕ C̃′3 ⊕ H3(ê(C̃′1,H2(PKtephi
))r̃′1 · ê(TStint , C̃′2)).

Note that the challenger retrieves r̃′1 such that gr̃′1 = C̃′1.

Let δ3 be the probability that the challenger successfully ends and b′ = b
in Game3. The game Game3 is identical to Game2 unless the following event
Evn occurs in answering the E-type Retrieve oracle queries: For any query with
some input (C′ = (C′5,C

′
6,C

′
7), tephi): for Ỹ = Decrypt(C′5,SK(1)

tephi
), an oracle query

to H7 with the input Ỹ||C̃′1||C̃′2||C̃′3||C̃′4||C̃′5||C̃′6 returns C′7. As H7 is modeled as a
random oracle, the probability Pr[Evn] is negligible. Let δ3 be the probability
that the challenger successfully ends and b′ = b in Game3. Therefore, we have
|δ3 − δ2| ≤ ε3 = Pr[Evn] is negligible.

Game4: In this game, the challenger performs in the same way as in Game3
except that the challenge Cb is computed as follows.

r∗1, r
∗
2 ∈R Zp, X∗ ∈R X, R ∈ G1, C∗1 = gr∗1 , C∗2 = gr∗2 , C∗3 = H4(C∗1||C∗2)r∗1 ,

C∗4 = Mb ⊕ H3(R), C∗5 = Encrypt2(X∗,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C∗2||C∗3||C∗4),

C∗7 = H6(X∗||C∗1||C∗2||C∗3||C∗4||C∗5||C∗6), Cb = (C∗5,C
∗
6,C

∗
7).

Let δ4 be the probability that the challenger successfully ends and b′ = b in
Game4. As R ∈R G1, the equation |δ4 − 1

2 | = 0 holds.
With respect to the generation of Cb, from Game3 to Game4, the only modi-

fication is that ê(H2(IDE||teph j),C
∗
1)SK(0)

E · ê(H1(IDT ||t∗int),C
∗
2)SKT has been replaced

with R, where R ∈R G1. As a result, Game4 is identical to Game3 unless
ê(H2(IDE||teph j),C

∗
1)SK(0)

E · ê(H1(IDT ||t∗int),C
∗
2)SKT has been queried to H3. We imme-

diately obtain |δ4 − δ3| ≤ ε4 which is negligible based on the BDH assumption.
In summary, we have |δ0 − δ4| = ε ≤ ε1 + ε2 + ε3 + ε4. which are negligible.

As a result, ε is negligible, and the lemma now follows. ut

Proof sketch of Lemma 3. Suppose an adversaryA has the advantage ε in the
attack game depicted in Figure 3.

Game0: In this game, the challenger faithfully simulates the protocol exe-
cution and answers the oracle queries from A. Note that the challenge Cb is

computed as follows. Let δ0 = Pr[b′ = b], as we assumed at the beginning,
|δ0 − 1

2 | = ε.

Game1: In this game, the challenger performs in the same way as in Game0
except for the following. Given a D-type Retrieve query with the input (C =
(C5,C6,C7), tint, teph j), the challenger answers as the following.

1. If C = Cb, the challenger returns C′, where

M′ ∈R {0, 1}n, C′1 = C∗1, C′2 = C∗2, C′3 = C∗3, C′4 = M′ ⊕ C∗4,

Y ∈R Y, C′5 = Encrypt1(Y,PK(1)
tephj

), C′6 = H9(Y) ⊕ (C′1||C′2||C′3||C′4),

C′7 = H7(Y||C′1||C′2||C′3||C′4||C′5||C′6), C′ = (C′5,C
′
6,C

′
7).

2. Otherwise, the challenger first checks whether or not there is a query with
the input

X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6

to the oracle H5 such that C5 = Encrypt2(X̃,PKU),

C6 = C̃6, H5(X̃) ⊕ C6 = C̃1||C̃2||C̃3||C̃4, and C7 = H6(X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6).

If the input exists, the challenger returns C′, where

M′ ∈R {0, 1}n, C′1 = C̃1, C′2 = C̃2, C′3 = C̃3, C′4 = M′ ⊕ C̃4,

C′5 = Encrypt1(Y,PK(1)
tephj

), C′6 = H9(Y) ⊕ (C′1||C′2||C′3||C′4),

C′7 = H7(Y||C′1||C′2||C′3||C′4||C′5||C′6), C′ = (C′5,C
′
6,C

′
7).

