Skip to main content

Mapping-Based Merging of Schemas

  • Chapter
  • First Online:
Schema Matching and Mapping

Part of the book series: Data-Centric Systems and Applications ((DCSA))

Abstract

Merging schemas or other structured data occur in many different data models and applications, including merging ontologies, view integration, data integration, and computer supported collaborative work. This paper describes some of the key works in merging schemas and discusses some of the commonalities and differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzeni P, Ausiello G, Batini C, Moscarini M (1982) Inclusion and equivalence between relational database schemata. Theor Comp Sci 19:267–285

    Article  MathSciNet  MATH  Google Scholar 

  2. Balasubramaniam S, Pierce BC (1998) What is a file synchronizer? In: ACM/IEEE international conference on mobile computing and networking (MOBICOM). pp 98–108

    Google Scholar 

  3. Batini C, Lenzerini M, Navathe S (1986) A comparative analysis of methodologies for database schema integration. ACM Comput Surveys 18(4):323–364

    Article  Google Scholar 

  4. Beeri C, Milo T (1999) Schemas for integration and translation of structured and semi-structured data. In: International conference on database theory (ICDT). Springer, Heidelberg, pp 296–313

    Google Scholar 

  5. Bergamaschi S, Castano S, Vincini M (1999) Semantic integration of semistructured and structured data sources. SIGMOD Rec 28(1):54–59

    Article  Google Scholar 

  6. Berger M, Schill A, Vöksen G (1998) Coordination technology for collaborative applications: Organizations, processes, and agents. Springer, London

    Google Scholar 

  7. Berlage T, Genau A (1993) A framework of shared applications with a replicated architecture. In: ACM symposium on user interface software and technology. ACM, NY, pp 249–257

    Google Scholar 

  8. Bernstein PA, Halevy AY, Pottinger R (2000) A vision of management of complex models. SIGMOD Rec 29(4):55–63

    Article  Google Scholar 

  9. Biskup J, Convent B (1986) A formal view integration method. In: ACM SIGMOD international conference on management of data (SIGMOD). ACM, NY, pp 398–407

    Google Scholar 

  10. Bouzeghoub M, Klusch M, Nutt W, Sattler U (eds) (2000) Proceedings of the 7th international workshop on knowledge representation meets databases (KRDB 2000). CEUR Workshop Proceedings, vol. 29. CEUR-WS.org, Berlin, Germany, August 21, 2000

    Google Scholar 

  11. Buneman P, Davidson SB, Kosky A (1992) Theoretical aspects of schema merging. In: International conference on extending database technology (EDBT). Springer, London, pp 152–167

    Google Scholar 

  12. Calvanese D, Giacomo GD, Lenzerini M, Nardi D, Rosati R (1999) Data integration and reconciliation in data warehousing: Conceptual modeling and reasoning support. Network Inform Syst 2:413–432

    Google Scholar 

  13. Calvanese D, de Giomo G, Lenzerini M, Nardi D, Rosati R (2001) Data integration in data warehousing. Int J Cooper Inform Syst 10:237–271

    Article  Google Scholar 

  14. Casanova M, Vidal V (1983) Towards a sound view integration methodology. In: PODS. ACM, NY, pp 36–47

    Google Scholar 

  15. Chen PP (1976) Entity relation model – toward a unified view of the data. ACM Trans Database Syst 1(1):9–36

    Article  Google Scholar 

  16. Chiticariu L, Kolaitis P, Popa L (2008) Interactive generation of integrated schemas. In: SIGMOD. ACM, NY, pp 833–846

    Google Scholar 

  17. Convent B (1986) Unsolvable problems related to the view integration approach. In: ICDT. Springer, NY, pp 141–156

    Google Scholar 

  18. Doan A, Halevy AY (2004) Semantic integration research in the database community: A brief survey. AI Mag 25(1):109–112

    Google Scholar 

  19. Falconer SM, Noy N (2011) Interactive techniques to support ontology matching. In: Bellahsene Z, Bonifati A, Rahm E (eds) Schema matching and mapping. Data-Centric Systems and Applications. Springer, Heidelberg

