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Abstract. This paper has been inspired by the study of the complex
data set from the Czech National Grid MetaCentrum. Unlike other widely
used workloads from Parallel Workloads Archive or Grid Workloads
Archive, this data set includes additional information concerning ma-
chine failures, job requirements and machine parameters which allows
to perform more realistic simulations. We show that large differences
in the performance of various scheduling algorithms appear when these
additional information are used. Moreover, we studied other publicly
available workloads and partially reconstructed information concerning
their machine failures and job requirements using statistical and ana-
lytical models to demonstrate that similar behavior is also expectable
for other workloads. We suggest that additional information about both
machines and jobs should be incorporated into the workloads archives to
allow proper and more realistic simulations.
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1 Introduction

Large computing clusters and Grids have become common and widely used plat-
forms for the scientific and the commercial community. Efficient job scheduling in
these large, dynamic and heterogeneous systems is often a very difficult task [32].
Development or application of an efficient scheduling algorithm requires a lot of
testing and evaluation before such solution is applied in the production system.
Due to several reasons, such as the cost of resources, reliability, varying back-
ground load or the dynamic behavior of the components, experimental evaluation
cannot be usually performed on the real systems. Many simulations with var-
ious setups that simulate different real-life scenarios must be performed using
the same and controllable conditions to obtain reliable results. This is hardly
achievable in the production environment.

Usually, workload traces from the Parallel Workloads Archive (PWA) [6] or
Grid Workloads Archive (GWA) [4] are used as the simulation inputs. However,
these data do not contain several parameters that are important for realistic sim-
ulations. Typically, very limited information is available about the Grid or cluster
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resources such as the architecture, the CPU speed, the RAM size or the resource
specific policies. However, these parameters often significantly influence the de-
cisions and performance of the scheduler. Moreover, no information concerning
background load, resource failures, or specific users’ requests are available. In het-
erogeneous environments, users often specify some subset of machines or clusters
that can process their jobs. This subset is usually defined either by the resource
owners’ policy (user is allowed to use such cluster), or by the user who requests
some properties (library, software licence, execution time limit, etc.) offered by
some clusters or machines only. Also, the combination of both owners’ and users’
restrictions is possible. When one tries to create a new scheduling algorithm and
compare it with current approaches such as EASY Backfilling [28] or algorithms
used in, e.g., PBSpro [15], LSF [33] or Moab [2], all such information and con-
straints are crucial, since they make the algorithm design much more complex.
If omitted, resulting simulation may provide misleading or unrealistic results as
we show in Section 6.

So far, we have been able to collect complete real-life data set from the
Czech national Grid infrastructure MetaCentrum [23] that covers many previ-
ously mentioned issues, such as machine parameters and supported properties,
specific job requirements or machine failures. Using this complete data set [16]
we were able to perform more realistic simulations. We have studied behavior of
several objective functions that cover typical requirements such as the average
job slowdown, the average response time, or the average wait time. We have
compared schedule-based algorithms involving Local Search [32] which we have
been developing for couple of years [18, 19], as well as queue-based solutions such
as FCFS or EASY and Conservative Backfilling. In our experiments, we have
focused on two scenarios. The first (BASIC) scenario does not involve machine
failures. Moreover, all jobs can be executed on any cluster (if enough CPUs are
available), representing the typical amount of information available in the GWA
or the PWA workloads. The second (EXTENDED) scenario uses additional in-
formation available in the MetaCentrum data set such as machine failures or
additional cluster and job properties that define the job-to-cluster suitability
(specific job requirements). As observed during the experiments (see Figure 2),
the differences in the values of objective functions between these two scenarios
are often large.

While the effects of machine failures on the cluster [20, 34, 27] or the Grid [20,
12] performance are widely discussed, we are not aware of similar works that
would also cover the effects of specific job requirements. Therefore, inspired by
our own interesting results, we have decided to perform more research and anal-
ysis of existing workloads. When it was possible, we tried to recover additional
information “hidden” in the available data covering both machine failure in-
tervals and job requirements. When informations were insufficient we carefully
generated synthetic machine failures using a statistical model. Once created,
these “extended” workloads were compared through experiment with their orig-
inal simpler versions. As expected, we often discovered the disproportions in the
values of objective functions similar to the differences for the MetaCentrum data
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set. This supports our idea that scheduling algorithms should be evaluated using
complete data sets.

The paper is organized as follows. First, we define the studied problem. Next,
we discuss the PWA and GWA workloads, known failure traces and character-
istics of considered workloads. The model used to create extended workloads
is introduced and considered scheduling algorithms are described. We provide
the detailed experimental evaluation with discussion of results and conclude our
paper with a short summary.

2 Problem Description

In this section we describe the investigated job scheduling problems, starting
with the simpler BASIC and followed by the EXTENDED problem. These prob-
lems are specified by characteristics of considered machines and jobs. We also
define the optimization criteria considered for the evaluation of generated solu-
tions.

2.1 BASIC Problem

The system is composed of one or more computer clusters and each cluster is
composed of several machines. So far, we expect that all machines within one
cluster have the same parameters. Those are the number of CPUs per machine
and the CPU speed. All machines within a cluster use the Space Slicing pro-
cessor allocation policy [9] which allows the parallel execution of several jobs
at the cluster when the total amount of requested CPUs is less or equal to the
number of CPUs of the cluster. Therefore, several machines within the same
cluster can be co-allocated to process the given parallel job. On the other hand,
machines belonging to different clusters can not be co-allocated to execute the
same parallel job.