Otherwise, the challenger rejects the quest.

The game Game1 is identical to Game0 unless the following event Evn occurs
in answering the D-type Retrieve oracle queries: For any query with some input
(C = (C5,C6,C7), tint, teph j): for X̃ = Decrypt2(C5,SKU), an oracle query to H6 with
the input X̃||C̃1||C̃2||C̃3||C̃4||C̃5||C̃6 returns C7. As H6 is modeled as a random oracle,
the probability Pr[Evn] is negligible. Let δ1 be the probability that the challenger
successfully ends and b′ = b in Game1. Therefore, we have |δ1−δ0| ≤ ε1 = Pr[Evn]
is negligible.

Game2: In this game, the challenger performs in the same way as in Game1
except that the challenge Cb is computed as follows.

r∗1, r
∗
2 ∈R Zp, X∗,X† ∈R X, C∗1 = gr∗1 , C∗2 = gr∗2 , C∗3 = H4(C∗1||C∗2)r∗1 ,

C∗4 = Mb ⊕ H3(ê(H2(PK(0)
tephi

),PK(0)
E)r∗1 · ê(H1(IDT ||t∗int),PKT)r∗2)

= Mb ⊕ H3(ê(H2(IDE||tephi),C
∗
1)SK(0)

E · ê(H1(IDT ||t∗int),C
∗
2)SKT),

C∗5 = Encrypt2(X†,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C∗2||C∗3||C∗4),

C∗7 = H6(X∗||C∗1||C∗2||C∗3||C∗4||C∗5||C∗6), Cb = (C∗5,C
∗
6,C

∗
7).

The game Game2 is identical to Game1 unless the following event Evn occurs:
the adversary queries H5 with 0||X† or H6 with 0||X†|| ∗ || ∗ || ∗ || ∗ || ∗ ||∗. As E2 is
one-way and H5,H6 are random oracles, the probability Pr[Evn] is negligible.
Let δ2 be the probability that the challenger successfully ends and b′ = b in
Game2. Therefore, we have |δ2 − δ1| ≤ ε2 = Pr[Evn] is negligible.

Game3: In this game, the challenger performs in the same way as in Game3
except that the challenge Cb is computed as follows.

r∗1, r
∗
2 ∈R Zp, X∗,X† ∈R X, R ∈ G1, C∗1 = gr∗1 , C∗2 = gr∗2 , C∗3 = H4(C∗1||C∗2)r∗1 ,

C∗4 = Mb ⊕ H3(R), C∗5 = Encrypt2(X†,PKU), C∗6 = H5(X∗) ⊕ (C∗1||C∗2||C∗3||C∗4),

C∗7 = H6(X∗||C∗1||C∗2||C∗3||C∗4||C∗5||C∗6), Cb = (C∗5,C
∗
6,C

∗
7).

Regardless of the change, the game Game3 is identical to Game2 as X∗ ∈R X
and H5,H6 are random oracles. Let δ3 be the probability that the challenger
successfully ends and b′ = b in Game3. As R ∈R G1, the equation |δ2 − 1

2 | =

|δ3 − 1
2 | = 0 holds.

In summary, we have |δ0 − δ3| = ε ≤ ε1 + ε2. which are negligible. As a result,
ε is negligible, and the lemma now follows. ut

Appendix B: Review of one Hybrid PKI-IBC Protocol

The hybrid PKI-IBC protocol [9] involves the following types of entities:
data generator, data consumer, and Ephemerizer. The algorithms are defined as
follows.

– SetupE(`): The Ephemerizer generates a bilinear map ê : G1 × G1 → G2, a
generator P ∈R G1, a long-term private key SKE ∈R Zp and the public key
PKE = SKEP, two hash functions

H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n,

and a set of ephemeral tuples (KeyIDtephj
,PKtephj

,SKtephj
, texp j) where KeyIDtephj

is the identifier of this tuple, teph j is the expiration time, and PKtephj
= SKtephj

P.
Suppose that G1 is additive and GT is multiplicative. Suppose also that the
Ephemerizer possesses the identity IDE.

– SetupU(`): The data consumer generates a key pair (PKU,SKU) for a pub-
lic key encryption scheme E2 with the encryption/decryption algorithms
(Encrypt2,Decrypt2). The data consumer also selects a symmetric key en-
cryption scheme

E1 = (Encrypt1,Decrypt1),

which will be used to encrypt data in the system.