    Google Scholar 

  20. Farquhar A, Fikes R, Rice J (1996) The ontolingua server: A tool for collaborative ontology construction. Technical Report KSL-96-26 KSL-96-26, Stanford University Knowledge Systems Laboratory

    Google Scholar 

  21. Fikes R (1996) Ontologies: What are they, and where’s the research? In: Principles of knowledge representation and reasoning (KR), pp 652–653

    Google Scholar 

  22. Friedman M, Levy A, Millstein T (1999) Navigational plans for data integration. In: Proceedings of the national conference on artificial intelligence (AAAI). American Association for Artificial Intelligence, CA, pp 67–73

    Google Scholar 

  23. Halevy AY (2001) Answering queries using views: A survey. VLDB J 10(4):270–294

    Article  MATH  Google Scholar 

  24. Hull R (1984) Relative information capacity of simple relational database schemata. In: Symposium on principles of database systems (PODS). ACM, NY, pp 97–109

    Google Scholar 

  25. Larson JA, Navathe SB, Elmasri R (1989) A theory of attribute equivalence in databases with application to schema integration. Trans Software Eng 15(4):449–463

    Article  MATH  Google Scholar 

  26. Lee ML, Ling TW (2003) A methodology for structural conflict resolution in the integration of entity-relationship schemas. Knowl Inform Syst 5(2):225–247

    Article  Google Scholar 

  27. Lenzerini M (2002) Data integration: A theoretical perspective. In: Symposium on principles of database systems (PODS). ACM, NY, pp 233–246

    Google Scholar 

  28. Madhavan J, Halevy AY (2003) Composing mappings among data sources. In: Very large data bases conference (VLDB). VLDB Endowment, pp 572–583 McBrien P, Poulovassilis A (2002) Schema evolution in heterogenous database architectures, a schema transformation approach. In: International conference on advanced information systems engineering (CAiSE), pp 484–499

    Google Scholar 

  29. McBrien P, Poulovassilis A (2003) Data integration by bi-directional schema transformation rules. In: International conference on data engineering (ICDE). Springer, London, pp 227–238

    Google Scholar 

  30. McGuinness DL, Fikes R, Rice J, Wilder S (2000) An environment for merging and testing large ontologies. In: Principles of knowledge representation and reasoning (KR), pp 483–493

    Google Scholar 

  31. Melnik S, Rahm E, Bernstein PA (2003) Rondo: A programming platform for generic model management. In: ACM SIGMOD international conference on management of data (SIGMOD). ACM, NY, pp 193–204

    Google Scholar 

  32. Miller RJ, Ioannidis YE, Ramakrishnan R (1993) The use of information capacity in schema integration and translation. In: Very large data bases conference (VLDB). Morgan Kaufmann, CA, pp 120–133

    Google Scholar 

  33. Motro A (1987) Superviews: Virtual integration of multiple databases. Trans Software Eng SE-13(7):785–798

    Google Scholar 

  34. Munson JP, Dewan P (1994) A flexible object merging framework. In: Conference on computer supported cooperative work (CSCW). ACM, NY, pp 231–242

    Google Scholar 

  35. Navathe SB, Gadgil SG (1982) A methodology for view integration in logical database design. In: VLDB. Morgan Kaufmann, CA, pp 142–164

    Google Scholar 

  36. Nebel B (ed) (2001) Proceedings of the seventeenth international joint conference on artificial intelligence, IJCAI 2001. Morgan Kaufmann, Seattle, Washington, USA, August 4–10, 2001

    Google Scholar 

  37. Noy NF, Musen MA (1999a) An algorithm for merging and aligning ontologies: automation and tool support. In: Proceedings of the Workshop on ontology management at sixteenth national conference on artificial intelligence (AAAI-99), Orlando, FL. Available as SMI technical report SMI-1999-0799

    Google Scholar 

  38. Noy NF, Musen MA (1999b) SMART: Automated support for ontology merging and alignment. In: Proceedings of the twelfth workshop on knowledge acquisition, modeling and management, Banff, Canada. Available as SMI technical report SMI-1999-0813

    Google Scholar 

  39. Noy NF, Musen MA (2000) Proceedings of the seventeenth national conference on artificial intelligence and twelfth conference on innovative applications of artificial intelligence. AAAI Press/The MIT Press, Austin, Texas, USA, July 30 – August 3, 2000