Job represents a user’s application. Job may require one (sequential) or more
CPUs (parallel). Also the arrival time and the job length are specified. There are
no precedence constraints among jobs and we consider neither preemptions of
the jobs nor migrations from one machine to another. When needed, the runtime
estimates are precise (perfect) in this study.

2.2 EXTENDED Problem

This scenario extends the BASIC problem with some more features that are
based on the characteristics of the MetaCentrum Grid environment. First of
all, each cluster has additional parameters that closely specify its properties.
These parameters typically describe the architecture of the underlying machines
(Opteron, Xeon, ...), the available software licenses (Matlab, Gaussian, ...),
the operating system (Debian, SUSE, ...), the list of queues allowed to use this
cluster (each queue has a maximum time limit for the job execution, e.g., 2 hours,
24 hours, 1 month), the network interface parameters (10Gb/s, Infiniband, . ..),
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the available file systems (nfs, afs, . ..) or the cluster owner (Masaryk University,
Charles University, . .. ). We expect that all the machines within one cluster have
the same parameters.

Corresponding information is often used by the user to closely specify job’s
characteristics and requirements. Those are typically the time limit for the ex-
ecution (given by the queue or user), the required machine architecture, the
requested software licenses, the operating system, the network type or the file
system. Users may also directly specify which cluster(s) is suitable for their jobs.
In another words, by setting these requirements, user may prevent the job from
running on some cluster(s). In real life, there are several reasons to do so. Some
users strongly demand security and full control and they do not allow their jobs
(and data) to use “suspicious” clusters which are not managed by their own
organization. Others need special software such as Matlab or Gaussian which is
not installed everywhere. Some clusters are dedicated for short jobs only (2 hours
limit) and a user wanting more time is not allowed to use such cluster, and so
on. All these requests are often combined together. In the EXTENDED problem
all such requirements have to be included into the decision making process to
satisfy all specific job’s requirements. If no suitable machine is found, the job has
to be cancelled. Clearly, the specific job requirements cannot be used when the
corresponding cluster parameters are not known. Without them, consideration of
“job-to-machine” suitability is irrelevant. Therefore, whenever the term specific
job requirements is referenced in this paper, it means that both additional job
and cluster parameters are applied, decreasing the number of suitable clusters
for the job execution.

Finally, machine failures are considered in the EXTENDED scenario. It
means that either one or more machines within a cluster are not available to
execute jobs for some time period. Such failure may be caused by various reasons
such as the power failure, the disk failure, the software upgrade, etc. However,
we do not differentiate between them in this study. As a result of the failure,
all jobs that have been —even partially —executed on such machine are imme-
diately killed. Once the failure terminates, machine is restarted and becomes
available for the job processing.

2.3 Evaluation Criteria

The quality of the generated solutions can be reflected by various types of opti-
mization criteria. In both scenarios the following objective functions are consid-
ered: the avg. response time [9], the avg. slowdown [9] and the avg. wait time [5].
In addition, the total runtime of the scheduling algorithm [19] is measured as
a standard evaluation criteria. If machine failures are used we also count the
total number of killed jobs. The avg. response time represents the average time
a job spends in the system, i.e., the time from its submission to its termination.
The avg. slowdown is the mean value of all jobs’ slowdowns. Slowdown is the
ratio of the actual response time of the job to the response time if executed with-
out any waiting. Avg. wait time is the time that the job spends waiting before
its execution starts. As pointed out by Feitelson et al. [9], the use of response
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time places more weight on long jobs and basically ignores if a short job waits
few minutes, so it may not reflect users’ notion of responsiveness. Slowdown
reflects this situation, measuring the responsiveness of the system with respect
to the job length, i.e., jobs are completed within the time proportional to the
job length. Wait time criterion supplies the slowdown and response time. Short
wait times prevent the users from feeling that the scheduler “forgot about their
jobs”. All preceding objectives consider successfully executed jobs only, since
killed jobs are not included. On the other hand, the total number of killed jobs
is always monitored when machine failures are used. Finally, the total runtime of
the scheduling algorithm measures the total CPU time needed by the scheduling
algorithm to develop the solution for a given experiment.

3 Existing Sources of Workloads and Failure Traces

Two main publicly available sources of cluster and Grid workloads exist. Those
are the Parallel Workloads Archive (PWA) [6] and the Grid Workloads Archive
(GWA) [4]. There are two major differences between them. First of all, PWA
maintains workloads coming from one site or cluster only (with few exceptions),
while each workload in the GWA covers several sites. Second, the Grid Work-
loads Format (GWF) [13] is an extension to the Standard Workloads Format
(SWF) [1] used in the PWA, reflecting some Grid specific job aspects. For ex-
ample, each job in the GWF file has an identifier of the cluster where the job
was executed. Moreover, the GWF format contains several fields to store specific
job requirements. However, none of the six currently available traces uses them.
These archives also often lack detailed and systematic description of the Grid
or cluster resources, where the data were collected. Beside the real workloads,
various models for generating synthetic workloads were proposed and imple-
mented [31, 22, 8].

Traces of different kinds of failures related to the computer environment
are collected in several archives such as the Repository of Availability Traces
(RAT) [25] or the Computer Failure Data Repository (CFDR) [3]. For our
purposes, the most suitable is the Failure Trace Archive (FTA) [20], that—
among others— currently stores two Grid and cluster failure traces. Those are
the Grid’5000 and the LANL traces. Remaining Grid or cluster related traces are
either incomplete (PNNL) or were not yet converted from their original “raw”
formats (EGEE, NERSC, HPC2, HPC4)!. FTA contains description of nodes
but does not contain the information about jobs.

The complete MetaCentrum data set is publicly available at http://www.
fi.muni.cz/~xklusac/workload. It contains trace of 103,620 jobs that includes
specific job requirements as well as description of 14 clusters (806 CPUs) with
the information about machine architecture, CPU speed, memory size and the
supported properties. Also, the list of available queues including their priorities
and associated time limits is provided. There is the trace of machine failures

1 In December 2009.



6 The importance of complete data sets for job scheduling simulations

and the description of temporarily unavailable machines that were reserved or
dedicated for special purposes. The average utilization of MetaCentrum varies
per cluster with overall utilization being approximately 55%. In this work, we
simulate neither reserved nor dedicated machines and we focus strictly on the
problem involving machine failures and specific job requirements. Therefore, the
overall machine utilization has decreased to approximately 43% in our experi-
ments?.

Using these data sources we have selected three candidate workloads that
have been used for the evaluation. Certainly the MetaCentrum workload was
used as our base data set. Next, two more workloads were selected and care-
fully extended to obtain all information necessary for the EXTENDED prob-
lem. Methodologies used to generate such workloads are described in the next
section. The SWF workload format does not contain information about job ex-
ecution site, which is needed when generating extended workloads. Therefore,
we were left with the GWA that contains six workloads now. However, three of
them contain only sequential jobs, thus three candidates remained®: Grid’5000,
DAS-2 and Sharcnet. Sadly, we had to eliminate Sharcnet since it does not pro-
vide enough information to generate the workload for the EXTENDED problem
(see Section 4.2).

Grid’5000 is an experimental Grid platform consisting of 9 sites geograph-
ically distributed in France. Each site comprises one or several clusters, there
are 15 clusters in total. The trace contains 1,020,195 jobs collected from May
2005 till November 2006. The total number of machines is not provided with
the trace, therefore we had to reconstruct it from the job trace and informa-
tion about machine failures available in the Grid’5000 failure trace. Then, we
were able to determine the probable number of machines for each cluster. To-
tally, there has been approximately 1343 machines (2686 CPUs). Grid’5000 has
a low average utilization being only 17%. On the other hand, there is a publicly
available failure trace for Grid’5000 in the FTA, which is very convenient for
our experiments. Sadly, all fields corresponding to specific job requirements are
empty in the workload file.

DAS-2 (Distributed ASCI Supercomputer 2) workload trace comes from
a wide-area Grid composed of 200 Dual Pentium-IIT nodes (400 CPUs). The
Grid is built out of 5 clusters of workstations located at five Dutch Universities.
Trace contains 1,124,772 jobs collected from February 2005 till December 2006.
The workload has a very low utilization of approximately 10%. There is no failure
trace available and the workload trace contains no specific job requirements.

Finally, Table 1 presents the main characteristics of PWA, GWA, FTA and
MetaCentrum archives.

2 Machines dedicated or reserved for special purposes are considered as 100% utilized.
3 If all jobs are sequential (non-parallel), then all scheduling algorithms considered in
this paper follow more or less the FCFS approach.
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Table 1. Main characteristics of PWA, GWA, FTA and MetaCentrum archives.

| PWA| GWA|FTA| MetaCentrum

job description Yes Yes | No Yes
machine description Partial | Partial | Yes Yes
failures No No | Yes Yes
specific job requirements No | Partial | No Yes

4 Extending the BASIC problem

In this section we describe the main methods used to generate the synthetic
machine failures and the specific job requirements. Using them, the Grid’5000
and the DAS-2 workloads were enriched towards the EXTENDED problem.

4.1 Machine Failures

Since both MetaCentrum and Grid’5000 data sets contain real machine failure
traces, only the DAS-2 workload has been extended by the synthetic machine
failures. First of all, the original DAS-2 workload was analyzed to determine the
first time when each cluster was used by some job. As is shown in the Figure 1
(top left), only the DAS2/fs0 cluster was used from the beginning, four remaining
clusters started to execute jobs approximately three months later. We have used
this observation to generate four “initial cluster failures” that cover the time
before the cluster was (probably) operational.

Next, the synthetic machine failures were generated. Five main parameters
had to be determined. First of all, the total number of failures (F') has been
established. Then, for each failure, four parameters have been chosen: failure
duration, failure arrival time and the cluster and its machine that will exhibit
this machine failure.

When solving these problems we were inspired with the model proposed by
Zhang et al. in [34] and findings in [27,12,26]. We also used three available
failure traces (MetaCentrum, Grid’5000, LANL) to get the necessary statistical
data. As discussed in [27], failure rates are roughly proportional to the number
of nodes (IN) in the system. Therefore, the total number of failures (F) was
computed as:

F=N-D-AFC (1)

where D is the duration of DAS-2 workload in hours, and the AFC (Average
Failure Count) is the average number of failures per machine per hour. While
N and D were known, AFC had to be selected. Since we have no information
concerning the real failure rates in DAS-2; we used known failure traces to com-
pute the AFC values. Figure 1 (top middle) shows the AF'C values for known
failure traces. Grid’5000 shows suspiciously high AF'C value, which is probably
caused by the fact that some reported failures are rather “false alarms” than
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Fig. 1. The cluster start times in DAS-2 (top left), the average number of failures per
node per day (AFC) (top middle), the number of failures per year in LANL (top right),
the CDFs of failure durations for Grid’5000, LANL and MetaCentrum (bottom left)
and the CDFs of “suitability distribution” of jobs onto clusters (bottom right).

actual failures as discussed in [20]. In MetaCentrum, the AFC value is much
more smaller while the low failure rates of LANL result in the lowest observed
AFC. Since the large amount of failures in Grid’5000 is suspicious we have cho-
sen LANL’s and MetaCentrum’s AFC values as two possible inputs into our
failure generator. This resulted in two different failure traces for DAS-2. In the
remaining text, DAS-2-L represents DAS-2 workload with failure trace generated
using the LANL-based parameters while DAS-2-M represents solution based on
the MetaCentrum parameters.

Next, the remaining parameters were generated using the model [34] of
Zhang et al. This involved the use of Weibull distribution [14] to generate
the inter-arrival times between failures. Sahoo et al. [26] discussed that there
are strong temporal correlations between failure arrivals. Using the model of
Zhang et al., this behavior was simulated by including so called “failure bursts”,
i.e., multiple failures on one cluster appearing in (almost) the same time. Failure
durations for DAS-2-L and DAS-2-M were generated using the Weibull distribu-
tion. Parameters of the distribution were selected by fitting the shape of Weibull
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Cumulative Distribution Function (CDF) [14] to the original CDFs of LANL
and MetaCentrum failure durations that are shown in Figure 1 (bottom left)?.
These CDF's represent the probability that the duration of machine failure will
be less than or equal to & minutes.

The distribution of failures between clusters was done using the observations
of LANL’s failure distribution pattern shown in Figure 1 (top right) which has
been closely discussed in [27]. Here, clusters with the same hardware and age
have their failure rates roughly proportional to the number of machines within
the cluster. This indicates that failure rates are not growing significantly faster
than linearly with the cluster size [27]. Figure 1 (top right) shows this behavior
for sites 9, 10, 11 and 12 in LANL. According to the available data, all DAS-2
clusters are based on the same hardware, therefore we have used the same linear
distribution of failures in our failure generator.

Finally, the distribution of failures on the machines within one cluster was
analyzed. Several authors show that such distribution is not uniform for a given
cluster [26, 10]. However, our own analysis of MetaCentrum failure trace showed
that this is not always true. In MetaCentrum, some clusters had rather uniform
failure distribution while for others it was highly unbalanced, showing signifi-
cantly different shapes per each cluster. Since we have no reliable information
about the type or shape of the desired distribution, we have decided to use simple
uniform distribution in this case.

4.2 Specific Job Requirements

As far as we know there is no available model to simulate specific job require-
ments. Moreover, the only workload we are aware of that contains such informa-
tion is the MetaCentrum workload. Our goal was to recreate such information
for both DAS-2 and Grid’5000 workloads. Since it would be highly unreliable to
simply transform known MetaCentrum pattern on different workloads, we have
decided to use more realistic and conservative approach when establishing these
requirements. Our approach is based on the analysis of the original DAS-2 and
Grid’5000 workloads. In both of them each job contains identifier of the type
(name) of the application that was used to execute the job as well as the identifier
of the target cluster where it was finally executed [13]. Using this information,
we could easily reveal the actual mapping of applications (jobs) on the clusters.
To be more precise, we constructed a list of clusters where jobs having the same
application identifier were executed. Next, during the simulation the application
identifier is detected for each job and the corresponding clusters from the list are
taken to be the only suitable execution sites for the job. Since we have no other
information concerning job requirements, we used this mapping as the model of
specific job requirements. Resulting CDF's based on such distributions are shown
for the Grid’5000 and the DAS-2 workloads in Figure 1 (bottom right) together
with the known distribution of MetaCentrum. Here, each CDF represents the

4 The CDF of LANL is smoother since it was reconstructed from higher number of
known failure durations. The x-axis is in log. scale.
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probability that the job will be executable on at most % of available machines.
As it has been briefly mentioned in Section 3, this approach is not applicable for
the Sharcnet workload, where the number of job identifiers is almost the same
as the number of jobs in the workload. Thus, similar statistics did not make any
sense and Sharcnet has not been used.

Table 2 summarizes the origins of all extensions of the original workloads.
Presented generator of machine failures and specific job requirements can be
downloaded at http://www.fi.muni.cz/~xklusac/generator.

Table 2. Origin of machine failures and specific job requirements for the EXTENDED
problem.

MetaCentrum Grid’5000 DAS-2
. . original original synthetic DAS-2-M
machine failures -
data data synthetic DAS-2-L
. original synthetic by synthetic by
specific job req. ) )
data workload analysis | workload analysis

5 Scheduling Algorithms

Scheduling was performed by simulated centralized scheduler [32] that managed
target clusters using different algorithms. We have used FCFS, EASY backfilling
(EASY) [28] and Conservative backfilling (CONS) [7,29] optionally optimized
with a Local Search (LS) algorithm [18, 19]. EASY backfilling is an optimization
of the FCFS algorithm, focusing on maximizing the system utilization. When
the first (oldest) job in the queue cannot be scheduled because not enough pro-
cessors are available, it calculates its earliest possible starting time using the
runtime estimates of running jobs. Finally, it makes a reservation to run the job
at this pre-computed time. Next, it scans the queue of waiting jobs and schedules
immediately every job not interfering with the reservation of the first job. While
EASY makes reservation for the first job only, Conservative backfilling makes
the reservation for every queued job. These reservations represent an execution
plan. We call this plan the schedule [11]. This schedule is updated whenever
a new job arrives or some job completes its execution. Moreover, it allows us to
apply advanced scheduling algorithms to optimize the schedule. This is the goal
of the LS optimization procedure. LS maintans the schedule and optimizes its
quality. New jobs are added to the schedule using CONS, i.e., they are placed
to their earliest starting time. LS is run periodically and it consists of several
iterations. In each iteration, random waiting job is selected and removed from
the schedule and a new reservation is chosen randomly either on the same cluster
or on a different one. Other reservations are updated with respect to this new as-
signment. Typically, when the original reservation is cancelled, later reservations
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can be shifted to the earlier start times. Analogically, new reservation can collide
with existing reservations. If so, these are shifted to the later start times. Then,
the new schedule is evaluated using the weigth function W which is defined by
Equation 2.

Wsld = (Sderevious - Sldnew)/Sderevious
Wyait = (waitprevious - waitnew)/waitprevious
Wresp = (Tespprevious - 7ﬂespnew)/resppreviouﬁ

W = Wgld + Wyast T Wresp (2)

W is a sum of three decision variables wgq, Wyait and wyes which are com-
puted using the avg. job slowdown, avg. job wait time and avg. job response
time of the previous and new schedule. They express the percentage increase or
decrease in the quality of the new schedule with respect to the previous schedule.
A positive value represents an improvement while a negative means that the new
schedule represents a worse solution. Obviously, some correction is needed when
the waitprevious O T€SPprevions 18 €qual to zero but it is not presented to keep
the code clear®. The final decision is based on the W value. If the W is greater
than 0, then the new schedule is accepted, otherwise it is rejected and the sched-
ule returns to the previous state. Iterations continue until the predefined number
of iterations or the given time limit is reached. When applied, LS is executed
every 5 minutes of simulation time. Here we were inspired by the actual setup
of the PBSPro scheduler [15] used in the MetaCentrum which performs priority
updates of jobs waiting in the queues with a similar periodicity. The maximum
number of iterations is equal to the number of currently waiting jobs (schedule
size) multiplied by 2. The maximum time limit was set to be 2 seconds which is
usually enough to try all iterations. At the same time, it is still far less than the
average job inter-arrival time of the densest DAS-2 trace (50 seconds). Since LS
uses random function in each of its iteration, all experiments involving the LS
algorithm have been repeated 10 times using different seeds, their results have
been averaged and the standard deviation computed.

FCFS, EASY Backfilling and Conservative Backfilling are usually applied
to schedule jobs on one cluster only. Since our data sets are all multi-cluster,
algorithms have been extended to allow multi-cluster scheduling. This extension
is very simple. FCFS, EASY and CONS simply check each cluster separately,
finding the earliest possible reservation. If multiple choices to execute the job
appear, the fastest available cluster is selected. If all available clusters have the
same speed, the first choice is taken®.

Next extension defines algorithms’ reactions in case of a machine failure or
restart. The simplest extension is made in FCFS. Here, machine failure or restart
simply changes the set of CPUs to be used by the FCFS. Similar case applies
for EASY, CONS and LS. However, machine failure may collide with existing
reservations made by EASY, CONS or LS. If so, different actions are taken for

5 By definition, slowdown is always greater or equal to 1.
S Clusters are ordered according to the total number of CPUs in descending order.
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EASY, CONS and LS. EASY checks whether the reservation of the first job is
still valid. If not, it creates a new one. Since CONS and LS make reservation for
every job it is more probable that collisions will appear. In our implementation,
all jobs having reservations on the cluster where the machine failure occurred
are re-backfilled using CONS. Other jobs’ reservations are not changed since the
total re-computation of all reservations for all clusters is very time consuming
as we have have observed in our initial tests. If there are many machine failures,
some highly parallel jobs may not be able to get a reservation, since there is not
enough CPUs available in the system. If so, these jobs are canceled and removed
from the queue since their huge wait times would distort the simulation results.
Jobs killed due to a machine failure are not resubmitted. Upon a machine restart,
both FCFS and EASY try to use new CPUs immediately. CONS and LS behave
somehow different since they have a reservation for every job at that moment.
All reservations on the cluster where the machine restart appeared are recreated
to utilize the restarted machine. Again, only the jobs having a reservation on
such cluster are re-backfilled to minimize the algorithm’s runtime. Reservations
of jobs on remaining clusters are not changed. It may result in a temporally
unbalanced distribution of jobs, since the re-backfilled jobs may not utilize all
CPUs, especially if many machines restarted at the same moment. Such CPUs
can be potentially suitable for jobs having reservations on different clusters.
However, this imbalance is only temporal as new job arrivals or LS optimization
will quickly saturate the available CPUs.

The inclusion of specific job requirements is very simple. All scheduling algo-
rithms will allow job’s execution on some cluster(s) if and only if the cluster(s)
meets all specific job requirements.

6 Evaluation

All simulations were performed using the GridSim [30] based Alea simulator [17]
on an Intel QuadCore 2.6 GHz machine with 2048MB of RAM. We have com-
pared values of selected objective functions and the algorithms’ runtime when
the original (BASIC problem) and extended workloads (EXTENDED problem)
have been used, respectively. As mentioned in Section 2, BASIC problem does
not involve machine failures and specific job requirements while the EXTENDED
does. In order to closely identify the effects of machine failures and specific job
requirements on the values of objective functions, we have considered three dif-
ferent problems using the extended workloads. In EXT-FAIL only the machine
failures are used and the specific job requirements are ignored. EXT-REQ repre-
sents the opposite problem, where the failures are ignored and only the specific
job requirements are simulated. Finally, EXT-ALL uses both machine failures
and specific job requirements. Using these setups, four different experiments were
conducted for MetaCentrum and Grid’5000: BASIC, EXT-FAIL, EXT-REQ and
EXT-ALL. Since DAS-2 has two variants of failure traces (DAS-2-L and DAS-2-
M), there are six different experiments for the DAS-2 workload: BASIC, EXT-
FAIL-L, EXT-FAIL-M, EXT-REQ, EXT-ALL-L and EXT-ALL-M, where “L”
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or “M” suffix specifies whether DAS-2-1. or DAS-2-M failure trace has been

used. Table 3 summarizes all data sets and problems we have considered in our
experiments.

Table 3. Overall summary of workloads, problems and performed experiments.

MetaCentrum| Grid’5000 DAS-2

BASIC BASIC BASIC BASIC
EXT-FAIL | EXT-FAIL | EXT-FAIL-L

EXT-FAIL-M

EXTENDED EXT-REQ | EXT-REQ EXT-REQ
EXT-ALL | EXT-ALL | EXT-ALL-L

EXT-ALL-M

We start our discussion with the MetaCentrum workload where all informa-
tion needed to simulate the EXTENDED problem were known, thus these results
are the most reliable (see Figure 2). Next, we continue with the Grid’5000 (see
Figure 3), where the EXTENDED problem was created using known data from
the Failure Trace Archive (machine failures) and synthetically generated spe-
cific job requirements. Finally, Figure 5 presents results for the DAS-2 where
additional data for the EXTENDED problem were generated synthetically. Re-
sulting values of the avg. slowdown [9], the avg. response time [9], the avg. wait
time [5] and the number of killed jobs are discussed for all experiments out-
lined in Table 3. Also the effects of inclusion of machine failures and specific job
requirements on the total runtime of the scheduling algorithm [19] are discussed.

6.1 MetaCentrum Workload

Figure 2 shows the results for the MetaCentrum workload. As we can see the
highest differences in the values of objective functions appear between BASIC
and EXT-ALL experiments, which correspond with our expectations. In the
case of BASIC, the differences between all algorithms are not very large for
all considered objectives. On the other hand, when the EXT-ALL problem is
applied, large differences start to appear for all criteria. It is most significant in
the case of FCFS which generates the worst results among all applied algorithms.
The values of FCFS are truncated for better visibility. EASY and CONS perform
much better, while the best results are achieved by LS in most cases. Interesting
results are related to the EXT-FAIL and EXT-REQ scenarios. As we can see,
the inclusion of machine failures (EXT-FAIL) has usually asmaller effect than
the inclusion of specific job requirements (EXT-REQ). Clearly, it is “easier” to
deal with machine failures than with specific job requirements when the overall
system utilization is not extreme. In case of a failure, the scheduler has usually
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Fig. 2. Observed values of objective functions and the number of killed jobs for the
MetaCentrum workload.

other options where to execute the job. On the other hand, if the specific job
requirements are taken into account other possibilities may not exist, and jobs
with specific requests have to wait until the suitable machines become available.

The comparison of EASY and CONS is interesting as well. Many previous
studies have tried to analyze their behavior [7,24,29,21]. A deep study of Feit-
elson [7] suggests that CONS is likely to produce better slowdown than EASY
when precise runtime estimates are used and the system utilization is higher
than approximately 50%. Similar behavior can be seen in the case of MetaCen-
trum, namely for EXT-REQ and EXT-ALL problems. Feitelson observed such
large differences for workloads with at least 55-65% (Jann, Feitelson) or 85-95%
(CTC) system utilization. For smaller system utilization, the performance of
EASY and CONS was similar. However, the utilization of MetaCentrum is 43%
on average. The reason for this behavior lies in the use of specific job require-
ments (EXT-REQ, EXT-ALL). As discussed, here jobs with specific require-
ments have to wait until the suitable machines become available. This in fact
generates a higher system utilization on particular clusters, thus the benefits of
CONS in this situation appear even for systems with a lower overall utilization.
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If no specific job requirements are used (BASIC, EXT-FAIL), CONS produces
worse or equal results than EASY in all cases.

Feitelson [7] suggests that EASY should generate better response time than
CONS. This is clearly recognizable for BASIC and EXT-FAIL problems, while
CONS is slightly better for EXT-REQ and EXT-ALL, but the difference is very
small. Periodical application of LS optimization routine always improve the solu-
tion with respect to the CONS and — with an exception of the avg. response time
in BASIC and EXT-FAIL —LS generates the best results among all algorithms.
The standard deviation of different LS executions is very small. Concerning the
total number of killed jobs, there is no clear pattern indicating the best algo-
rithm. The total runtime of all scheduling algorithms grows with the problem
complexity. Machine failures often collide with existing reservations which has
to be recreated. When also specific job requirements are used, checks to identify
suitable clusters must be performed for each job, increasing the total runtime
of all scheduling algorithms. To sum up, the use of specific job requirements
and machine failures significantly influence the quality of generated solution. In
case of MetaCentrum, an experimental evaluation ignoring these features may
be quite misleading. As was shown, the optimistic results for the BASIC problem
are very far from those appearing when a more realistic EXT-ALL problem is
considered.

6.2 Grid’5000 Workload

Figure 3 shows the results for the Grid’5000 workload. Similarly to the MetaCen-
trum workload, the highest differences appear between BASIC and EXT-REQ
and EXT-ALL problems as can be seen in the case of the avg. slowdown and
the avg. wait time. Again, due to the same reasons as before, the inclusion of
specific job requirements (EXT-REQ) has a higher effect than the inclusion of
machine failures (EXT-FAIL). The values of FCFS are often truncated for better
visibility.

A closer attention is required when analyzing the average response time for
EXT-FAIL and EXT-ALL problems in Grid’5000 shown in Figure 3 (top right).
Initially, it is quite surprising that the average response time for EXT-FAIL
and EXT-ALL is smaller than for the BASIC problem. The explanation is quite
straightforward. In our simulations, whenever some machine fails, all jobs being
executed on this machine are killed immediately. Moreover, such jobs are not
resubmitted. As mentioned in Section 4.1, the failure rate in Grid’5000 is very
high causing many premature job terminations (see Figure 3, bottom right).
Therefore, long jobs are more likely to be killed than the short ones. Our ex-
periments confirmed this expectations. The average length of a killed job in
EXT-FAIL (FCFS) has been 60,690 seconds. However, the average length of all
jobs in Grid’5000 is just 2,608 seconds. It means that especially long jobs are
being killed in this case. Therefore, whenever machine failures have been used
(EXT-FAIL, EXT-ALL), the average response time has been smaller than for the
BASIC and the EXT-REQ problems, since many long jobs have been killed and



16 The importance of complete data sets for job scheduling simulations

5000

100 L Jeds
4500
.EASY
‘;E % 4000 Ocons
= £
= E 3500 m
2 3
2
= 3000
Z 10 2
3 @
z 2500
- E
@ 2000
=
1500
1 1000 B
BASIC  EXT-FALL EXTREQ  EXT-ALL BASIC  EXT-FAIL  EXT-REQ  EXT-ALL
416 1981 863
| 20000
100 FCFS
Bessy 18000 [ ]
— ® Ocons
= O
2 Ls ., 16000
T &0 g
g T 14000
| =
= 12000
2'] 10000
0 5000
BASIC EXT-FAIL  EXT-REQ  EXT-ALL EXT-FAIL EXT-ALL

Fig. 3. Observed values of objective functions and the number of killed jobs for the
Grid’5000 workload.

their long response times could not have been taken into account. The compari-
son of the avg. slowdown or the avg. wait time for BASIC and EXT-FAIL shows
nearly no difference. Failures in Grid’5000 are usually very short as is shown in
Figure 1 (bottom left). Therefore, they do not cause significant delays in job ex-
ecutions, although they appear very frequently. Moreover, the system utilization
is very low (17%), so there is usually enough free CPUs to immediately start the
execution of a newly incoming job.

As expected, FCFS did not perform well. In the Grid’5000 job trace, there are
several jobs that request a large number of CPUs and only the largest clusters
can be used. Since FCFS does not allow backfilling, smaller jobs in the queue
have to wait until such large job has enough free CPUs to start its execution. It
produces huge slowdowns for short jobs, although the overall utilization is only
15%. All remaining algorithms have been able to deal with such situations more
efficiently, producing more or less similar solutions.

An interesting result is related to the Figure 3 (bottom right) showing the
number of killed jobs. Here the total number of failed jobs for EXT-ALL is sig-
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nificantly lower than in the case of EXT-FAIL. This behavior is a combination of
three factors and needs a closer explanation. First factor is related to the cluster
selection process. If there are more suitable clusters to execute a given job then
all scheduling algorithms applied in this paper select the fastest one. However,
there are no information about clusters’ speed in Grid’5000 and DAS-2, thus all
clusters are considered to be equally fast. In such situation, all algorithms will
choose the first suitable cluster (see Section 5), i.e., “the first fit” approach is
applied. Since the Grid’5000 has a very small utilization (second factor) and clus-
ters are always checked in a given order, most jobs are actually executed on the
largest cluster. The third factor is the high failure rate in Grid’5000 (see Figure 1
top middle). The largest cluster exhibits 42% of all failures. When many jobs are
executed on this single cluster, then the probability that machine failure will kill
some job is rather high. For FCF'S, there were 18668 killed jobs in the EXT-FAIL
problem. 95.3% of them were killed at the largest cluster. Once the EXT-ALL
problem is solved, specific job requirements cause that some jobs have to be ex-
ecuted on different clusters. As a side effect, the number of failed jobs decreases,
as observed in Figure 3 (bottom right). To conclude, the combination of the “first
fit” cluster selection policy together with high failure rate and low utilization
may be very dangerous with respect to the number of killed jobs according to
our observation. To prove this hypothesis we have developed a new version of
the cluster selection policy, where —if multiple choices are available—a random
cluster is selected using uniform distribution rather than the first one. We have
used this policy in FCFS-LB (FCFS with Load Ballancing) scheduling algorithm
and compared this solution with the original “first fit” FCFS. The results are
shown in Figure 4. All experiments involving the FCFS-LB algorithm have been
repeated 10 times using different seeds and their results have been averaged and
the standard deviation computed. Concerning the number of killed jobs (right-
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Fig. 4. Observed values of objective functions and the number of killed jobs for the
FCFS and FCFS-LB in Grid’5000.
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most graph) we can see that FCFS-LB works much better than FCFS since jobs
are uniformly spread over available clusters. Also the avg. job slowdown and avg.
job wait time is slightly better for BASIC and EXT-FAIL. On the other hand, as
soon as specific job requirements are considered (EXT-FAIL, EXT-ALL) FCFS-
LB produces worse results on average. Closer inspection shows, that the actual
performance depends on the seed used in the random number generator, as can
be seen from the large values of standard deviations. Clearly, simple solution
such as FCFS-LB is not sufficient for more complex problems. We will try to
fully understand this phenomena in the future since it is beyond the focus of
this paper.

6.3 DAS-2 Workload

Figure 5 shows the results for the DAS-2 workload. As before, the highest differ-
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ences in the values of objective functions appear between BASIC and EXT-ALL-
L/EXT-ALL-M problems. For BASIC, no matter what scheduling algorithms is
applied, the avg. slowdown, the avg. response time and the avg. wait time are
always nearly the same. Again, the poorest results are related to the application
of FCFS. The disproportion between EXT-FAIL-L and EXT-FAIL-M observed
for FCF'S can be still reduced by any other more complex algorithm. Similarly to
the MetaCentrum workload, LS generates the best results in all cases. As soon
as EXT-ALL-L or EXT-ALL-M is applied, the differences between scheduling
algorithms become more visible. Especially for the EXT-ALL-M, the use of more
complex scheduling algorithms start to make sense. Although the absolute dif-
ferences of selected objective functions between BASIC and EXT-ALL-M or
EXT-ALL-L are not very large, still the application of machine failures and
specific job requirements results in different behavior even for so lowly utilized
system (10%) as the DAS-2 is. When the higher failure rate of the MetaCentrum
workload is used to generate the failures (EXT-ALL-M) the resulting values of
the avg. wait time and the avg. response time are worse than the correspond-
ing values for the workload with LANL-based failures (EXT-ALL-L). Also, the
number of killed jobs is higher when the MetaCentrum-based failures are used
(EXT-FAIL-M, EXT-ALL-M) which is expectable. Again, the use of specific
job requirements (EXT-REQ) has usually higher effect than the use of machine
failures only (EXT-FAIL-L, EXT-FAIL-M).

The total runtime of the scheduling algorithm follows the expectations— the
more complex problem is considered and the more sophisticated algorithm is
applied, the higher the algorithm runtime is.

6.4 Summary

In this section we have shown that the use of complete data sets has significant
influence on the quality of generated solutions. Similar patterns in the behavior
of scheduling algorithms have been observed using three different data sets. First
of all, the differences between studied algorithms are usually small for the BA-
SIC problems, but the situation changes for the EXTENDED problems. Here,
an application of more intelligent scheduling techniques may lead to significant
improvements in the quality of generated solutions, especially when the system
utilization is not very low. In such case, the optimization provided by Local
Search (LS) algorithm may outperform all remaining algorithms as observed for
MetaCentrum data set. LS operates over the schedule of job reservations that is
generated by CONS. When the system is lowly utilized, such schedule is often
empty since jobs are executed immediately after their arrival. Then, LS has a
little chance for optimization and its performance is very close to the original
CONS algorithm as observed in Grid’5000 and DAS-2 cases. In addition, spe-
cific job requirements may have higher impact than machine failures. So far, the
differences between the EASY and CONS solutions were likely to appear in sys-
tems with high utilization [7]. As observed in the MetaCentrum experiment, the
application of specific job requirements can significantly decrease the threshold
of the system utilization when the differences between algorithms are likely to
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appear. The inclusion of machine failures may have severe effect on the values of
objective functions as observed mainly in Grid’5000 having a very high failure
rate. In this case, another objectives such as the total number of killed jobs must
be taken into account to explain otherwise “confusing” results. Moreover, low
utilization, high failure rates combined with scheduler’s selection policies could
bring unexpected problems such as high numbers of killed jobs (“first-fit” job
allocation). Trying to solve this problem using some form of load balancing may
help, but other objectives can be easily degraded due to highly unstable perfor-
mance as observed for FCFS-LB. Here, immediate solutions such as the simple
load balancing do not work very well, since many other factors interact together.
These observations support our idea that complete workload traces should be
collected, published and used by the scientific community in the future. They
will allow to test more realistic scenarios and they will help to understand the
complicated behavior of real, complex systems.

7 Conclusion

In this paper, using the real-life based data from the Czech Grid MetaCen-
trum, we have demonstrated that machine failures or specific job requirements
significantly affect the performance of various scheduling algorithms. Since the
workloads in current archives miss to capture these features we have carefully
extended selected existing workloads to show that they may exhibit similar be-
havior. Clearly, complete and “rich” data sets influence the algorithms’ behavior
and causes significant differences in the values of objective functions with re-
spect to the simple versions of the problems. Especially, the effect of specific job
requirements should not be underestimated. We suggest, that beside the com-
mon workloads from the GWA and the PWA, also the complete ones should
be collected, published and applied to evaluate existing and newly proposed
algorithms under harder conditions. As it was presented, existing base work-
loads may not clearly demonstrate the differences between trivial and advanced
scheduling algorithms. When possible, detailed and standardized description of
the original cluster and Grid environment should be provided as well, to assure
that simulations will use correct setups. As a first step we provide the complete
MetaCentrum data set for further open research.
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