– Generate(M,PKU,PKtephj
): The data generator sends (KeyIDtephj

,C) to the data
consumer, where

r ∈R Zp, Cm = Encrypt1(M,K), Ck = Encrypt2(K,PKU),

IDtephj
= IDE||Expiry : t′exp j

, Qtephj
= ê(H1(IDtephj

),PKtephj
),

Ctephj
= (rP,Ck ⊕ H2((Qtephj

)r)), (1)

C†tephj
= Encrypt2(IDtephj

||Ctephj
,PKU), C = (Cm,C†tephj

). (2)

It is required t′exp j
should be smaller than texp j which is the expiration time of

(PKtephj
,SKtephj

).
– Retrieve(C,SKU; SKtephj

,SKE):

1. The data consumer first decrypts C†tephj
to obtain IDtephj

and Ctephj
, and then

computes and sends (KeyIDtephj
, ID′tephj

,C′tephj
) to the Ephemerizer, where

ID′tephj
∈R {0, 1}∗, Q′tephj

= ê(H1(ID′tephj
),PKE),

r ∈R Zp, C′tephj
= (r′P, (IDtephj

||K′) ⊕ H2((Q′tephj
)r′)). (3)

2. If the ephemeral key SKtephj
associated with KeyIDtephj

has not expired,
the Ephemerizer decrypts C′tephj

to obtain IDtephj
and K′ as follows

IDtephj
||K′ = (IDtephj

||K′) ⊕ H2((Q′tephj
)r′)⊕

H2(ê(H1(ID′tephj
), r′P)SKE).

(4)

It then computes and sends C′′tephj
to the data consumer, where

C
′′
tephj

= Encrypt1(SKtephj
H1(IDtephj

),K′). (5)

3. The data consumer decrypts C′′tephj
to obtain SKtephj

H1(IDtephj
), and then

decrypts Ctephj
to obtain Ck as follows

Ck = Ck ⊕ H2((Qtephj
)r) ⊕ H2(ê(rP,SKtephj

H1(IDtephj
))). (6)

The data consumer then sequentially decrypts Ck and Cm to obtain M as
follows:

K = Decrypt2(Ck,SKU), M = Decrypt1(Cm,K). (7)

In [9], no rigorous analysis has been done for this protocol. As to the security,
we have the following observations.

– When the data generator constructs IDtephj
= IDE||Expiry : t′exp j

, she chooses
an ephemeral public key PKtephj

where t′exp j
< texp j . This means that at the time

between t′exp j
and texp j , if an adversary compromises both the Ephemerizer

and the data consumer, then he is able to recover M. This observation implies
that the expiration time for the ciphertext C is in fact texp j instead of t′exp j

.
– There is an attack scenario, in which an adversary can recover any message

even after the expiration time.
1. At one point, the adversary compromises the Ephemerizer and obtains

the long-term private key SKE.
2. From Equations (3) and (4), by decrypting C′tephj

the adversary could ob-

tain any IDtephj
||K′ (regardless of the expiration time teph j). From Equation

(5), the adversary can recover SKtephj
H1(IDtephj

) by decrypting C′′tephj
using

K′.
3. For any (KeyIDtephj

,C), if the adversary can compromise the data con-
sumer then he is able to recover M from Equations (1),(2),(6),(7). Note
that the decryption does not need the involvement of any ephemeral
keys from the Ephemerizer.

– Note the fact there is no authentication between the Ephemerizer and the
data consumer. There is another attack scenario, in which an adversary
can recover any message (even after the expiration time) as long as he can
compromise the data consumer.
1. At one point, the adversary impersonates an honest data consumer to

run the Retrieve algorithm with the Ephemerizer. In more detail, by
sending (KeyIDtephj

, ID′tephj
,C′tephj

) (generated by himself) to the Ephemer-

izer, the adversary can obtain SKtephj
H1(IDtephj

) trivially before the expi-
ration time teph j . It is worth stressing that, to do this, the adversary does
not need to compromise any party in the system.

2. Later on, for any (KeyIDtephj
,C), if the adversary can compromise the

data consumer and obtain SKU, then he is able to recover M. The com-
putation is straightforward from Equations (1),(2),(6),(7). Clearly, the
decryption does not need the involvement of any ephemeral keys from
the Ephemerizer.