    Google Scholar 

  40. Pidduck AB, Mylopoulos J, Woo CC, Özsu MT (eds) (2002) Advanced information systems engineering, 14th international conference, CAiSE 2002, Toronto, Canada, May 27–31, 2002, Proceedings, Lecture Notes in Computer Science, vol. 2348, Springer, Heidelberg

    Google Scholar 

  41. Pottinger R, Bernstein PA (2008) Schema merging and mapping creation for relational sources. In: EDBT. ACM, NY, pp 73–84

    Google Scholar 

  42. Pottinger RA, Bernstein PA (2003) Merging models based on given correspondences. In: Very large data bases conference (VLDB). VLDB Endowment, pp 862–873

    Google Scholar 

  43. Radwan A, Popa L, Stanoi IR, Younis A (2009) Top k generation of integrated schemas based on directed and weighted correspondences. In: SIGMOD. ACM, NY, pp 641–654

    Google Scholar 

  44. Rahm E (2011) Schema matching and mapping. Bellahsene Z, Bonifati A, Rahm E (eds) Towards large-scale schema and ontology matching. Data-Centric Systems and Applications. Springer, Heidelberg

    Google Scholar 

  45. Rahm E, Bernstein PA (2001) A survey of approaches to automatic schema matching. VLDB J 10(4):334–350

    Article  MATH  Google Scholar 

  46. Rector AL, Gangemi A, Galeazzi E, Glowinski AJ, Rossi-Mori A (1994) The GALEN CORE model schemata for anatomy: towards a re-usable application-independent model of medical concepts. In: Twelfth international congress of the European Federation for Medical Informatics, MIE-94, Lisbon, Portugal, pp. 229–233

    Google Scholar 

  47. Rosenthal A, Reiner D (1994) Tools and transformations – rigorous and otherwise – for practical database design. ACM Trans Database Syst 19(2):167–211

    Article  Google Scholar 

  48. Rosse C, Shapiro LG, Brinkley JF (1998) The digital anatomist foundational model: principles for defining and structuring its concept domain. Proc AMIA Symp 1998:820–824

    Google Scholar 

  49. Shoval P, Zohn S (1991) Binary-relationship integration methodology. Data Knowl Eng 6:225–250

    Article  Google Scholar 

  50. Shu NC, Housel BC, Lum VY (1975) Convert: A high level translation definition language for data conversion. Commun ACM 18(10):557–567

    Article  MATH  Google Scholar 

  51. Song WW, Johannesson P, Bubenko J Janis A (1996) Semantic similarity relations in schema integration. Data Knowl Eng 19(1):65–97

    Google Scholar 

  52. Spaccapietra S, Parent C (1994) View integration: A step forward in solving structural conflicts. IEEE Trans Data Knowl Data Eng (TKDE) 6(2):258–274

    Article  Google Scholar 

  53. Spaccapietra S, Parent C, Dupont Y (1992) Model independent assertions for integration of heterogeneous schemas. VLDB J 1(1):81–126

    Article  Google Scholar 

  54. Tufte K, Maier D (2001) Aggregation and accumulation of xml data. IEEE Data Eng Bull 24:34–39

    Google Scholar 

  55. Vijayaraman TM, Buchmann AP, Mohan C, Sarda NL (eds) (1996) VLDB’96, Proceedings of 22th international conference on very large data bases. Morgan Kaufmann, Mumbai, September 3–6, 1996

    Google Scholar 

  56. Wang T, Pottinger R (2008) Semap: A generic mapping construction system. In: EDBT. ACM, NY, pp 97–108

    Google Scholar 

  57. Yang X, Lee ML, Ling TW (2003) Resolving structural conflicts in the integration of XML schemas: A semantic approach. In: ER. Springer, Heidelberg, pp 520–533

    Google Scholar 

Download references

Acknowledgements

Thanks are given to Phil Bernstein and Alon Halevy for their previous work and discussion with the author on the subject and to Jamila Salari, Steve Wolfman, and the editors for reading earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Pottinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pottinger, R. (2011). Mapping-Based Merging of Schemas. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds) Schema Matching and Mapping. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16518-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16518-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16517-7

  • Online ISBN: 978-3-642-16518-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics