

Pós-Graduação em Ciência da Computação

Systematic Model-Based Safety Assessment via

Probabilistic Model Checking

Por

Adriano José Oliveira Gomes

Dissertação de Mestrado

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, NOVEMBRO/2010

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

ADRIANO JOSÉ OLIVEIRA GOMES

“SYSTEMATIC MODEL-BASED SAFETY ASSESSMENT
VIA PROBABILISTIC MODEL CHECKING"

ESTE TRABALHO FOI APRESENTADO À PÓS-
GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
DO CENTRO DE INFORMÁTICA DA
UNIVERSIDADE FEDERAL DE PERNAMBUCO
COMO REQUISITO PARCIAL PARA OBTENÇÃO
DO GRAU DE MESTRE EM CIÊNCIA DA
COMPUTAÇÃO.

 ORIENTADOR(A): ALEXANDRE CABRAL MOTA

RECIFE, NOVEMBRO/2010

 Catalogação na fonte
 Bibliotecária Jane Souto Maior, CRB4-571

Gomes, Adriano José Oliveira

 Systematic model-based safety assessment via
probabilistic model checking - Recife: O Autor, 2010.
 88 folhas : il., fig., tab.

 Orientador: Alexandre Cabral Mota.
 Dissertação (mestrado) - Universidade Federal de
Pernambuco. CIn, Ciência da Computação, 2010.

 Inclui bibliografia e apêndice.

 1. Ciência da Computação. 2. Engenharia de software. 3.
Métodos formais. I. Mota, Alexandre Cabral (orientador). II.
Título.

 004 CDD (22. ed.) MEI2011 – 079

iii

iv

Acknowledgments

I would like to thank God, for His love and provision. He made me strong to keep me

healthy and able to carry out this work. Also, to my fiancée Isis, my parents and my

family, for their love and care. They give me support and encouragement in difficult

moments that allowed me to conclude this work.

I am very grateful to my supervisors, Alexandre Mota and Augusto Sampaio, for their

support, enthusiasm, patience and guidance during this research. They always give me

support and incentive since my undergraduate course. I am very pleased to have them as

teachers, supervisors, and friends.

Thanks also to all my friends, those that studied with me in the undergraduate course,

and those that I meet in this graduate course, for the emotional support and the nice

moments that we shared together. In particular, to Joabe and Farley. Both explain and

support me on the ―pyramid challenge‖. Also, to my colleagues from the Comment Lab

company, that make support and good moments. In particular, to my partner and dear

friend Vitor, who ―held the bar‖ of the company during the difficult times of this work.

I would also like to thank the people who gave me important contributions for the

development of this work. From Embraer, Felipe Ferri, Julio Buzzi and Edson

Watanabe for answering my several questions about the Safety Assessment Process, and

for the interactions about the Simulink and FTA. From the RISCTEC Group, Marcio

Moura, for answering my questions about system reliability, and for discussions about

the FTA and probabilistic models.

Finally, I would also like to thank Embraer, for the Safety Assessment Process resources

and the support for a technical visit; and the National Council of Technological and

Scientific Development (CNPq), FACEPE and the Brazilian Space Agency, for

financial support that made possible the development of this research.

v

Resumo

A análise da segurança (Safety Assessment) é um processo bem conhecido que serve para

garantir que as restrições de segurança de um sistema crítico sejam cumpridas. Dentro dele, a

análise de segurança quantitativa lida com essas restrições em um contexto numérico

(probabilístico).

 Os métodos de análise de segurança, como a tradicional Fault Tree Analysis (FTA), são

utilizados no processo de avaliação da segurança quantitativo, seguindo as diretrizes de

certificação (por exemplo, a ARP4761 – Guia de Práticas Recomendadas da Aviação). No

entanto, este método é geralmente custoso e requer muito tempo e esforço para validar um

sistema como um todo, uma vez que para uma aeronave chegam a ser construídas, em média,

10.000 árvores de falha e também porque dependem fortemente das habilidades humanas para

lidar com suas limitações temporais que restringem o âmbito e o nível de detalhe que a análise e

os resultados podem alcançar. Por outro lado, as autoridades certificadoras também permitem a

utilização da análise de Markov, que, embora seus modelos sejam mais poderosos que as

árvores de falha, a indústria raramente adota esta análise porque seus modelos são mais

complexos e difíceis de lidar. Diante disto, FTA tem sido amplamente utilizada neste processo,

principalmente porque é conceitualmente mais simples e fácil de entender.

 À medida que a complexidade e o time-to-market dos sistemas aumentam, o interesse em

abordar as questões de segurança durante as fases iniciais do projeto, ao invés de nas fases

intermediárias/finais, tornou comum a adoção de projetos, ferramentas e técnicas baseados em

modelos. Simulink é o exemplo padrão atualmente utilizado na indústria aeronáutica.

Entretanto, mesmo neste cenário, as soluções atuais seguem o que os engenheiros já utilizavam

anteriormente. Por outro lado, métodos formais que são linguagens, ferramentas e métodos

baseados em lógica e matemática discreta e não seguem as abordagens da engenharia

tradicional, podem proporcionar soluções inovadoras de baixo custo para engenheiros.

 Esta dissertação define uma estratégia para a avaliação quantitativa de segurança baseada na

análise de Markov. Porém, em vez de lidar com modelos de Markov diretamente, usamos a

linguagem formal Prism (uma especificação em Prism é semanticamente interpretada como um

modelo de Markov). Além disto, esta especificação em Prism é extraída de forma sistemática a

partir de um modelo de alto nível (diagramas Simulink anotados com lógicas de falha do

sistema), através da aplicação de regras de tradução. A verificação sob o aspecto quantitativo

dos requisitos de segurança do sistema é realizada utilizando o verificador de modelos de Prism,

no qual os requisitos de segurança tornam-se fórmulas probabilísticas em lógica temporal.

 O objetivo imediato do nosso trabalho é evitar o esforço de se criar várias árvores de falhas

até ser constatado que um requisito de segurança foi violado. Prism não constrói árvores de

falha para chegar neste resultado. Ele simplesmente verifica de uma só vez se um requisito de

segurança é satisfeito ou não no modelo inteiro.

 Finalmente, nossa estratégia é ilustrada com um sistema simples (um projeto-piloto), mas

representativo, projetado pela Embraer.

Palavras-chave: Análise Quantitativa de Segurança, Prism, Verificador de Modelos

Probabilístico, Métodos Formais, Análise de Markov, Sistemas Aeronáuticos

vi

Abstract

Safety assessment is a well-known process to assure that safety constraints on a critical

system are met. It includes quantitative safety assessment that deals with safety

constraints stated in numerical (probabilistic) terms.

 Safety analysis methods, such as the traditional Fault-Tree Analysis (FTA), are used

in the quantitative safety assessment process, following certification guidelines (For

instance, the ARP4761- Aerospace Recommended Practice). However, this method is

usually expensive and requires much time and effort to validate an entire system, since

for an aircraft it can be constructed, on average, 10,000 fault-trees mainly because it

strongly depends on human skills for dealing with time limitations that constrain the

scope and level of detail that the analysis and results can reach. Certification authorities

also allow the use of Markov analysis. Although Markov models are more powerful

than fault-trees, industries rarely use this analysis because Markov models are more

complex to be handled. Therefore, FTA has been widely used during this process

mainly because it is conceptually more simple and easy to understand.

 As complexity and time-to-market pressure increases, the interest in addressing

safety issues during the early design phases, rather than during the intermediate/final,

popularized the use of model-based design notation, techniques, and tools. Simulink is

the current de facto standard in the aerospace industry. But, even in this scenario,

current solutions follow what engineers were using previously. On the other hand,

Formal Methods, which are languages, tools and methods based on logic and discrete

mathematics and do not follow traditional engineering approaches, can provide

innovative cost-effective solutions to engineers.

 This dissertation defines a strategy for quantitative safety assessment based on

Markov analysis. But instead of dealing with Markov models directly we use the Prism

specification language (a Prism specification is semantically interpreted as a Markov

model). Furthermore, a Prism specification is extracted systematically from a high-level

model (Simulink diagram annotated with failure logic) via the application of translation

rules. The verification of quantitative safety requirements is performed using the Prism

model-checker, where safety requirements become probabilistic temporal logic

formulas.

 The immediate contribution of our work is a process that avoids the creation of

several fault-trees until a safety requirement is violated. Prism does not build fault trees

to reach this result. It just checks whether a safety requirement is satisfied or not in the

entire model.

 Finally, our strategy is illustrated with a simple (a pilot project) but representative

system designed by Embraer.

Keywords: Quantitative Safety Assessment, Probabilistic Model-Checking, Formal

Methods, Prism, Markov Analysis, Aircraft Systems

vii

Contents

Chapter 1 Introduction .. 1

1.1 Context and Objectives ... 4
1.1.1 Main contributions 6

1.1.2 Development of a case study 6

1.2 Related Work ... 6
1.2.1 FSAP/NuSMV-SA 7
1.2.2 COMPASS Approach 8
1.2.3 Probabilistic FMEA 9

1.3 Dissertation Organization .. 10

Chapter 2 Safety Assessment Process ... 11

2.1 Safety Assessment of Aircraft Systems ... 11

2.2 Quantitative Analysis .. 18
2.3 Model-based Safety Assessment .. 21

2.3.1 Principles of Model-based Safety Assessment 22
2.3.2 HiP-HOPS 24

2.3.3 Applying HiP-HOPS to an Aircraft System 26
2.3.4 Support for Quantitative Analysis 32

Chapter 3 Probabilistic Model Checking and Prism 35

3.1 Probabilistic (Stochastic) Models .. 36
3.1.1 Continuous-Time-Markov Chains 36

3.2 Prism... 39
3.2.1 Prism Modeling Language 40

3.2.2 Property Expressions 42

3.2.3 Prism Model Checker 43
3.2.4 Modeling a Simple System using Prism 44

Chapter 4 Proposed Strategy ... 48

4.1 Strategy Overview ... 48
4.2 Extending the tabular notation .. 50
4.3 Collecting and Processing the Input Data ... 51
4.4 Translation Rules .. 54

4.4.1 Compound Systems and Subsystems 54
4.4.2 Module 55

viii

4.4.3 Declarations 56
4.4.4 Failure Transition Commands 57
4.4.5 Repair Transition Commands 57
4.4.6 Formulas 59
4.4.7 Generation of system verification expressions 61

4.4.8 Model Considerations 62

4.5 Quantitative Analysis .. 63

Chapter 5 Case Study ... 66

5.1 System Description .. 66

5.2 Applying the Strategy ... 67
5.2.1 Model Generation 68
5.2.2 Quantitative Analysis 70

5.3 Quantitative Results .. 72

Chapter 6 Conclusion ... 75

6.1 Future Work .. 76

Elevator Control System.sm ... 84

ix

List of Tables

Table 2.1 IF-FMEA Table of the monitor component ... 29

Table 2.2 IF-FMEA table of the actuator component .. 30

Table 2.3. Set of deviation for the Elevator Control System .. 31

Table 2.4. Topology table of the Elevator Control System .. 32

Table 3.1. Topology table of the Elevator Control System .. 38

Table 4.1. Definition of the additional information.. 51

Table 4.2. Additional information using a tabular notation ... 51

x

List of Figures

Fig 1.1 - Airplane parts and functions .. 1

Fig 1.2 - Distant view of a fault tree for one failure condition ... 4

Fig 1.3 - Architecture of the Compass Toolset [22] ... 8

Fig 1.4 - Probabilistic FMEA (pFMEA) – Approach Overview [18] 9

Fig 1.5 - Example of modeling using PFMEA [18] ... 10

Fig 2.1 - Overview of the safety assessment process ... 12

Fig 2.2 - List of criticality levels and its effects ... 13

Fig 2.3 – Partial Aircraft FHA example that address only ―Decelerate Aircraft on the

Ground‖ .. 14

Fig 2.4 Example of a generic fault tree diagram .. 15

Fig 2.5 - Relationship between FHA, FTA and FMEA.. 16

Fig 2.6 - Partial Wheel Brake System FHA (addresses only ―Decelerate the Wheels on

the Ground) ... 17

Fig 2.7 - Relationship between Probability and Severity of Failure Condition Effects

[24] ... 19

Fig 2.8 - Relationship between probability and severity of failure condition 20

Fig 2.9 - The classic ―Bathtub Curve‖ used to diagram the constant failure rate period in

the life of an electronic component .. 20

Fig 2.10 (a) Assembling design components to construct a model. (b) Test of multiples

scenarios [9] .. 22

Fig 2.11. A Common Model Based Safety Assessment Process 23

Fig 2.12 – HiP-HOPS modeling notations [5] .. 25

Fig 2.13 – Overview of the HiP-HOPS technique ... 25

Fig 2.14 - IF-FMEA of a hypothetical component system ... 26

Fig 2.15 - (a) Aircraft control surfaces and axes of motion. (b) Pitch motion. 27

Fig 2.16 - Blocks diagram of the Elevator Control System.. 27

Fig 2.17 - Details of controller subsystem .. 28

xi

Fig 2.18 – Simulink diagram and a GUI for annotation of components with failure data

[70] ... 33

Fig 2.19 – A overview of model-based synthesis of fault trees using HiP-HOPS 34

Fig 3.1 – Examples of Markov state transition diagrams and its correspondent generator

matrix .. 37

Fig 3.2 - Markov diagram of two components in parallel .. 38

Fig 3.3 – The structure of Prism [52] ... 39

Fig 3.4 - Screenshots of the PRISM tool running .. 40

Fig 3.5. System representation using Prism ... 42

Fig 3.6 - Diagram of a system with an component and backup with an independent

monitor ... 45

Fig 3.7- Prism specification of a small system ... 46

Fig 3.8 – States, matrix transitions and steady-state probabilities of the small system

specification .. 47

Fig 4.1 Overview of proposed strategy .. 49

Fig 4.2 - Defined types based on tabular annotations .. 52

Fig 4.3 - Translation Strategy Overview .. 54

Fig 4.4. Graph plotting the common behavior of different Markov analysis. 63

Fig 5.1. Elevator Control System ... 67

Fig 5.2. Step that demonstrate the module creation ... 68

Fig 5.3. Generated expressions in CSL .. 71

Fig 5.4. Results of expression verification (numerical value) .. 72

Fig 5.5. Results of expression verification (satisfaction of a property) 73

Fig 5.6. Instantaneous probability during a period of time .. 74

1

Chapter 1

Introduction

Critical systems are increasingly being controlled by complex computer solutions. This

imposes an even stronger requirement on reliability and safety. The occurrence of

failures in these systems is almost unacceptable because failures can result in loss of

human lives, financial losses or damage to the environment.

 For instance, to allow the operation of an aircraft (civil or military), the authorities of

this sector, as the FAA (Federal Aviation Administration) of the USA and ANAC

(National Civil Aviation Agency) of Brazil, require stability in the control and

enforcement functions of an aircraft [2, 4, 12]. The guarantee of stability depends on all

systems and their subsystems and components and how they are related in the plane (see

Fig. 1.1).

Fig 1.1 - Airplane parts and functions

 During an aircraft development, a major challenge is designing a guaranteed system

architecture that conceives the functional aspects to operate safely under the several

hazard situations that can occur. Demonstrating that a solution (design) tackles such a

challenge is mandatory for the certification authorities to approve the system.

 Therefore, a safety assessment process is followed by the airborne industry in order

to ensure the correct construction of a safe aircraft. This process is guided by rigorous

2

norms and patterns such as DO 178B [12] and ARP 4761 (Aerospace recommend

Practice) [2] that propose a well-established set of guidelines and methods for civil

aircraft systems1. Although the safety assessment process determines a common

framework for the aeronautics industry to handle the safety issues of aircraft systems,

the fulfillment of this process involves long and arduous engineering tasks, given the

complexity and magnitude of the projects involved. These tasks are based, in most

cases, on engineers’ judgment and can present problems and limitations [4].

 Furthermore, according to FAR 25.1309 (Federal Aviation Regulations) [24], which

defines the requirements for certifying the systems and software loaded into an aircraft,

there is a classification of the aircraft's functions and their systems with respect to the

losses they can generate for the aircraft itself, its passengers and crew (from level A that

means a catastrophic effect - most critical, to level E that means a no effect - least

critical). A failure is the inability of a system to perform its required functions within

specified performance requirements. The greater the criticality of a failure condition

(hazard situation), the lower must be the probability of its occurrence (risk). This

derives safety requirements that must be defined and satisfied under qualitative or

quantitative analyses.

 More specifically, the relation between the criticality of a failure and its probability

of occurrence within the system exposition time defines the risk of an accident. Hazard

is the potential to cause harm; risk on the other hand is the likelihood of harm (in

defined circumstances, and usually qualified by some statement of the severity of the

harm). Hence, the qualitative analysis refers to the characterization of the behavior of

different faults (abnormal condition that may cause a reduction in, or loss of, the

capability of a functional unit to perform a required function) that may result in a

hazard, whereas the quantitative analysis refers to reliability predictions for system

components that may cause or contribute to this hazard (based on a risk evaluation). The

safety assessment process must take into account both analyses to assess the system

architecture under all safety requirements that can be foreseen.

 Concerning the quantitative aspect of the safety assessment process of aircraft

systems, it is traditionally addressed using Fault Tree Analysis (FTA) [1]. This method

is frequently used in industrial applications and it is also indicated by certification

authorities. The main reason for its practical acceptance is that FTA is conceptually

simple and easy to understand [2]. However, certification authorities also accept the use

of Markov Analysis (MA) [16] to assure safety requirements of a system design.

 Both FTA and Markov models use system failure logic information derived from

well-known analysis techniques such as Failure Mode and Effect Analysis (FMEA) and

Failure Hazard Analysis (FHA) presented in the ARP 4671 [2]. Based on this

information, the analysis methods evaluate the probabilities of the undesired failure

conditions to check whether a safety requirement is satisfied or not. Each technique

executes this analysis using different mathematical representations; FTA uses static

event-based trees and Markov analysis uses stochastic processes. Although Markov

models are more powerful than fault-trees [2], they are more complex to be handled;

1 MIL-STD-882D [3] covers the same purpose in the military domain.

3

thus, they are scarcely adopted in industry. Furthermore, in practice, they are created in

a non-systematic ad hoc fashion [6, 23].

 In recent decades, quantitative analysis has appeared as an arduous and expensive

process, mainly due to the complexity and variety of systems involved as well as the

several different situations of hazard under which they are evaluated. Even guided by

well-defined standards and methods, the major representatives of the airborne industry

such as Boeing, Embraer and Airbus still have several difficulties to handle this process

efficiently [4, 6, 17]. Given this scenario, investment in tools and methods to support

the development of safe systems on the established time and budget is still a big

challenge [6, 13]. In particular, time constraints on the operation of these systems, that

determine their correct operation, require the use of methods and tools that guide the

entire process of design and validation. Such methods need to be rigorous, systematic

and have a practical focus on validation, verification and quality assurance. Moreover,

the quality of this product should act as a competitive advantage without affecting

demand and time to market.

 Currently, promising initiatives are directing towards proposals of advanced model-

based design techniques to support the development process mainly at initial stages of

the development during which engineers have more flexibility to evaluate different

solutions and to propose improvements. The advent of high-level tools like

Matlab/Simulink [9], SCADE [10] and Statemate [58] makes possible to model large

complex systems using hierarchical diagrams, while preserving structural and functional

aspects of the intended design. In the safety analysis view, these approaches have been

extended to include the failure logic of a system inside its own diagrammatic model. On

the qualitative analysis side, parameterized verification algorithms have been developed

to identify failure causes and consequently constructing the corresponding fault trees

automatically [5, 14, 40]. However, as described previously, qualitative analysis

methods alone are not sufficient for addressing completely all safety aspects. The safety

assessment process also demands probability constraints to be addressed by quantitative

analysis.

 Despite several automatic model-based approaches being proposed for FTA [11, 13,

14, 15] using a high-level tool like Simulink or SCADE, their treatment of quantitative

parameters still depend of some human intervention. This can introduce errors in the

analysis. Moreover, they are not cost-effective, because the probability of each failure

condition (top event) must be evaluated singly (just one failure condition at a time),

requiring more effort to undertake the analysis of the whole system. Thus, for each of

the thousands of possible failure conditions of an aircraft, a fault-tree must be

constructed and analyzed qualitatively and quantitatively to ensure that the probability

of occurrence of such failure conditions is in accordance with the safety requirements.

Considering that about 10,000 fault-trees are built during the safety assessment process

of an aircraft, containing hundreds of basic events and whose depth we can reach many

of the levels (see Fig. 1.2), the analysis of these fault-trees can be very stressful. This

has a direct influence on development time of an aircraft that can reach 5 years and

involve about 300 to 400 engineers [4, 17]. Furthermore, integrating quantitative

analysis into a model-based solution, considering probabilistic models such as Markov

4

chains in a semantically sound manner, is still a challenge. Nevertheless, a link to

effective probabilistic verification tools has not been established so far.

Fig 1.2 - Distant view of a fault tree for one failure condition

 On the other hand, formal methods comprise mathematically founded methods

designed to describe the properties of a system (requirements) in a precise and non-

ambiguous way as well as allows one to assure that corresponding implementations

satisfy such properties. Formal methods are equipped with a formal specification

language that has a well-defined semantics. Formal specifications can be analyzed by

model checkers or theorem provers to demonstrate that system design models meet the

requirements. Consequently, this can greatly increase the confidence in the safety and

correctness of the corresponding system. Examples of formal languages are CSP [59],

Prism [7], Z [60] and Probmela [57]. Given the clearly importance of validating and

verifying the safety requirements of the system throughout the safety assessment

process, probabilistic models should be created using formal specifications in order to

offer reliability predictions for the system that can properly support the process of

quantitative analysis [6, 7, 13].

 Despite the best practices provided by formal methods and their current conquered

maturity, they are not successfully integrated into many development processes. The

principal issues are related to a typical aversion on the part of the development teams in

dealing with formal notations because such notations are not usual to them. Moreover,

formal verification tools typically have their specific variants of the original language,

which implies a bigger learning curve.

1.1 Context and Objectives

 Our research has been developed in the context of a cooperation with Embraer

(Empresa Brasileira de Aeronáutica S.A.). A central motivation is the fact that safety

assessment can be improved by more systematic solutions instead of following just

checklists as well as informal guidelines. Embraer has used the standards of its sector,

briefly discussed here, as a means of fulfilling requirements for system development

5

and certification. Particularly, Embraer heavily uses model-based solutions, through

Simulink based tools provided by plug-ins.

 This work is an initial effort to integrate quantitative safety assessment into a model-

based solution considering formal models equipped with stochastic events. Such

languages have specialized probabilistic verification tools that allows us to check the

safety requirements of a system.

 Therefore, this work is part of a larger project presented in [43] that defines a

methodology that integrates a functional (qualitative) analysis [42] with a non-

functional (quantitative) analysis over the system design with the support of formal

methods. In this dissertation we detail the non-functional analysis strategy [65], with

focus on the systematic model generation and analysis from Simulink diagrams.

 We propose a strategy for quantitative safety assessment based on the Prism

language [7, 8, 53]. By using this language, one can deal with Markov models indirectly

and using a high-level and modular specification language (Prism). Additionally, Prism

provides a probabilistic model checker which allows us to check probabilistic temporal

logic formulas. And checking such formulas mean performing a quantitative analysis on

the underlying Markov model in a high-level and versatile way, obtaining a lot of

different analysis (compared to the traditional ones employed by engineering) easily.

This is one of the most powerful advantages of Prism.

 The additional effort and cost to create formal models in a traditional safety

assessment process has been a significant barrier. Manually creating models aiming at

formal analysis is labor intensive, because this requires significant skills of formal

methods notations as well as those models must be kept faithfully synchronized to

justify the results of the analysis. Consequently, there is a need to offer formal

verification techniques available in notations common to engineers, such as Simulink.

 Our proposed strategy addresses these problems by hiding the interaction with Prism.

This is achieved by using translation rules that take a Simulink diagram, annotated with

failure conditions and logic [5, 10], as input and produce a Prism model and CSL

formulas [8] (to check safety requirements) in such a way that we are able to report to

the user only those safety requirements that are not satisfied. The Simulink’s notations

have straightforward formal treatment. This means that it is possible to use the models

designed in these notations as the basis for formal analysis, removing the incremental

labor for constructing formal model. It is worth noting, however, that in this work we do

not provide the implementation of our proposed framework.

 Hereby, a model-driven safety assessment approach combined with formal methods

can provide more efficient means to assess the validity of the safety requirements in line

with the system architecture.

 A large amount of work has been done for quantitative safety assessment which is

based mainly on a model-based approach with the support of formal methods. An

example of an effort in this direction is the use of the MRMC [37] model checker to

compute the failure conditions probability. This model checker is used in the

COMPASS project [14] that aims at developing an alternative design language, based

on the architectural description language AADL [37, 38]. Another relevant effort is the

Probabilistic FMEA [18], a fault injection approach where Prism is used for modeling

6

and safety analysis. Although the recent proposed approaches, many positive results and

reasonable technical advantages in this context, our work is relevant in the sense that it

proposes a systematic integration with a well-established model-based design tool such

as Simulink, allowing it to be used directly in industry. Such systematization also allows

us to prove that our translation is valid and always works. Moreover our strategy

prevents that the formal notation is exposed to the user, avoiding that engineers, not

familiar with this notation, have any impact for its adoption.

1.1.1 Main contributions

The main contributions of this dissertation are:

 A (occult) Markov-based quantitative model-based safety assessment process;

 Translation rules that systematically transform Simulink diagrams (tabular

structures), into Prism models augmented with CSL formulas that can

automatically verify the quantitative requirements of the system;

 The use of a single model from which it is possible to check any stipulated

failure condition for the system;

 A case study that illustrates the overall approach.

1.1.2 Development of a case study

 Our case study, although simple, was provided by Embraer and is a common

subsystem found in aircrafts. But in the near future, Embraer itself intends to use the

results provided by our work in several other case studies to measure its practical

feasibility. Considering this, we intend to develop a plug-in for Simulink to automate

our systematic approach. In this sense, the outcome of this project will have the

potential to increase the quality of the products developed as well as the productivity;

reducing development costs and generating competitive advantages.

1.2 Related Work

The remarkable interest in providing support for the safety assessment process by the

introduction of formal methods and model-based approaches is evident in various

relevant works. An example of an effort in this direction is the use of FTA to compute

the failure conditions probability such as the HAZOP [14], which provides a design

developed in Simulink; another relevant effort is the ISAAC project where SCADE is

used for modeling and safety analysis [11, 13]. It is also worth mentioning

FSAP/NuSMV-SA [15], a fault injection approach developed in the ESACS project.

 Due to the limitations of static FTA methods, as discussed in Chapters 1 and 2, more

recently, approaches considering dynamic reliability have been proposed, based on

timed-probabilistic models that perform quantitative safety assessment based mainly on

a previous qualitative analysis [23, 36, 68, 69]. Other interesting works have also

incorporated coverage modeling (the probability that a system can automatically recover

7

from a fault, given that a failure occurs), the failures on demand (that is, failure of a

component to intervene), human intervention, the role of control/protection systems,

expert judgment, and also the ordering of events during accident propagation [33].

These different approaches usually include BDD-based techniques for the evaluation of

static fault trees and state transitions of semi-Markov models [31, 32], Stochastic Petri

Nets [35], dynamic fault trees [34] and direct simulation via Monte Carlo analysis [29,

30]. Also, they can use a hybrid stochastic model that takes into consideration the

mutual interactions between the hardware components of a plant and the physical

evolution of its process variables by the integration of continuous time semi-Markov

processes and Bayesian belief networks, for instance [28]. Our approach, which is

concerned with the systematic generation of Markov models, differs from the previous

works in the sense that they are more concerned with the manual modeling and direct

evaluation of a given plant whereas we focus at mechanization (and ideally at

automatization) of correct solutions as well as integration with accepted design tools,

such as Simulink. Furthermore, we use model checking to support automatic

verification of arbitrary CSL properties (in particular, safety properties). In the

following section we highlight some works that are more closely related to ours.

1.2.1 FSAP/NuSMV-SA

FSAP/NuSMV-SA [15, 27] is a tool developed as part of the project ESACS [16] to

automate the generation of fault trees. The methodology of ESACS aims to integrate the

design with the safety analysis of the systems. The FSAP tool requires that the system

model be specified in the NuSMV-SA language and uses its model checker on temporal

logic to generate a fault tree from a particular top event. After the failure modes are

defined, the user can automatically inject faults in the system model to create a new

extended model. The model of the extended system adds a degraded performance

compared to the original system, corresponding to the failure modes defined. This

model can be used to assess the safety of the system.

 A significant advantage of the FSAP automatic analysis tool is that it eliminates the

need for manual creation of fault trees, since the system and failure model are specified.

NuSMV-SA also provides a trace for every minimum cut it generates. The trace shows

how the top event is reached, given a particular configuration of fault determined by the

minimum cut set. FSAP/NuSMV-SA can also automatically perform analysis of events

considering ordering a top event and a minimum cut set. Traditionally FTA is restricted

to static analysis but using FSAP it is possible to investigate the influence of failure

modes in dynamic situations.

 Although FSAP is a very powerful tool, it has drawbacks, which may limit its

practical applicability. A fault tree generated by the FSAP has a fixed structure, in the

style "or-and", that is, it is a disjunction of all minimal cutsets, where each minimal

cutset is as a product of basic events. A fault tree generated by a traditional manual

analysis is usually more intuitive to read because the engineers create the fault tree

corresponding to the structure of the system. Moreover, we note that there is not much

8

flexibility in defining the fault model --- no reasonable way to indicate the fault

propagation, simultaneous/dependent failures, or persistent/intermittent faults.

1.2.2 COMPASS Approach

In the COMPASS project [22], the model-based safety assessment approach results

from the combination of the NuSMV [67] symbolic model checker and the MRMC [37]

probabilistic model checker which allow the analysis of aircraft systems. The model is

specified in the SLIM (System-Level Integrated Modeling) [12] design language, which

is inspired by AADL [37, 38], architecture-based and model-driven top-down and

bottom-up engineering.

 The approach allows the extension of the nominal model of the system adding

probabilistic fault behavior, providing a precise characterization of them and describing

the system error propagation, recovery mechanisms, timing and probability based on a

formal semantics. The analysis is based on a set of verification tools (FSAP/NuSMV,

RAT, Sigref, and MRMC) which allow verifying safety/dependability aspects and

quantitative analyses (probabilistic analysis of dynamic FTA).

Fig 1.3 - Architecture of the Compass Toolset [22]

9

 Fig. 1.3 shows the architecture of the COMPASS tool. It receives as inputs the SLIM

model and the properties patterns. The latter describes the properties of the system,

which are expressed in a user-friendly pattern, called ProProST [66]. ProProST converts

these properties to its respectively CSL or CTL formulas. These inputs are processed

and the tool generates several artifacts as output. For instance, the NuSMV checks the

system's correctness by property verification, generating counterexample traces when

some property is violated. Furthermore, the SLIM models can be adjusted and resulting

in an interactive Markov chain, allowing that performance requirements are analyzed

with MRMC. Moreover, the MRMC also computes the probability of the top events in

fault-trees.

 The completeness and consistency of this approach qualify it as a promising solution,

but the formal modeling language adopted is exposed to the user (except the properties

notation), demanding that engineers to be familiar with this notation. Thus, the impact

for the adoption of this solution might be significant; our approach follows the hidden

formal methods view.

1.2.3 Probabilistic FMEA

The work reported in [18] (which proposes pFMEA or Probabilistic FMEA) also uses

the Prism model-checker to support quantitative analysis. The approach integrates the

failure behavior into the system model described in CTMC via failure injection. An

overview of pFMEA approach is illustrated in Fig. 1.4.

Fig 1.4 - Probabilistic FMEA (pFMEA) – Approach Overview [18]

 As illustrated in Fig. 1.4, first, the user describes the system probabilistic model in a

functional vision (normal behavior). Then the user can describe the failure view for each

component by injecting in the system specification, their failure modes. After that, the

user feeds a matrix that specifies the possible transitions, including their transition rates

between the normal operation of system and failure situation. Therefore it is possible to

determine quantitatively and formally if a violation happens of the safety requirements

10

stipulated using the Prism probabilistic model checker with the support of temporal

expressions. Also, using temporal languages (CSL, PCTL), we can infer the probability

that the failures can occur when the system is in a particular failure mode. This

advantage makes this approach interesting if comparing the standard FMEA with

existing techniques.

Fig 1.5 - Example of modeling using PFMEA [18]

 In one sense, pFMEA performs a more detailed analysis than ours because it

considers faulty as well as normal behaviors of a system (see Fig. 1.5). However, this

approach does not generate the model systematically, so there is no notion of soundness

concerning the model generation, and is more likely to generate state explosion, since it

does not present techniques to enable reduction of the Markov model generated.

1.3 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides the background on the

safety assessment process as well as the prominent model-based solution.

 Chapter 3 presents an overview of probabilistic models outlining basic concepts of

Markov Chains. Furthermore, it presents the Prism formal language with its model

checker (Prism).

 Then, in Chapter 4 we present the approach developed to achieve formal

probabilistic analysis of aircraft systems in a model-based context. All phases of the

process are detailed and justified for use in our case study.

 The other contribution of this work is given to the development of a case study which

is shown in Chapter 5. We describe the application of our strategy in a simple aircraft

subsystem.

 Finally, Chapter 6 shows our conclusions that discuss the benefits and drawbacks of

our strategy. Moreover, we give a brief overview of some future works.

11

Chapter 2

Safety Assessment Process

In this chapter we introduce the safety assessment process used in the aeronautical

industry. This process involves complex phases and activities [2, 4] that are executed

during the design of aircraft systems, aiming to minimize the occurrence likelihood of

potential hazards of a system.

 The process covers several aspects (hardware, software and architecture) of the

system, performing qualitative and quantitative analysis, necessary to validate the safety

requirements stipulated. Thus, we also describe these analyses during this process as

well as the model-based solution, which is the state-of-the-art in the safety assessment

process. Finally, we illustrate a model-based scenario with a simple aircraft system that

is used in our case study. This process is very detailed and complex and we only explain

its essential parts (for a deeper description please refer to [2, 4]).

2.1 Safety Assessment of Aircraft Systems

Safety Assessment is the process used to ensure the adequacy of a system's architecture

design with its respective risk of hazard situations, which must be kept at tolerable

levels. In short, this process aims to produce a safe aircraft.

 This process is driven by aircraft functions that are organized in different stages as

can be seen in Fig. 2.1. During this process, hazard analysis is performed in parallel

with system design where the failure conditions (potential failures that can affect the

aircraft functions) are identified and classified according to its severity. Starting with

the functions of the highest level, the assessment goes down gradually to the low-level

functions, guided by the system's architecture. As a consequence of this gradual

analysis, the derived safety requirements that emerge can be either in qualitative or

quantitative form. These new safety requirements are introduced in the top-level and

subsystem design. They comprehend the high-level airplane safety goals as well as

system safety goals that must be considered in the proposed system architectures.

 Industry standards, such as the ARP 4761 [2] for civil aviation, provide the criteria to

determine the corresponding criticality of a hazard and which levels are considered

acceptable or not. Such standards aim at providing common guidance for engineers and

certification authorities on how to address safety and reliability issues throughout the

development lifecycle of complex systems.

12

Fig 2.1 - Overview of the safety assessment process

 The central element of the safety assessment process is the method FHA (Functional

Hazard Analysis). The goal of the method FHA is to identify all possible conditions on

which an aircraft function can fail. For example, a failure condition would be "failure of

the longitudinal control during the cruise." For each failure condition, a criticality is

assigned. The criticality is used to indicate the effect on the aircraft if that failure

condition occurs (see Fig. 2.2).

 As long as different systems are assigned to a given function, defined on the aircraft

level, the effects caused by the loss of this function can spread among them. For

instance, the hydraulic system is a system that helps the longitudinal control. If it was

defined previously that the loss of longitudinal control is catastrophic, possibly the loss

of the hydraulic system is catastrophic as well. In this sense, FHA hierarchically

unpacks the systems until the low-level functions are considered and derives the safety

requirements based on the defined failure conditions.

13

Fig 2.2 - List of criticality levels and its effects

 Therefore, FHA is responsible to generate requirements such as ―a catastrophic

failure condition shall not occur more frequently than 10
-9

 per flight hour‖ or ―No

catastrophic failure condition result from a single failure". The former restriction (10
-9

),

associated to the first requirement, corresponds to the allowable quantitative probability,

determined by the FAR 25.1309, for the failure conditions whose likelihood of

occurrence must be extremely improbable. The latter illustrates a common qualitative

requirement.

 After identifying the failure conditions in the FHA (Fig. 2.3 illustrates an example of

an aircraft FHA table that addresses a failure condition), the engineers employ other

techniques to determine which single failures or combinations of failures can exist at the

lower levels that might cause each failure condition and verify if the proposed system

architecture satisfies the safety objectives defined in the FHA.

 They create their own system behavior understanding and perform the safety

assessment using a classical technique (Fault Tree Analysis - FTA, Dependence

Diagrams - DD, Markov Analysis - MA) to validate the safety requirements as well as

demonstrate the design concept. The Preliminary System Safety Assessment (PSSA)

usually takes the form of such a technique and also includes the Common Cause

Analyses (CCA). A Common Cause Analysis assesses the specific system architecture

by evaluating the overall architecture sensitivity to common cause events [2, 4].

 During the PSSA stage a systematic examination of the proposed system architecture

is performed to determine how failures can cause the functional hazards identified by

FHA. PSSA aims to establish the safety requirements of the system in accordance of the

safety objectives identified by the FHA.

14

Fig 2.3 – Partial Aircraft FHA example that address only “Decelerate Aircraft on the Ground”

 The PSSA performs an interactive process associated with the design definition. It

includes consideration of the system qualitative issues and consists of analyzing its

architecture with focus:

 Required resources for the nominal behavior of each system component:

definition of ports and association, control variables and its transfer functions;

 Fail-safe design concept that uses the following design principles or techniques

in order to ensure a safe design: designed integrity and quality to ensure

intended function and prevent failures: redundancy or backup systems, isolation

and/or segregation of systems and components, etc.;

 Possible failure modes and functional mechanisms (monitoring, reconfiguration)

elaborated to limit/control their effects: monitor, switches, auxiliary

mechanisms;

 Dependencies between system components: power supply and basic components

.

 Traditionally the PSSA and SSA (System Safety Assessment) stages are based on the

FTA, the well-known top-down technique used in industry, with support of the CCA,

both described in detail in the ARP 4761 [2]. A fault tree is a graphical model that

describes the combination of failure events [1]. It is formed by a top event, intermediary

and basic events as well as logic gates ("OR", "AND", etc.) aiming at capturing the

relationship between the events whose occurrence, according to the logic captured by

the gates, enables a high level event to occur as well (representing the failure condition).

Fig. 2.4 illustrates an example of a generic fault tree model.

15

Fig 2.4 Example of a generic fault tree diagram

 For each basic event, occurrence probabilities are assigned and the probability of

occurrence of a high level event can be calculated from the lower level dependent

events. The FTA facilitates subdivision of system level events into lower level events

for ease of analysis. At the lowest level, the PSSA determines the safety design

requirements of the related systems.

 The SSA is responsible to assess each implemented system to show that safety

objectives from the FHA and its derived safety requirements from the PSSA are met.

The SSA analysis is similar to the PSSA , except that instead of evaluating proposed

architectures and deriving system safety requirements, SSA performs a an extensive

verification to check if the implemented design meets both the qualitative and

quantitative safety requirements as defined in the FHA and PSSA. An assessment to

identify and classify failure conditions is necessarily qualitative. On the other hand, an

assessment of the probability of a failure condition may be quantitative.

 The SSA is commonly derived from the PSSA FTA (DD or MA) and, at component

level, it uses the quantitative values obtained from the Failure Modes and Effects

Summary (FMES). The FMES is a summary of failures identified by FMEA (Failure

Mode Effective Analysis [2]). FMEA is a bottom-up method for assessing the failure

modes of a system and determining the effects of the relations among these failures.

FMEA is used to evaluate the effects on the system and airplane of each possible

element or component failure. When properly formatted, it aids in identifying the

possible causes of each failure mode. The system FMEA is summarized into the system

FMES to support the failure rates of the failure modes considered in the FTA.

Therefore, SSA must verify that all significant effects identified in the FMES are

considered for inclusion as basic events in the FTA.

16

Fig 2.5 - Relationship between FHA, FTA and FMEA

 Currently, FTA acts as a logical complement to FHA. The relationship between them

can be seen in see Fig. 2.5. That is, fault trees must be created for the aircraft,

decomposing top level hazards into their causes, down to single events. These events

correspond to system and component failures with associated failure rates. The failure

rates of the basic events (failure modes) are determined by reliability prediction

methods such as FMEA. Considering the failure conditions identified in the FHA, the

PSSA and SSA can be applied mainly to determine:

 Which single failures or combination of failures can exist at the lower levels

(basic events) that can cause each failure condition;

 The average probability of occurrence per flight hour for each failure condition.

 As result, for each failure condition, it should be determined if the associated safety

requirements are met. As an example, Fig 2.6 shows a fragment of System FHA table of

the Wheel Brake System (WBS) [2], which is derived from the Aircraft FHA shown in

Fig. 2.3. The WBS is used to provide safe retardation of the aircraft during taxiing and

landing phases, and in the event of a rejected take-off. The following expressions are a

set of significant safety requirements of this system resulted from its FHA analysis:

 Loss of all wheel braking during landing or RTO shall be less than 5E-7 per

flight;

 Asymmetrical loss of wheel braking coupled with loss of rudder or nose wheel

steering during landing or RTO shall be less than 5e-7 per flight;

17

 Undetected inadvertent wheel braking on one wheel w/o locking during takeoff

shall be less than 5e-9 per flight.

Fig 2.6 - Partial Wheel Brake System FHA (addresses only “Decelerate the Wheels on the Ground)

 According to the certification authorities, the proposed system design must assure,

for instance, that the probability of catastrophic failure conditions that can occur is

extremely improbable. So, this class of failure conditions may be analyzed in a

quantitative basis (in addition to qualitative analysis), because these failures are more

critical. Consequently, the average probability of occurrence for each failure condition

per flight hour must be calculated assuming a typical average flight and considering the

appropriate exposure and risk times to check if a certain failure condition is kept at

acceptable levels [2, 24].

 Considering all these issues, system architecture may be designed and verified in

such a way that the system safety requirements at low-level (SSA) satisfy the system

high-level requirements As components are integrated into system and systems are

integrated into the aircraft, the failure effects are compared with the failure conditions

identified in the FHA. This comparison is called an "Integration cross-check" [2].

 In summary, the safety assessment process has four basic steps:

1. Clearly identify undesired events, its effects and criticality;

2. Perform a qualitative analysis by constructing a model of the sequence of events

leading to an undesired event. This model accurately describes the logic flow of

the entire process leading to the event;

3. Perform a reliability prediction for the component elements parts;

4. Perform a quantitative analysis by constructing a mathematical model (a set of

equations based on the logic derived from the qualitative model), and calculating

the probability of the undesired failure conditions over a certain exposure time.

18

 This process can involve other safety techniques as well but this is out of the scope

of this work. For further information about this please refer to ARP 4761 [2]. As was

already described, traditionally, steps 2 and 4 are performed using FTA. However this

method strongly relies on human intervention and thus it presents limitations directly

proportional to the complexity of the airborne systems, mainly because a quantitative

analysis of a fault-tree must include the following concerns:

1. Influence of repeated events in the probability of occurrence of top event of

fault-trees;

2. Influence of change of flight duration in the value of the probability of

occurrence of top event of fault-trees;

3. Adjusts on the procedure to calculate the probability of occurrence of top event

given the existence of latent events in fault-trees.

 Furthermore, note that there is a critical factor in the application of this method. As a

usual complex system has several failure conditions, several different fault trees are

constructed, one for each failure condition. These fault trees are constructed to assess

the cause and probability of single top event. The key point is that each time a safety

requirement is violated, the system architecture must be revised to reduce the likelihood

of the hazard occurring and consequently all related fault trees must be constructed

again.

2.2 Quantitative Analysis

 The relation between the criticality of a failure and its probability of occurrence

within the system operational lifetime is commonly the factor that determines the risk of

an accident. Hereby, the qualitative aspect concerns the characterization of the behavior

of different faults that may result in a top level hazard whereas the quantitative aspect

concerns the reliability predictions for the system that may cause or contribute to this

hazard. Although the concept of safety itself is not necessarily associated with the

concept of reliability, both should be considered simultaneously in order to obtain

practical results. Knowing that a system is never free from critical failures, safety

analysis methods must consequently consider reliability issues to demonstrate that the

likelihood of critical accidents are minimized by using numerical evidences.

 Hence, the objective of the quantitative analysis is to ensure an acceptable safety

level for systems on the aircraft using numerical evidences. When using quantitative

analysis to help determining compliance with the safety requirements, the following

descriptions of the probability terms referenced in FAR 25.1309 are mandatory, because

they are commonly accepted by the certification authorities. They are expressed in

terms of acceptable ranges for the average probability per flight hour:

 Probable: failure conditions whose average probability occurrence per flight

hour is greater than the order of magnitude of 10
-5

;

 Remote: failure conditions whose average probability occurrence per flight hour

is less than the order of magnitude of 10
-5

, but greater than 10
-7

;

19

 Extremely Remote: failure conditions whose average probability occurrence per

flight hour is less than the order of magnitude of 10
-7

, but greater than 10
-9

;

 Extremely Improbable: failure conditions whose average probability occurrence

per flight hour is less than the order of magnitude of 10
-9

.

 According to FAR 25.1309, a logical and acceptable inverse relationship must exist

between the average probability per flight hour and the severity of failure condition

effects, as shown in Figure 2.7:

Fig 2.7 - Relationship between Probability and Severity of Failure Condition Effects [24]

 It is worth noting that Fig. 2.7 does not exhibit the failure conditions with No Safety

Effect because they have no numerical probability constraint. For the Minor failure

conditions, they can even be Probable. On the other hand, Major failure conditions may

be at most Remote but not Probable; Finally the two most critical failure conditions are

Hazardous, which may be at most Extremely Remote, and Catastrophic, which needs to

be Extremely Improbable. Considering the relationship between the severity of failure

conditions effects and their acceptable ranges for the average probability per flight hour,

the quantitative requirements associated with failure condition are described in Fig. 2.8.

 ARP 4761 also accepts Markov analysis or dependence diagrams as alternatives to

perform quantitative analysis during the SSA. The basic information used as input to

these methods is failure conditions and failure rates of the primary events. As described

in previous sections, failure conditions are identified during the FHA analysis, which

considers the severity of the occurrence of each failure condition over the aircraft

functions to define the related safety requirement, using an argument (maximum

tolerable probability). For example, FHA determines that the probability of occurrence

of a catastrophic failure condition must not be greater than 10
-9

 per flight hour. Failure

rate is an attribute used to model the likelihood of each basic failure mode (primary and

independent failure) of the system. FMEA supplies the failure rates considered in the

system.

20

Fig 2.8 - Relationship between probability and severity of failure condition

 Independent of the quantitative analysis to be used (FTA, Dependence Diagrams or

Markov Analysis), the probabilities are estimated from the failure rates and exposure

time of the events. For the purpose of these analyses, the failure rates are commonly

constant over time, based on exponential distribution function. They are estimates of

mature failure rates after infant mortality and prior to wear-out, as described in Fig 2.9.

Fig 2.9 - The classic “Bathtub Curve” used to diagram the constant failure rate period in the life of

an electronic component

 Thus, these analyses disregard the wear-out or infant mortality. When wear-out or

infant mortality has to be considered, other distribution functions (such as Weibull)

21

need to be employed. When available, service history of same or similar components in

the same or similar environment should be used.

 For various reasons, component failure rate data are admittedly not precise enough to

enable accurate estimates of the probabilities of failure conditions [4]. This results in

some degree of uncertainty, as indicated by the wide line in Fig. 2.7, and by the

expression "on the order of" in the descriptions of the quantitative probability terms that

are provided previously. When calculating the estimated probability of each failure

condition, this uncertainty should be accounted such that it does not compromise safety.

 When performing quantitative analysis, consistence must be guaranteed with the

maintenance tasks and intervals used by the maintenance program for the aircraft. The

following maintenance scenarios can be used to show compliance with FAR 25.1309:

 Evident failures will be corrected before the next flight, or a maximum time

period will be established before a maintenance action is required. If the latter is

acceptable, the analysis should establish the maximum allowable interval before

the maintenance action is required;

 Latent failures will be identified by a scheduled maintenance task (a latent

failures is a failure that is not detected and/or annunciated when it occurs).

Following its removal and repair, the Mean Time Between Failures (MTBF) of a

component should be the basis for checking the interval time.

 When one or more failed elements in the system can persist for multiple flights

(latent failure), the calculation should consider the relevant exposure times (that is, time

intervals between maintenance and operational checks/ inspections). In such cases the

probability of the failure condition increases with the number of flights during the

latency period.

 Hereby, a probabilistic model based on the failure logic of the system is generated

aiming to calculate the average probability of such failure conditions per flight hour,

assuming the appropriate exposure time of failures and shows if the results are tolerable.

 For instance, a Markov Analysis calculates the probability of the system being in

various states as a function of time. A transition from one state to another occurs at a

given transition rate, which reflects component failure rates and redundancy. A system

changes state due to various events such as component failure, completion of repair,

reconfiguration after detection of a failure, etc. Each state transition is a random process

which is represented by a specific differential equation. The probability of reaching a

defined final state can be computed by combinations of the transitions required to reach

that state.

2.3 Model-based Safety Assessment

In the safety-critical systems domain there is an increasing trend towards model-based

safety assessment [11, 13]. It extends the existing model-based development activities

(simulation, verification, testing and code generation), which are based on a high-level

model of the system (expressed in a notation such as Simulink or Statemate), to

incorporate the safety analysis. These new alternatives are interesting because they are

22

simple, compositional, and depend of less engineer's skills to be applied. In addition,

they can use formal methods, for instance theorem provers, model-checkers and static-

checkers [13, 15], to automate, even if partially, the analysis. Moreover, formal methods

are one of the alternative methods proposed in DO-178B [12] for the airborne software

certification.

2.3.1 Principles of Model-based Safety Assessment

 The Model-based Safety Assessment process consists in building a representative

concrete model that can be exercised by dedicated tools to perform assisted safety

assessments. The model is created to represent the system architecture and relevant

behavior data. Details about each system component can be included considering

functional and safety aspects. The modeling environment offers means to represent

safety/abstract behaviors of the system components, which describe the relationship

between inputs and outputs data in nominal situation as well as its failure events with

their occurrence conditions (based on input data and failure mode) and their effects on

its outputs. At system level, links between components are created according to the

system architecture.

 To enhance the readability of the model, a graphic representation is associated to

each component so that the model looks like a system architecture diagram (block

diagrams). Figure 2.10 illustrates such a system architecture diagram.

Fig 2.10 (a) Assembling design components to construct a model. (b) Test of multiples scenarios [9]

23

 Furthermore, models are hierarchical: preliminary high level pieces of the system

may be further refined into lower level components. Thus the design engineer gets a

support to validate the safety analyst system understanding and to reduce the risk of

misinterpretation. The model based safety assessment process can be composed in five

main steps:

 Engineer interpretation;

 Model creation;

 Validation (components, systems and safety criteria);

 Assisted assessment (safety assessment and simulation results);

 Model update (refining/updating the model).

 Fig. 2.11 summarizes a model-based safety assessment process:

Fig 2.11. A Common Model Based Safety Assessment Process

 The first step details the safety description of the system architecture content and its

behavior according to its failure conditions. The model serves to analyze several failure

conditions impacting a given system architecture and it is performed by the extraction

of failure conditions from the FHA. So the engineers can list the relevant data into a

safety specification of the system.

 Next, the system architecture modeling is done using component library from public

or private sources. At component level, the behavior and I/O are summarized in events

that are limited to failure or reconfigurations (from FMEA/FMES if available or from

previous design). Hence the system safety specification is implemented into the system

architecture model.

 Syntactic/semantic tool support permits to verify the correctness of the model

according to formal language notation. Then the system designer has to validate the

24

model, that is, verify that its behavior is consistent with the system specification or the

expected system behavior.

 After that, the safety requirements need to be validated, considering the failure

conditions of the system. This validation can be done during a review between

designers and FHA safety analysts. Hence, the potential advantage to safety analysts,

formal methods can ease the validation process by providing mathematical tools to

exploit the model. So, qualitative and quantitative results are obtained and used to

validate the safety requirements of the system.

 When a design correction decision is taken to replace a component or to modify the

architecture, the model is refined or updated. The last step consists in refining/updating

the model in case of an architectural modification. This occurs primarily when the initial

architecture does not fulfill some requirements, or if a technical decision leads to a

component replacement.

 The assurance that a model representation conforms to the real system can be

reinforced by simulating combinations of failures seen on aircraft and checking that the

results are coherent.

2.3.2 HiP-HOPS

The approach proposed in this work is based on the HiP-HOPS (Hierarchically

Performed Hazard Origin and Propagation Studies) [40] method, which is one of the

most prominent model-based approaches [10]. It has attracted great interest from the

industry and demonstrated a (comparatively) high level maturity.

 HiP-HOPS is a systematic method of safety analysis based on the techniques FHA

and IF-FMEA (Interface-Focused FMEA) [5, 10]. IF-FMEA is an extension of FMEA

inspired by the work described in [41], which defines a graphical notation (called

Failure Propagation and Transformation Notation---FTPN) for the representation of the

transformation and propagation of failures in a system. It defines a set of equations

which characterize the logical relationships between input and output failure events.

 HiP-HOPS allows an integrated analysis of a complex system from the high

functional level to the low level, represented by the component failure modes. It makes

the analysis of the system model in a hierarchical form. HiP-HOPS can assist the

development of an appropriate initial architecture for the system, as well as its

decomposed sub-systems and basic component elements.

 FHA can assist the development of an appropriate initial architecture for the system,

as well as its decomposed sub-systems and basic failure elements. Following the FHA

analysis, HiP-HOPS allows an integrated analysis of a complex system from the high

functional level to the low level, represented by the component failure modes. It makes

the analysis of the system model in a hierarchical form that progressively records the

increasing details of the implementation of the system. Constraints are used on the

modeling notation for describing the levels of design to achieve the consistency in the

model. Following the architecture of the system, flow diagrams are used to describe the

relations between a system and its subsystems. Fig. 2.12 illustrates the primitive

25

elements of the proposed notation used in HiP-HOPS. This notation is semantically and

syntactically linked to the design representation of the system.

Fig 2.12 – HiP-HOPS modeling notations [5]

 The support for a graphical notation enables that complex systems are modeled as

hierarchies of architectural diagrams that can be represented either as components or

subsystems. When a module is represented as a basic component, its failure behavior is

known, and it can be recorded in an IF-FMEA table. Otherwise, the module is rendered

as a subsystem, and is further decomposed into architecture of more basic components

whose failure behaviors will be also determined using IF-FMEA (see Fig. 2.13).

Fig 2.13 – Overview of the HiP-HOPS technique

 Knowing how the behavior of local (in a lower level) failures of all components is

determined, we can determine how the functional failures, which were identified in

exploratory analysis of the FHA, arise from combinations of low-level components that

have the failure modes identified in IF-FMEA. As illustrated in Fig. 2.14, an IF-FMEA

table records how a component reacts to failures generated by other components and set

26

the failure modes of the component itself as well as how the failure spreads to the other

components.

Fig 2.14 - IF-FMEA of a hypothetical component system

 The table shown in Fig. 2.14 records five columns of failure based information and a

descriptive field: (i) the possible failure modes of a component; (ii) the description of

failure (iii) the dependency of such failure modes with respect to the identified failures

via its input ports; (iv) what happens upon a certain failure mode occurrence and (v) a

failure rate.

 The application of this method results in a consistent semi-automatic constructed

qualitative safety analysis that determines the origins and global propagation of failure

in the system.

2.3.3 Applying HiP-HOPS to an Aircraft System

 In this section we show some details on how HiP-HOPS is applied to an aircraft

system, which generates a qualitative model of the system. To explain the analysis using

this model-based solution, we use a pilot system designed by Embraer that represents a

hypothetical Elevator Control System (ECS). Its function is to control the displacement

of an electro-hydraulic actuator, according to the longitudinal orientation desired by the

pilot.

 The implementation of the system is done using the Matlab/Simulink design tool. In

this framework, the system is modeled using graphical and block diagrams

representations. Also, Matlab's environment variables are accessed to create matrix

structures, which are used to represent the tabular annotations of the system failure

model. This last resource is not available via a user-friendly graphical interface as

default from the Matlab/Simulink tools, however, this tool allows that plug-ins and

scripts to be programmed to support and incorporate these features.

System Description

 In most aircrafts, the pitching movement (the up-and-down motion of the aircraft’s

nose) is controlled by elevator surfaces at the rear of the aircraft as shown in Fig. 2.15.

27

These surfaces are driven by electrical-hydraulic actuators of the ECS, controlled by the

pilot intent. This system is part of the Flight Control Systems (FCS), which commands

all flight control surfaces (elevators, ailerons, rudders, etc.) [42].

Fig 2.15 - (a) Aircraft control surfaces and axes of motion. (b) Pitch motion.

 The ECS has a reference unit (Reference), a device commanded by the user to

generate the reference signal which that represents the desired displacement; and a

sensor component (Sensor) that converts the displacement of an actuator in an electric

signal. The Actuator Control Electronics (ACE) device (Controller) processes three

signals: from the reference, from the sensor, and a third one that computes the actuation

signal. All of these components have an input of electrical power supply. The power

supply is provided by two power sources (PowerSource1 and PowerSource2) and a

monitor box (Monitor). The ACE receives the pilot command (control column),

compares this computed command to the actuator output to define the current servo

command. Fig. 2.16 shows the block diagram of the ECS expressed in Simulink.

Fig 2.16 - Blocks diagram of the Elevator Control System

28

 After the FHA Analysis of the entire aircraft is performed, the following expressions

are a set of significant safety requirements of this system extracted from its FHA

analysis:

Omission of speed of the Elevator Control System shall be less than 3.10
-3

 per

flight;

 A Wrong Position signal from the Elevator Control System shall be less than

5.10
-3

 per flight;

 Commission of speed of the Elevator Control System shall be less than 3.10
-3

 per

flight.

 In normal operation the monitor box receives electrical power from both power

sources and makes it available to the other components. In a case of internal failure of

one power source (a short circuit for example), the monitor is capable of switching to

receive power from the remaining power source. We consider here that the loads do not

affect the power sources, to simplify the example. This simplification may be done

whenever the effects of the loads over the sources can be neglected. The electrical

actuator has an input of power supply, an input of control signal that comes from

controller and an output of mechanical displacement. The controller has an internal

component that processes the signal from reference (Component1 in Fig. 2.17), another

that processes the signal from the sensor (Component2), and a third one that computes

the actuation signal (Component3).

Fig 2.17 - Details of controller subsystem

Performing System Analysis

Since the operation of the system and the function of each of its components are known,

it is possible to analyze the failure behavior by performing the IF-FMEA. According to

the notation, the module of the architecture can be represented either as components or

subsystems. If the failure behavior of a module is known, and it can be recorded in an

IF-FMEA table, then the module is represented as a basic component. In the opposite

case, the element is rendered as a subsystem, and is further decomposed into an

architecture of more basic components, where failure behavior of each can be

determined using IF-FMEA. For instance, the controller module is represented as a

subsystem, because it contains internal components that have a failure behavior and

29

must be taking into account for the analysis. Next we describe the failure logic of the

Monitor.

 The monitor has two inputs and one output. Each input of this component receives

power from a power source, while the output provides power to the other components.

For each input of the monitor, the only important deviation (failures that that can be

displayed at the output port of a component/system and propagated to other

components/systems) is a low level of power, insufficient for operation of the

components. Consequently, in the output the only relevant deviation would be the low

level of power. Considering the function of the monitor (detect a low level from one of

the inputs) and switching to the remaining power source, and assuming that its detection

mechanism does not fail, the only relevant failure that may occur internally is the failure

of the monitor to switch the source. In this case, the monitor would not be able to supply

power to the other components in a level above the minimum required. From the

behavior of this component and the simplifications assumed, it can be concluded that a

low level of power at the output of the monitor would occur when at least one of the

following events below occur:

1. Both inputs have low level of power simultaneously;

2. One input has low level of power and the monitor fails to switch to the other

input.

 This analysis results in the following boolean equation:

LowPower-Monitor.Out1 = (SwitchFailure AND (LowPower-Monitor.In1 OR

LowPower-Monitor.In2)) OR (LowPower-Monitor.In1 AND LowPower-

Monitor.In2)

(1)

 Note that the term SwitchFailure is the failure mode of the Monitor, where its failure

rate is 5.10
-4

 (that is, Median Time Between Failures - MTBF = 2,000 flying hours).

The failure rates associated with each failure mode can be defined by manufacturers'

specification, historical data, similar components or even specialist judgment [2]. The

resulting IF-FMEA table of the component Monitor is described in Table 2.1.

Table 2.1 IF-FMEA Table of the monitor component

Output Failure

Mode
Description Input Deviation Logic

Component

Malfunction Logic
 (f/h)

LowPower-

Monitor.Out1

The component is not

able to supply power

LowPower-Monitor.In1 OR

LowPower-Monitor.In2 SwitchFailure 5.10
-4

LowPower-

Monitor.Out1

The component is not

able to supply power

LowPower-Monitor.In1 AND

LowPower-Monitor.In2 - -

 An electrical actuator usually has an electric motor, an electronic driver that controls

the motor, and may also have a mechanism or transmission between the motor shaft and

the output of displacement. In the power source input it can be considered as a deviation

a low level of power. In the signal input, the deviations that could occur are the

omission of control signal and an erroneous control signal. In the actuator output the

deviations are the omission of speed (movement), erroneous position of the output

30

displacement, and a non-commanded (by the user) speed. A level of power in the supply

input below the minimum required for operation would render the motor inoperative.

The same effect occurs when the control signal is omitted. Both deviations would cause

an omission in the output of the actuator.

 Other possible causes for the omission of output could be the failure of the electronic

driver, the failure of the electric motor and the jamming of the mechanism/transmission.

A wrong output displacement could occur due to an erroneous control signal, or an

internal degradation of the driver, or also due to a worn mechanism/transmission. A

non-commanded movement of the actuator could occur due to a degradation of the

driver, or a non-commanded input signal. This non commanded behavior is called here

as ―commission‖. The following equations define the failure logic of the actuator and its

corresponding tabular structure is described in Table 2.2.

OmissionSpeed-Actuator.Out1 = LossOfDriver OR LossOfMotor OR

MechanismJamming OR LowPower-Actuator.In1 OR OmissionSignal-Actuator.In2
(1)

WrongPosition-Actuator.Out1 = MechanismDegradation OR DriverDegradation OR

CorruptedSignal-Actuator.In2

(2)

CommissionSpeed-Actuator.Out1 = DriverDegradation OR CommissionSignal-

Actuator.In2

(3)

Table 2.2 IF-FMEA table of the actuator component

Output Failure

Mode
Description Input Deviation Logic

Component Malfunction

Logic
 (f/h)

OmissionSpeed

-Actuator.Out1

The component

fails to generate

speed signal

LowPower-Actuator.In1

OR OmissionSignal-

Actuator.In2

LossOfDriver OR

LossOfMotor OR

MechanismJamming

1.10
-4

1.10
-3

1.10
-3

WrongPosition

-Actuator.Out1

The component

generate a wrong

signal

CorruptedSignal-

Actuator.In2

MechanismDegradation

OR DriverDegradation

1.10
-3

1.10
-4

CommissionSp

eed-

Actuator.Out1

The component is

not able to supply

the speed signal

CommissionSignal-

Actuator.In2
DriverDegradation 1.10

-4

 This table records the synthesis of the deviations present in each component. It

contains the logic of failures propagation established in terms of input-output

connections between components. For conciseness, only the monitor and actuator

examination is shown here. The other components are relatively straightforward (follow

the same principle). Table 2.3 lists the respective equations for all the components of

the system and the tolerable probability of each deviation which needs to be evaluated.

31

Table 2.3. Set of deviation for the Elevator Control System

Component Deviation Criticality Port Annotation

PowerSource LowPower Out_1 PowerSourceFailure

Monitor LowPower Out_1

(SwitchFailure and (LowPower-In1 or

LowPower-In2)) or (LowPower-In1 and

LowPower-In2)

Reference

Omission Signal Out_1 ReferenceDeviceFailure or LowPower-In1

Corrupted Signal Out_1 ReferenceDeviceDegradation

Component1

OmissionSignal Out_1
LossOfComponent1 OR LowPower-In1OR

OmissionSignal-In2

CorruptedSignal Out_1
Component1Degradation OR CorruptedSignal-

In2

Component2

OmissionSignal Out_1
LossOfComponent2 OR LowPower-In1 OR

OmissionSignal-In2

CorruptedSignal Out_1
Component2Degradation OR CorruptedSignal-

In2

Component3

OmissionSignal Out_1
LossOfComponent3 OR LowPower-In1 OR

OmissionSignal-In2 OR OmissionSignal-In3

CorruptedSignal Out_1
Component3Degradation OR CorruptedSignal-

In2 OR CorruptedSignal-In3

ComissionSignal Out_1 Component3Degradation

Sensor

OmissionSignal Out_1 SensorFailure OR LowPower-In1

CorruptedSignal Out_1 SensorDegradation

Actuator

OmissionSpeed 3.10
-3

 Out_1

LossOfDriver OR LossOfMotor OR

MechanismJamming OR LowPower-In1 OR

OmissionSignal-In2

WrongPosition 5.10
-3

 Out_1
MechanismDegradation OR DriverDegradation

OR CorruptedSignal-In2

ComissionSpeed 3.10
-3

 Out_1 DriverDegradation OR ComissionSignal-In2

 This table states that a PowerSource can exhibit a LowPower deviation via its Out1

port when a PowerSourceFailure (a boolean condition) occurs. A more complicated

situation occurs in the Monitor. A LowPower can also occur but its origin can be

internal (SwitchFailure and one of the connected power sources also failed) or external

(both power sources have failed). An OmissionSignal deviation can be exhibited in the

Reference when an internal (ReferenceDeviceFailure) or external (LowPower via its In1

port) failure occur. Reference still can exhibit a CorruptedSignal deviation when a

ReferenceDeviceDegradation occurs. The controller annotation is not set because it

contains subcomponents and consequently only its subcomponents are described.

Finally, the Elevator can exhibit the three deviations, whose annotations have already

32

been shown. These last deviations are special because they represent the failure

conditions associated for this system. Based on its severity, a tolerable probability is

considered. Also, to capture the organization and component interconnections shown in

Fig. 2.15 and Fig. 2.16 in tabular form, we use a topology table (see Table 2.4).

Table 2.4. Topology table of the Elevator Control System

Component Hierarquical Division Port Connected or Associated Port

Monitor No
In_1 PowerSource1-Out_1

In_2 PowerSource2-Out_1

Reference No In_1 Monitor-Out_1

Controller Yes

In_1 Monitor-Out_1

In_2 Reference-Out_1

In_3 Sensor-Out_1

Out_1 Controller/Component3-Out1

Sensor No
In_1 Monitor-Out_1

In_2 Actuator-Out_1

Actuator No
In_1 Monitor-Out_1

In_1 Controller-Out_1

Component1 No
In_1 Controller-In_1

In_2 Controller-In_2

Component2 No
In_1 Controller-In_1

In_2 Controller-In_3

Component3 No

In_1 Controller-In_1

In_2 Component1-Out_1

In_3 Component2-Out_1

 Once all the system components are analyzed, their failure behavior are completely

and correctly annotated, the architectural information is registered, and the failure

conditions are chosen, it is possible to generate a mathematical model referenced in

ARP 4671 (such as Markov Analysis or FTA) to evaluate a quantitative analysis in the

system.

2.3.4 Support for Quantitative Analysis

 The main advantage of a model-based approach like HiP-HOPS is its ability to

generate and analyze a qualitative model of a system using a design tool such as

Simulink. The reason to use this tool as a design environment is that Simulink models

are already used in practice and exert a helpful role in the design of programmable

33

systems during all the system development process (see Fig. 2.1). In the early stages of

the design, for example, such models help to define and validate through simulation the

functional structure of the system. In later stages, they serve as a basis for modeling

non-functional (timing behavior, for example) aspects and for the automatic generation

of code, which can be usefully employed in the effective implementation of the system.

 Like HiP-HOPS, most model-based proposals are mainly based on FHA and FMEA

(and in particular in its extended version, IF-FMEA). IF-FMEA is of particular interest

because its tabular structure (see Fig. 2.12) is very useful to capture the transformation

and propagation of failures in a system, allowing that complex systems are modeled in a

compositional way.

 The component failure characterizations (IF-FMEA tables) can be overlaid over the

system model as well as the failure conditions and its tolerable rates, identified during

the FHA analysis. They can also be included in a tabular structure [2, 5] and is easily

incorporated into the system model, using annotations, as described in Fig. 2.18.

 Although a qualitative model can address the aspects that refer to the characterization

of the behavior of different failures (that may result in a top level hazard), it is also

necessary to perform reliability predictions for system components that may cause or

contribute to this hazard. This analysis is essential to quantitatively validate the safety

constraints of the proposed model. This can be supplied by constructing a mathematical

model (a set of equations based on the logic derived from the qualitative model), and

calculating the probability of the undesired event over an exposure time.

Fig 2.18 – Simulink diagram and a GUI for annotation of components with failure data [70]

 As a result, this qualitative model, which represents the failure logic model of the

system, recommends some methods of the ARP 4671 (FTA, Markov Analysis, DD) to

34

be applied to provide a quantitative analysis of the model. This type of analysis can be

applied iteratively during design, allowing a consistent and continuous assessment of

the models as they naturally evolve in the course of the design life-cycle. For instance,

HiP-HOPS allows the automatic synthesis of system fault trees from the qualitative

model (annotated with appropriate descriptions of component failures and their local

effects) of the system (see Fig. 2.19). The Safety Argument Manager (SAM) is one of

the tools that support this technique [5].

Fig 2.19 – A overview of model-based synthesis of fault trees using HiP-HOPS

35

Chapter 3

Probabilistic Model Checking and Prism

Model checking [19] is a well-established and widely used automatic technique for

verifying the properties (requirements) of systems. Recently, model checking has

become increasingly present in the industry, with large companies such as NASA and

Airbus investing considerable resources in this area.

 This technique requires two inputs: a description of the system in some high-level

modeling formalism (such as process algebra or a Petri net [44]), and the specification

of the desired properties of that system, usually in temporal logic such as CTL

(Computation Tree Logic) or LTL (Linear-time Temporal Logic).

 From the formal description of the system (known as the formal specification), a

precise mathematical model is constructed, which typically defines the set of all

possible states of the system and the transitions that can occur between these states. And

with the formal properties (requirements stated in temporal logics for instance), a model

checker can automatically determines whether or not each property is satisfied via a

systematic and exhaustive exploration of the model. In the case of a violation, a

counterexample is often generated: an explicit trace (sequence of states and

corresponding transitions) of the system’s behavior that illustrates why such a property

was not satisfied.

 Probabilistic model checking is a variant which permits automatic formal verification

of systems involving stochastic behavior. Several systems can be analyzed by

probabilistic model checking, particularly those involving unreliable or unpredictable

processes, such as fault-tolerant systems or communication networks, and randomized

algorithms [46].

 As in the non-probabilistic case, this technique involves constructing, from a

description in some high-level formalism, a finite-state model of a real-life system. But

in probabilistic model checking, the models are augmented with quantitative

information regarding the likelihood that transitions occur as well as the time to perform

a transition. Models can be also endowed with labels in states and transitions, for

example to describe propositional characteristics of the state or expected costs. In

practice, these models are typically Markov chains or Markov decision processes

(MDP). In this chapter, we focus on continuous-time Markov chains (CTMC), in which

transitions between states are assigned (positive, real-valued) rates, interpreted as the

rates of negative exponential distributions.

 Properties of probabilistic modeled systems are now quantitative in nature and stated

in a variant of temporal logic able to describe such a quantitative aspect of a system.

These probabilistic extensions allow specification of properties such as: ―the system

36

eventually shuts down with probability at most 0.001‖; or ―what is the long-run

probability that an adequate number of sensors are operational?‖. Probabilistic

specification formalisms include PCTL [47], a probabilistic extension of the temporal

logic CTL applicable for MDP, and the logic CSL [48, 49], a temporal language based

on CTL and PCTL that is used for CTMC models.

 In particular, CSL includes the means to express both transient and steady-state

performance measures of CTMC. Transient properties describe the system at a fixed

real-valued time instant t, whereas steady-state properties refer to the behavior of a

system in the ―stationary state‖.

 A probabilistic model checker applies algorithmic techniques to analyze the state

space of the probabilistic model and determine whether such properties are satisfied. A

typical probabilistic model checker uses operations based on graph-based analysis and

solution of linear equation systems or linear optimization problems.

 In the remainder of this chapter we present an introduction to CTMC and the Prism

language and model checker, which provides support for probabilistic model checking

of CTMC models using CSL. Furthermore, we also describe how to specify an aircraft

system using the Prism specification. For further details about the probabilistic model

checking and Prism, please refer to [8, 46, 50].

3.1 Probabilistic (Stochastic) Models

In some scenarios, it is impossible to describe a system by deterministic models.

However, there are theoretical results that allow modeling such systems by means of

stochastic processes.

 The dynamic behavior of the possible failures of a system, for example, can be

modeled by some fundamental concepts of statistics and probability theory. The

uncertain outcome of an event is captured by a random variable. Random variables are

characterized and distinguished by their distribution function. Furthermore, a stochastic

process allows one to describe a sequence of related events. The class of Continuous

Markov processes is of special interest here. All its concepts are summarized as follows

and, for more details see [51].

3.1.1 Continuous-Time-Markov Chains

 A stochastic process is considered a Markovian process if the conditional probability

of any future event, depends only of the present state, regardless of past events. This

type of stochastic process is also called a memoryless process, because the past is

ignored. This is a feature naturally present in electro-electronic components in the case

of functions that represent its operational performance over its lifetime [51].

 Moreover, a Markovian process is considered a Markov chain only if the random

variables are defined in terms of a space of discrete states. When time is discrete, the

Markov chain is called a Discrete Time Markov Chain (DTMC). In the continuous time

we have the Continuous Time Markov Chain (CTMC) which is characterized by

37

discrete states and exponential distribution time that determines the rate of the transition

for each state.

 The Markov chain standard representation is given by a state transition diagram,

suitable for graphical representation, or a transition matrix, used for calculations. The

transition states diagram shows the number of possible states and transition rates

between them. Figure 3.1 shows some examples of state transitions diagrams and its

correspondent generator matrix.

Fig 3.1 – Examples of Markov state transition diagrams and its correspondent generator matrix

 Formally, a CTMC is defined by a finite set of states S and a transition rate matrix R:

S × S → ≥0, where a positive rate  = R(s, s’) between two states s and s’ denotes that

the probability of moving from s to s’ is described as a negative exponential distribution

(1 - e
-.t

, where t is the exposed time), with the rate used as the parameter. Typically, in

a state s, there is more than one state s’ for which  > 0. This is known as a race

condition, because a race between the outgoing transitions from s occurs and the first

transition to be triggered determines the next state. So, the probability of moving from

state s to s’ in a single step is the probability that this transition is enabled first (that is,

the delay of this transition finishes before the delays of all other transitions leaving s).

In the context of reliability, the transition rates represent parameters such as failure rates

and repair rates of the system.

 To illustrate the operation of Markov chains, we consider, for example, the simplest

case of a system with two possible states: operating system (available) and failure

(system unavailable). In this case, transitions between these states could represent the

failure and repair processes to which the system is subjected. Therefore, the dynamic

behavior of the system can be regarded as a sequence of states of the system as time

evolves. Thus, in Fig. 3.2, we can see a system consisting of two components in

parallel, which is operational when at least one of these components is working.

38

0

1

2

3

Fig 3.2 - Markov diagram of two components in parallel

 As each component has two states, the system in parallel has four possible states, as

shown in Table 3.1:

Table 3.1. Topology table of the Elevator Control System

System state State of the component 1 State of the component 2

0 operational operational

1 failure operational

2 operational Failure

3 failure Failure

 Markov chains are not limited to sequential structures. As shown in Fig. 3.2, multiple

transitions can occur from a state. The model enables a direct transition from the state 0

to state 3. Within the context of reliability, this transition could represent the

simultaneous failure of two components (due to a common cause failure of

components), resulting in immediate unavailability of the system. Thus, there is the

possibility of characterizing both independent failures and dependent failures while the

system is in state 0.

 The representation of behavior of Markovian processes is captured by the system

called the Chapman-Kolmogorov equation for the probability of transition. The solution

of the equation gives the probability of the unconditional state (determining the

probability of a state without depending of the probability of others). This temporary

solution is very significant when the system under investigation must be evaluated with

respect to its behavior in short term.

 Assuming a long term, however, it can be shown that the state probabilities often

converge to constant values. These stationary state or equations of equilibrium can be

derived from the system of differential equations that expresses the appearance and

disappearance of a state s relative to other states, through a statistical equilibrium [16,

51].

39

 CTMC can be analyzed using two traditional properties: transient behavior, which

considers the state of the model at a particular time instant; and steady-state behavior,

which describes the state of the CTMC in the long-run. The transient probability s,t(s’)

is defined as the probability, having started in state s, of being in state s’ at time instant

t. The steady-state probability s(s’) is the probability of, having started in state s, being

in state s’ in the long-run, that is, in the equilibrium state of the system. The steady-state

probability distribution, that is, the values s(s’) for all s’  S, can be used to infer the

percentage of time, in the long-run, that the CTMC spends in each state.

3.2 Prism

 Prism [52, 53] is a formal probabilistic analysis tool developed by the University of

Birmingham. It accepts probabilistic models described in a simple, high-level modeling

language. Prism enables the analysis of Markov models specified in discrete time

(DTMC), continuous (CTMC), and Markov decision processes (MDP). The verification

of the specified properties in the model is made with the aid of the temporal logic

language PCTL for DTMC and MDP models and CSL for CTMC.

 The choice of model to be specified (DTMC, CTMC and MDP) will depend on the

nature of the system to work. DTMC provides a relatively simple model for systems

where the exact probability of different behaviors for a sample of discrete time is

known. MDP contains DTMC and adds support for non-determinism, which can be

used to model competition between processes running in parallel or for specifications

whose exact values of some system parameters are unknown. CTMC extends DTMC by

allowing transitions to occur in real-time (using exponential distributions), rather than

only in discrete steps.

Fig 3.3 – The structure of Prism [52]

 Fig. 3.3 illustrates how this tool acts: first, it reads and analyzes a system's

description written in Prism, then builds the corresponding representation in DTMC,

CTMC or MDP, calculates the set of all reachable states, and identifies any deadlock

states (that is, absorbing states). If necessary, the transition matrix from the constructed

probabilistic model can be exported for use in another tool such as Matlab [9] or

MRMC [37]. Then Prism analyzes one or more properties in PCTL or CSL determining

if the model satisfies each property.

40

 The underlying data structures in Prism are BDD (Binary Decision Diagram) [50]

and MTBDD (Multi-Terminal Binary Decision Diagram) [62]. However the tool

provides three different engines that can be used for numerical computation (a

conventional explicit version using sparse matrices, a pure MTBDD-based

implementation, and hybrid approach of both).

 The tool is implemented in a combination of Java and C++. The high-level parts of

the tool, such as the user interface and parsers, are written in Java. The low-level

libraries are written in C++ and the CUDD package [61], which is written in C, enabling

the use of BDD and MTBDD. Prism is a free, open source application that can be

downloaded from its website [53]. It is available from either a command-line or a

graphical user interface. The graphical user interface provides a built-in text-editor for

the Prism language, an editor for Prism properties, tools for plotting of graphs and a

simulator tool for exploring and debugging Prism models (see Fig. 3.4).

Fig 3.4 - Screenshots of the PRISM tool running

3.2.1 Prism Modeling Language

A large range of formalisms have been proposed for specifying probabilistic models.

These include stochastic variants of process algebras (such as Probabilistic CSP [54],

PMaude [55]), Petri nets [44, 56], stochastic activity networks [57] and many others.

Nowadays, Prism is one of the most prominent formalism, because it provides a simple,

textual modeling language, based on the concept of reactive modules formalism defined

by Alur and Henzinger [45]. It is the only formalism that specifies and analyzes all

41

these variations using efficient and viable techniques of representation of states that

allows modeling larger systems than the other formalisms.

 In this section, we present a brief introduction to the Prism language. It offers a solid

way of describing all model types (DTMC, CTMC and MDP) supported by the tool. For

further details about the Prism language and its semantics, see the Prism documentation

and case study at [53].

Modules, variables and commands

 Modules and variables are the basic components of this language and the system is

built as a parallel composition of the declared modules. Its datatypes include: integers,

reals and booleans and can be declared local or globally. Modules can interact with each

other (synchronization) and contain a number of variables that reflect their possible

states. Its behavior (the changes between states via quantified transitions) is determined

by a list of guarded commands. For a CTMC, a command uses the following syntax:

[action] <guard> → rate : <update>;

 Each command (initiated by a [], possibly with an action label inside) is formed of a

guard (boolean expression before the symbol →, which is a predicate over the model

variables) followed by a rate (an non-negative real-valued expression, where 1 means

100%) and the update expression gives the new values of the variables in the module by

the following form:

(v1’ = u1) & (v2’= u2) & … & (vk’= uk)

where v1, v2, …, vk are local variables of the module and u1, u2, …, uk are expressions

over all variables. A module can access all the variables of the model, but it can only

update its own local variables. The transitions represent which state changes are

possible and how often they occur. A simple command for a module with one variable

sensor_sensorfailure might be:

[](!sensor_sensorfailure) -> (5E-4) : (sensor_sensorfailure' = true);

which states that whether sensor_sensorfailure is false, it is changed by one (the

sensor_sensorfailure' denotes the new value of the variable). In this case, the update of

the variable occurs with rate 5E-4 (that is, the delay before this transition is completed

is sampled from a negative exponential distribution with parameter 5E-4).

Composing modules

The modules are integrated typically using the standard CSP [59] parallel composition

(that is, modules synchronize over all their common actions). Prism also supports other

CSP process-algebraic operators (alphabetized parallel, interleaving, etc) that can

specify more precisely the synchronization between the modules.

 A command (belonging to any of the modules) is enabled in a global state of the

probabilistic model whether the actual state satisfies the predicate guard. If a command

is enabled, a transition that updates the module's variables can occur with rate. For

42

CTMC, the choice between which command is performed (that is, the scheduling)

depends on the race condition.

 The multi-way synchronization provides interactions between multiple modules, that

is, simultaneous changes in their states. It is modeled by augmenting guarded

commands with action labels that are placed inside the square brackets. We illustrate

this with a simple example derived from the Elevator control system described in

Chapter 2 (see Fig. 3.5). It implements a PowerSource and a Monitor unit, whose two of

the repair update situations are defined by synchronized commands. For example, the

last command of both modules is labeled with Monitor_In1_Repair name, because if

both components fail, they must be repaired simultaneously, because the PowerSource is

monitored by the Monitor.

Fig 3.5. System representation using Prism

This Monitor_In1_Repair action is used to force two modules to make transitions

simultaneously. For example, in the state (ps1_lowpower = true and m_swithcFailure =

true), the composed model can move to state (ps1_lowpower = false and

m_swithcFailure = false), synchronizing over the Monitor_In1_Repair action. The rate

of a synchronous transition is defined as the product of the individual rates. In this

example, there is only one initial state, but Prism allows the specification of a set of

initial states. Therefore, we can define formulas that can be used as shorthand for the

expressions.

3.2.2 Property Expressions

 In the Prism Model Checking, verification properties are interpreted in a similar way

to non-probabilistic case, in which a formula containing temporal expressions can

typically returns all executions that satisfy a certain property, or that there is an

execution that satisfies it. In this section, we use the temporal logic CSL (Continuous

Stochastic Logic) which is designed for specifying properties of CTMC specifications.

 The two principal operators in the Prism property specification language are the P

(probabilistic) and S (steady-state) operators. P allows one to reason about the

43

probability that executions of the system satisfy some property. For instance, the

formula P  5e
-4

 [F
[t;t]

 !MonitorOutFailure] checks if the probability of the

instantaneous availability of the system is 0.0005 or less, the, that is, the probability that

it is operational at time instant t. Moreover, the formula P  1e
-3

 [true U
<=200

“PowerSourceFailure”] indicates that, with probability 0,001 or greater, the power

source component will fail within 200 time units. The operator S deals with the system

behavior in the stationary state (long term). The formula S < 1e
-3

 [

“MonitorOutFailure”] for instance, says that in the long term, the probability that the

output port of the monitor does not exhibit a failure is less than 0.001.

 Hence, the satisfaction of a property (that is whether it is true or false) is defined for

a single state of a model. When analyzing a property, Prism considers it to be true if it is

satisfied in all states of the model, and false otherwise.

 In Prism, we can also directly specify properties that evaluate to a numerical value.

This is achieved by replacing the probability bounds from the P and S operators with

=?. Thus, we can write an expression of the form P =? [F
[0;600]

 !PowerSourceFailure],

for which the model checker will return a real probability that the system ends. This

formula checks the probability that power source component fails within 600 time units.

Moreover, the formula S =? [num sensors  min sensors] checks what is the long-run

probability that an acceptable number of sensors are operational.

 In many cases, the most useful form of analysis is to compute such values for a range

of models or properties. For example, one might determine P = ? [true U<=T

“Monitor_Failure”] for a range of values of T in order to gain insight into the

likelihood of the system terminating as time progresses.

 In addition, other properties can be analyzed. Prism models can be augmented by

introducing the notion of costs and rewards. The properties state some characterisation

about the expected value of these costs/rewards. These are specified using the R

operator, which works in a very similar fashion to the P and S operators [7, 8].

3.2.3 Prism Model Checker

 Prism is a symbolic model checker and incorporates a range of model analysis

techniques [50]. The model construction and reachability are implemented using

MTBDD and BDD respectively. The Prism implementation use data structures based on

BDD. This offers an important feature for this model checker, because it provides

compact representations and efficient manipulation of large probabilistic models to

exploit their structure and regularity. Prism also uses MTBDD in combination with a

conventional explicit storage scheme such as sparse matrices and arrays in order to store

numerical values. The model size capacity of Prism is nearly to 10
7
 for CTMC and

higher for other types of models.

 Reachability analysis using BDD forms the basis of non-probabilistic symbolic

model checking. For both PCTL and CSL, model checking generally reduces to a

combination of reachability-based computation and the solution of linear equation

systems. More specifically, the underlying computation in Prism involves a

combination of:

44

• Graph-theoretical algorithms, for qualitative probabilistic model checking and

conventional temporal-logic model checking.

• Numerical computation, for quantitative probabilistic model checking, to

provide solution of linear equation systems (for DTMC and CTMC) and linear

optimization problems for (MDP).

Graph-theoretical algorithms are always performed in Prism using BDD. They are

comparable to a non-probabilistic model checker. For numerical computation, Prism

uses iterative methods rather than direct methods due to the size of the models that need

to be handled. For transient analysis of CTMC, Prism incorporates an iterative

numerical method known as uniformisation or Jensen’s method. For solving linear

equation systems, it supports a range of well-known techniques, including Jacobi,

Gauss-Seidel and SOR (successive over-relaxation) methods. Finally, for the linear

optimization problems which arise in the analysis of MDP, Prism uses dynamic

programming techniques, in particular, value iteration.

 In the case of numerical computation, Prism actually provides three distinct

numerical engines. The first is implemented purely in MTBDD; the second uses more

conventional data structures for numerical analysis: sparse matrices and full vectors;

and the third is a hybrid, using a combination of the two. Typically the sparse engine

provides faster numerical computation than its MTBDD counterpart, but it requires

more memory. Sometimes, MTBDD can also exploit the models' structure and represent

them far more compactly than a sparse matrix. Moreover, in cases where high regularity

occurs, MTTB is able to perform quantitative analysis for models extensively larger

than those used in a sparse matrix form. Thus, the performance of the tool may vary

depending on the choice of the engine. The hybrid engine stores models in a MTBDD

structure which is adapted so that numerical computation can be performed in

combination with a full vector. It aims to use less memory than sparse matrices, but

providing a faster computation than pure MTBDD. By default, PRISM uses the hybrid

engine.

3.2.4 Modeling a Simple System using Prism

 The system shown in Fig. 3.6 consists of a primary component (Comp1) with

continuous failure monitoring, a backup component (Comp2) with no self-monitoring,

and an external monitoring component (Monitor) whose function is to monitor the

health of the backup component.

 The failure rate of Comp1 is 1 = 5x10
-5

 per hour. The self-monitoring strategy of

this component enables its functionality to be verified prior to every flight. (The median

time duration of each flight is assumed to be 5 hours). Thus, the repair rate of Comp1 is

1 = 1/5 per hour. If this component is failed or inoperative, it is repaired before the

next dispatch. The failure rate of Comp2 is 2 = 2.5x10
-5

 per hour. The backup

component has no self-monitoring, but it is monitored continuously by an independent

monitor. If the backup system fails and the monitor is working, the backup is repaired

before the next dispatch. If the monitor is not working, the backup component can fail

45

latently, because the backup component is checked only every 10 flights (50 hours - 2

= 1/50 per hour). If the backup component is failed at one of these scheduled

inspections, with no indication of a failure informed from the monitor, it is assumed that

the monitor is also failed, so both are repaired prior to the next flight.

Fig 3.6 - Diagram of a system with an component and backup with an independent monitor

 The monitor has a failure rate of 3 = 2.5x10
-5

 per hour. Whether the monitor is

failed, it can be repaired in two different situations. First, as noted above, if the backup

component is failed at its periodic 50-hour inspection and there was no monitor

indication of a component failure, then the monitor is repaired along with the

component before the next dispatch. Second, the monitor is checked periodically every

100 flights (500 hours - 3 = 1/500 per hour), and if the monitor is failed, it is repaired

prior to the next flight.

 As described in this chapter, Prism can be used to analyze the behavior of fault-

tolerant systems. Also, it offers an interesting language specification to abstract the

mathematical representations of the system. Considering this specification, the method

that we use for modeling repairable systems is traditionally called as components

approach, because we consider the components individually. In this method it is

necessary to know the density functions of failure and repair probability for each

component and how they are connected.

 The failure model of a repairable system usually includes the reliability of

components, system architecture, the physical layout of operation, as well as aspects

related to availability, maintainability and maintenance practices used. In aeronautical

context, all such information results from the safety analysis are performed in such a

system. To generate a stochastic process of a repairable system, the random variables of

interest are the median time between failures (MTBF) and median time to repair

(MTBR).

 Once we perform the analysis of random variables on time between failures and

repair times and if it is observed the adequacy of the exponential distribution for both

variables, the system can be modeled using Markov models.

 Fig.3.7 illustrates a Prism specification of this system. The first module, Comp1,

specifies an abstract failure behavior of the Comp1. The variable c1_failure represents

its single failure mode. The first transition captures one of the possible changes in the

46

failure mode: from an operational state it can fail with a rate of 5e
-5

 (failure/hour). The

next command represents a repair transition. Comp2 is the second module, which has

different repair transitions command. One of them is synchronized (the labels inside [

and] state the synchronization points) with the module Monitor. They work similarly to

the first transition of this module, except that they need to synchronize with the

corresponding labels of the module Monitor, allowing them to be triggered. The module

Monitor also uses a single variable: monitor_failure. Its first command states a failure

transition command whereas the second represents the capability of its single failure

mode being repaired with a rate of 1/500 (repair/hour). The last command represents

repair transitions corresponding to the repair transitions of the Comp2.

Fig 3.7- Prism specification of a small system

 The first line of this specification states that we are considering a continuous time

Markov chain that is composed of a set of discrete states, where each of them is the

representation of the state (operational, degraded and faulty) of each failure mode (local

47

variables) of a component. This chain of events requires the use of exponential

probability distributions for modeling failure mode rates and repairs (this is why we use

the CTMC model). Therefore, the model is basically composed of modules, internal

variables and instruction of transition states that can be synchronized or not. Also, we

use the ―formula‖ operator, which is used to represent the logic of propagation of failure

and acts as a variable in the observation on the stage of model verification.

 Fig. 3.8 shows the set of states and the transition matrix that represents the respective

Markov model of the system as well as the transient probabilities of each state

considering an exposition time of 1000 hours. The states 6 and 7 represent the situation

of the system failure.

Fig 3.8 – States, matrix transitions and steady-state probabilities of the small system specification

48

Chapter 4

Proposed Strategy

This chapter presents a strategy to perform quantitative safety assessment of aircraft

systems using probabilistic model checking. The main objective is to use formal models

as support for verification and validation of the system safety requirements. The used

formal notation is a textual representation of Markov chains (it is called Prism) and is

systematically generated from a Simulink diagram, annotated with failure logic, by

applying translation rules. Hence in this chapter, we also describe the rules responsible

for the systematic formal model generation. An overview of the strategy is described in

Section 4.1. Section 4.2 presents the extended tabular notation used in our strategy. The

details about collecting and processing the input data for the formal model generation

are outlined in Section 4.3. Afterwards, Section 4.4 discusses how to generate the

formal model by applying the set of proposed translation rules. Finally, Section 4.5

shows how to perform the quantitative analysis from a Prism model.

4.1 Strategy Overview

 Our strategy aims to perform a quantitative analysis over an aircraft system, which is

designed using a well-established model-based approach. The quantitative analysis is

based on the use of probabilistic formal models. The formal model is specified using the

Prism language which is later on verified by model checking. In the Prism analysis,

time and probability queries are dealt with in the model checker using the CSL temporal

languages. By using the Prism model checker we can detect whether any criticality level

condition is violated without building any fault-tree.

 Most of the techniques to create probabilistic formal models of aeronautic systems

are highly subjective, because they are dependent on the skill of engineers that specify

the formal model in a non-systematic ad hoc fashion [6, 18]. But instead of creating a

Prism specification implicitly via a tool, we follow a systematic strategy by providing

formal translation rules that transform a high-level system description (Simulink

diagrams) into a Prism specification. The input information necessary for this strategy

comes from a qualitative model constructed during a common safety assessment

process, enabling to mechanize the strategy.

 Fig. 4.1 presents an overview of our strategy. It starts by collecting the system

description, which contains the system block diagrams and a failure logic model. With

this information, we apply our translation rules to create a Prism specification and the

associated CSL formulas to analyze the safety requirements of the system. Then, the

49

Prism model-checker is invoked to check all formulas and only when one of them is not

satisfied, this is reported to the user.

Fig 4.1 Overview of proposed strategy

 The generated Prism model has a Continuous-Time Markov Chain (CTMC)

representation and captures the failure logic about the system. Using this Prism model,

the probabilistic model checker can automatically perform quantitative analysis that can

answer several kinds of questions about the system. Hence, using a notation of ease

understanding instead of working directly with their Markovian representation, we

provide a more user-friendly notation to engineers.

 The key idea is to incorporate the support of formal analysis in the process of safety

assessment to provide time and probability characteristics, enabling a more dynamic

and efficient safety analysis. As result, we describe the system in a high-level

specification, capable of providing an efficient quantitative analysis, considering the

architectural issues in order to maintain integrity with the usual solution. The translation

strategy is divided into the following steps:

 Extending the tabular notation: Recall from Sections 2.3.2 and 2.3.3 that we

used tabular annotation (IF-FMEA tables) to describe the failure model of a

system. In this step these tabular structures are extended to add information

about system component repairs and its failures monitoring.

 Collecting and processing the input data: The model is generated from its

textual and tabular Simulink representation. We organize the data following an

abstract syntax, allowing that the translation rules can be applied to generate the

Prism specification.

 Translation Rules: In this step, the generated structure from the previous step is

processed and its respective Prism specification is generated as output according

to the semantics given by the translation rules.

 Quantitative Analysis: Finally, we show how to analyze the generated

probabilistic model using the Prism model checker which is supported by

verification of formulas expressed in CSL language.

 We describe these steps in the following sections. The details are applied in practice

using the case study presented in Chapter 5.

50

4.2 Extending the tabular notation

Although all tabular structures presented in Section 2.3.3 are consistent and integrated

with respect to the system failure mode and propagation, they are not sufficient to create

a probabilistic formal model to perform a quantitative analysis using Markov models in

a systematic way. To represent aeronautical systems consistently and according to the

ARP 4761 and FAR 25.1309, we need more information to model the non-monitored

failures of the system. This involves knowing about component's latency (if a

component is monitored or not) and how often a repair takes place (Mean Time To

Repair [MTTR]). According to the FAR 25.13.09 [24]:

“If one or more failed elements in the system can persist for multiple flights (latent,

dormant, or hidden failures), the calculation should consider the relevant exposure

times (e.g. time intervals between maintenance and operational checks/ inspections). In

such cases the probability of the Failure Condition increases with the number of flights

during the latency period”

Thus, we extend this modeling notation (tabular structures) with the addition of such

information. As result, a new tabular structure is defined.

 The first information to be incorporated is the classification of each basic component

of the system about its failures' monitoring. In the aeronautic context, some components

are checked before each flight to confirm that they are working, and repaired if

necessary. So, this type of component can be called as self-monitored, because we need

to know if it is working before of each flight. But some aircraft systems include

components that are not inspected before and during every flight. Failures in such

components are called latents because they are not detected unless another combined

failure occurs and compromise a function that needs such components or during

scheduled maintenance (generally, after some flights). For this last type of component

we must consider two situations: externally monitored and non-monitored components.

The first type of components is monitored continuously by an independent monitor. If

the component fails and the monitor is working, the component can be repaired before

the next dispatch. If the monitor is not working, latency reappears. The type monitor is a

particular component responsible for monitoring relevant components. The latter type

represents all components that are not monitored and naturally they have latent failures.

Their faults are only checked in regular periods of maintenance. In short, we need to

distinguish between a monitored and non-monitored failure of a component because

non-monitored failures are more severe in safety analysis.

 Based on reliability predictions and safety factors (dispatchability, MTBF, severity,

redundancy, and other several reasons) the periodic inspection/repair intervals for each

component is also defined. This is the second information that we added to the input

model. Table 4.1 presents a summary of this additional information.

51

Table 4.1. Definition of the additional information

Maintenance strategy
Inspection Time

Self-monitored

Monitored

Non-monitored

Monitor

It is the maximum exposure time which a component is

submitted without inspection or repair. Ex.: 50 hours, 10

flights.

 Considering these assumptions, the tabular structure of Section 2.3.3 is extended to

store this data. Table 4.2 shows only the additional information.

Table 4.2. Additional information using a tabular notation

Component Maintenance strategy External Component Inspection Time

PoweSource_1 Monitored Monitor-In1 50 hours

PoweSource_2 Monitored Monitor-In2 50 hours

Monitor Monitor 100 hours

Reference Self-monitored 5 hours

Controller Self-monitored 5 hours

Sensor Self-monitored 5 hours

Actuator Self-monitored 5 hours

4.3 Collecting and Processing the Input Data

Recall from Section 2.3.3 that the component failure characterizations can be captured

by hierarchical tabular structures (Table 2.1 through Table 2.4). These tables, also

considering the additional notation of the previous section, are a concrete representation

of the system failure model. Although the system model is illustrated in a graphical and

diagrammatic view, its failure model is commonly stored in this tabular structure. This

facilitates the data extraction and processing as well as model transformation [5, 13].

 In Matlab/Simulink, for instance, matrix structures (tabular notation) are created

using Matlab environment variables to store the failure model [9]. These structures store

user data related to each component in a Simulink model. The matrix structures can be

accessed from the variable UserData calling the function get_param. Hence, all

information required for parsing the model is read from the UserData variable,

considering the structure defined. Irrelevant information about the graphics of the model

is discarded, extracting only the relevant information. Matlab/Simulink also allows

accessing these structures via a single text file.

 Although the annotations that we collect in the Simulink diagram are similar to the

tabular structures presented during the safety analysis, first we need to process the input

data in the tabular format to systematically generate the Prism specification. Currently,

our translation rules are stated in terms of the abstract syntax presented in Fig. 4.2.

52

These data structures are an abstract representation of all the information introduced

previously (see Section 2).

Fig 4.2 - Defined types based on tabular annotations

 We start by considering a system (System) as a structure that contains a name

(System_Name) and a list of subsystems (Seq(Subsystem)). Each subsystem can be

another system or a module; because components can also be systems. A module

(Module) represents the lower level component that contains a name, a list of ports

(Seq(Ports)), a list of deviations (Seq(Deviation)), a list of malfunctions

(Seq(Malfunction)), the maintenance strategy info and the inspection time. All these

types (Port, Deviation, Malfunction, MaintenanceStrategy and InspectionTime) are

associated with the tabular structures used to store all system information about its

architecture, hierarchy, failure conditions, failure modes, repairs and the characteristics

of monitoring and propagation of component failures. Port is a structure that contains a

Port_ID (representing the identifiers of input/output ports) and an AssociatedPort

(which stores the connected port of other components).

 Annotation is a boolean expression that represents the failure logic of deviations. Its

definition considers And/Or operators and their terminal terms can be malfunction

names or deviations from any port. Criticality represents a real number () used to

quantify the tolerable probability associated with a failure condition (expressed via a

deviation). Finally, InspectionTime and Rate are also real numbers used to represent the

rate of occurrence of a malfunction and of a repair, respectively.

To exemplify this abstract syntax, we describe below the equivalent representation of

the Elevator Control System described in Section 2.3.3:

53

 Lines 2 through 18 define the monitor component, whose maintenance strategy

attributes are defined in line 3. Association between its ports is described in lines 7 to

12. Lines 13 to 15 describe the deviations and its failure logic expression and lines 16

and 17 relates the attributes of component failure modes. Next, lines 19 through 43

describe the controller which is treated as a subsystem. So inside its correspondent

tags, this structure defines the three subcomponents that compose this subsystem

(Component_1, Component_2, Component_3) and the input/output port associations (lines

37 through 42). For conciseness, only the Component_1 is described (lines 20 through

34). Finally, the remaining system components are listed in lines 44 to 49, whose data

structures are similar to the monitor and Component_1.

54

4.4 Translation Rules

In this section, our strategy applies a set of translation rules which are based on the

abstract syntax of Fig. 4.2 to generate the Prism specification. To ease the overall

understanding about their applicability we also provide the typical sequence of their

application in Fig. 4.3. Also, we will describe meticulously the main concept and

description of these rules.

Fig 4.3 - Translation Strategy Overview

 The strategy always starts by applying Rule 1, which state that we are dealing with a

CTMC Markov model and applies other rules to create the several Prism modules from

the system components (Rules 2–4). The body of a module is effectively created by

Rule 5. After that, basic declaration instructions (Rules 6-8), commands (Rules 9-11)

and repair transitions (12-22) are created. To complete the translation strategy, formula

expressions are created (Rules 23-28) using a set of rules that decomposes all logic

expressions (Rules 29-35).

4.4.1 Compound Systems and Subsystems

Our rules are inductively defined on the structure of a Prism system. We start with Rule

1 that takes as argument a pair where the first element has the name of a system (SName)

and the second element a list of its subsystems (SubSys).

55

Rule 1 |{ (SName, SubSys) }|
system

  ctmc |{ SubSys }|
subsystem

Following Rule 1, the resulting Prism code is basically the directive ctmc (instructing Prism
to perform a CTMC interpretation), and a call to the function subsystem. This function is
defined by Rules 2 (base case) and 3 (recursive case).

Rule 2 |{ <S> }|
subsystem

  |{ S }|
module

Rule 3 |{ S: tail }|
subsystem

  |{ S }|
module

 |{ tail }|
subsystem

 Rules 2 and 3 do not produce Prism code. They access each component of this

system and call the function module recursively for each component (Rules 4 and 5).

For instance, applying these rules on the ECS, we obtain the following situation:

Step1: |{ PowerSource_1: tail }|
subsystem


 |{ PowerSource_1 }|

module
 |{ tail }|

subsystem

Step2: |{ PowerSource_2: tail }|
subsystem

 
 |{ PowerSource_2 }|

module
 |{ tail }|

subsystem

Step3: |{ Monitor : tail}|
subsystem


 |{ Monitor }|

module
 |{ tail }|

subsystem

...
Step7: |{<Actuator>}|

subsystem
-> |{ Actuator }|

module

4.4.2 Module

As modules can be subsystems as well, we translate modules by using two rules: Rule 4

(which calls function subsystem) and Rule 5 (which starts the creation of a Prism

module).

Rule 4 |{ (SName, SubSys) }|
module

  |{ SubSys }|
subsystem

 Rule 4 can be distinguished from Rule 5 by pattern matching. One of them will be

applied depending on the type that they are dealing. For instance, the Controller has

internal components, that is it is a subsystem. So this type matches with the Rule 4.

|{ Controller, Component1:tail}|
module

 |{Component1: tail}|
subsystem

 Rule 5 takes as input a tuple containing the module elements: name, type, set of

ports, set of deviation logics, malfunctions, maintenance strategy and inspection time.

The module name (MName) is used to name the Prism module (between the keywords

module and endmodule). Inside the module, the function declars is called to create the

declaration part, and the function commands the behavioral part. Finally, the function

formulas is called to create the set of Prism formulas outside the module.

Rule 5 |{ (MName,Type,Ports,Deviations,Malfuncs,MStrategy,IT) }|
module



module MName
 |{ MName, Malfuncs }|

declars

 |{ MName, Ports, Malfuncs }|
failureCommands

 |{ MName, Ports, Malfuncs, MStrategy, IT }|

repairCommands

endmodule
|{ MName, Ports, Deviations, true }|

formulas

56

 For example, the Monitor is a lower level component, and then by pattern matching

the Rule 5 will be used in its translation that is shown below:

|{ (Monitor, Monitor, (In1, (PS1, Out1)): tail, <LowPower>,

<switchFailure>, Monitor, 50) }|
module



module Monitor
 |{ Monitor, <switchFailure> }|

declars

 |{ Monitor, (In1, (PS1, Out1)): tail, <switchFailure> }|
failureCommands

 |{ Monitor, (In1, (PS1, Out1)): tail, <switchFailure>, Monitor, 50
 }|

repairCommands

endmodule

|{ Monitor, (In1, (PS1, Out1)): tail, <LowPower>, true }|

formulas

4.4.3 Declarations

Rules 6 and 7 act in the same style of rules 2 and 3 and is used to access each

component malfunction by your list.

Rule 6 |{ MName, Malfuncs: tail }|
declarations

 

 |{ MName, Malfuncs }|
declar

 |{ MName, tail }|
declarations

Rule 7 |{ MName, <Malfuncs> }|
declarations

  |{ MName, Malfuncs }|
declar

 Malfunctions are representations of possible failures within a component. To capture

this feature in Prism, for each component malfunction, local boolean variables

initialized with false are defined.

Rule 8 |{ MName, (MfName, Rate, Annot) }|
declar

 

 MName . _ . MfName: bool init false;

Rule 8 uses each component malfunction to generate the declaration of its respective

local variable inside the module block. Module’s name (MName) and malfunction’s name

(MfName) are used to create the local variable name. For instance, the translation of

sensor malfunctions using Rules 6, 7 and 8 generates the following Prism:

module Sensor

 |{ sensor, (sensorfailure, 1e-4, Annot): tail }|
declarations

 

 sensor_sensorfailure: bool init false;

 sensor_sensordegradation: bool init false;

…
endmodule

57

4.4.4 Failure Transition Commands

Prism transition commands are responsible to update the state of the local variables. We

translate malfunction structure (rates and logic expression) into failure transition

commands which updates the malfunction to a failure state based on its failure rate. The

Rules 9 and 10 act in the same style of rules 2 and 3 and is used to access each

component malfunction by your list.
Rule 9 |{ MName, Ports, Malfuncs: tail }|

failureCommands
 

 |{ MName, Ports, Malfuncs }|
fCommand

 |{ Name, Ports, tail }|
failureCommands

Rule 10 |{ MName, Ports, < Malfuncs > }|failureCommands 

 |{ MName, Ports, Malfuncs }|
fCommand

 Rule 11 translates each malfunction into a Prism command. It always assumes the

guard as a logical conjunction between the negation of a malfunction (this comes from

Rule 8) and the negation of the fully failed system situation (a term defined by a Prism

formula). If such a guard is valid then, with a rate given by Rate, this malfunction is

activated.

Rule 11 |{ MName, Ports,(MfName, Rate, Annot) }|
 fCommand

 

 [] (!(MName .MfName)) -> Rate: (MName .MfName’=true);

 As an example, we present the translation of the Sensor malfunctions in Prism

commands using Rules 9, 10 and 11.
module Sensor

 sensor.sensorfailure: bool init false;

 sensor. sensordegradation: bool init false;

 |{sensor, (In1, (PS1, Out1)): tail, (sensorfailure, 1e-4, Annot): tail

 }|
failureCommands

 

 [](!sensor_sensorfailure) -> (5E
-4
) : (sensor_sensorfailure' = true);

 [](!sensor_sensordegradation) -> (5e
-4
) :

 (sensor_sensordegradation' = true);

…
endmodule

4.4.5 Repair Transition Commands

Rules 12 through 17 translate the maintenance strategy (defined for each component)

into Prism repair commands. This is performed according to the classification of each

basic component of the system with respect to the treatment of the type of monitoring of

its faults. Rule 12 considers two types: Self-monitored and Non-monitored (note the

provided clause), whereas Rules 13 and 14 tackle the other cases: Monitored and

Monitor, respectively.

58

 In Rule 12, if the corresponding guard is valid, then, with a rate (1/Inspection Time),

all component malfunctions are deactivated. Function orLogic takes a logical

disjunction between all malfunctions (this comes from Rule 8) and function Update

deactivates all malfunctions (set the value false to each malfunction).

Rule 12 |{ MName,Ports,Malfuncs,(MSType, AssocPorts:tail),IT}|
repairCommands

 

 [] (|{ MName, Malfuncs }|
orLogic

) -> (1/IT): |{ MName, Malfuncs }|
update

;

provided MSType = Self-Monitored or MSType = Non-monitored

 However, if the component is Monitored, its repair commands must be synchronized

with the Monitor component (function monitoredRCommmand).

Rule 13 |{ MName,Ports,Malfuncs,(MSType, AssocPorts:tail),IT }|
repairCommands

 

 |{ Malfuncs, AssocPorts, IT }|
 monitoredRCommand

 |{ MName,Ports,Malfuncs,(MSType, tail),IT }|
repairCommands

provided MSType = Monitored

Rule 14 |{ MName,Ports,Malfuncs,(MSType, <AssocPorts>),IT }|
repairCommands

 

 |{ Malfuncs, AssocPorts, IT }|
 monitoredRCommand

provided MSType = Monitored

If a component is a Monitor, instead of the synchronized repair commands
corresponding to the monitored component (function sincronizedRCommand), another
repair command is created to represent the single repair of this component.

Rule 15 |{ MName,Ports,Malfuncs,(MSType, AssocPorts:tail),IT }|
repairCommands

 

 |{ MName,Malfuncs, AssocPorts, IT}|
sincronizedRCommand

provided MSType = Monitor

Rule 16 |{ MName,Ports,Malfuncs,(MSType, <AssocPorts>),IT }|
repairCommands

 

 |{ MName,Malfuncs, AssocPorts, IT}|
sincronizedRCommand

 [] (|{ MName, Malfuncs }|
orLogic

) -> (1/IT): |{ MName,Malfuncs}|
update

;

provided MSType = Monitor

Rules 17 and 18 are used to define the synchronized repair commands between the
monitored (Rule 17) and the monitoring component (Rule 18).

Rule 17 |{ Malfuncs, (MName, PortID), IT }|
 monitoredRCommand

 

 [MName._.PortID._.DependentRepair] (|{ MName, Malfuncs }|
orLogic

) ->

(1/IT): |{ MName, Malfuncs }|
update

;

 [MName._.PortID._.Repair] (|{ MName, Malfuncs }|
orLogic

) -> (1) :

 |{ MName,Malfuncs }|
update

;

59

Rule 18 |{ MName,Malfuncs, (MName, PortID), IT }|
 sincronizedRCommand

 

 [MName._.PortID._.Repair] (|{ MName,Malfuncs }|
OrLogic

) -> (1/IT):

 |{ MName,Malfuncs }|
update

;

 [MName._.PortID._.DependentRepair] ((|{ MName,Malfuncs }|
 orLogic

)

 -> (1): |{ MName,Malfuncs }|
update

;

 Rules 19 and 20 generate a logical expression used as guard of the module repair
commands. The guard assumes a logical disjunction between the component
malfunctions.

Rule 19 |{ MName, (MfName, Rate, Annot): tail}|
 orLogic



 MName._.MfName | |{ tail }| orLogic

Rule 20 |{ MName, <(MfName, Rate, Annotation)> }|
 orLogic

 MName._.MfName

 Rules 21 and 22 create assignment commands that are part of repair command and
are responsible for deactivate each malfunction defined for a module.

Rule 21 |{ MName, (MfName, Rate, Annotation): tail}|
update

 

 (MName._.MfName’ = false) & |{ tail }|update

Rule 22 |{ MName, <(MfName, Rate, Annotation)> }|
update

 

 (MName._.MfName’ = false)

 For instance, the repair transition commands of the sensor module are generated

applying rules 12, 19, 20, 21 and 22 that translate the sensor malfunction information in

the following Prism code:

|{sensor, (In1, (PS1, Out1)): tail, (sensorfailure, 1e-4, Annot): tail,

(Self-monitored,””),5}|
repairCommands

 

 [] (|{ sensor, (sensorfailure, 1e-4, Annot): tail }|
orLogic

) -> (1/5):

 |{ MName, Malfuncs }|
update

;

|{ sensor, (sensorfailure, 1e-4, Annot): tail }|
orLogic



 sensor_sensorfailure | sensor_sensordegradation

|{ sensor, (sensorfailure, 1e-4, Annot): tail }|update 

 (sensor_sensorfailure’ = false) & (sensor_sensordegradation’ = false)

4.4.6 Formulas

The final elements we address are Prism formulas. They correspond to the failure logic

expressions annotated in Simulink diagrams. Each expression that represents the

possible system failure conditions (deviations) is transformed into a Prism formula. As

60

these expressions, the formula is written in compositional form. That is, it is formed

from basic formulas that are based on the local variables of each module (representing

the malfunctions). Once again, the Rules 23 and 24 act in the same style of rules 2 and 3

and is used to access each component deviation by your list.

Rule 23 |{ MName, Ports, Deviation : tail, boolValue }|

formulas
 

 |{ MName, Ports, Deviation }|
formula

 |{ MName, Ports, tail, false}|
formulas

Rule 24 |{ MName, Ports, <Deviation>, boolValue }|
 formulas

 

 |{ MName, Ports, Deviation }|
formula

 At this point, we are able to translate the failure logic expressions. Formulas are

labeled considering the deviation name, module name and output port id.

 Rule 25 creates the component deviation formulas compounding a name for the

formula based on the deviation name (DName), followed by the module name

(MName) and the identifier of the port (PortID). The formula's body is a boolean

expression resulting from function fExpression.

Rule 25 |{ MName, Ports,(DName, PortID, Annot, Crit) }|
formula

 

 formula DName._.MName._.PortID = |{ Ports, Annot }|
fExpression

 The function |{ }|
fExpression

 takes a deviation annotation and the list of component

ports to translate the annotation logic expression to a prism boolean expression. Next

rules (26 and 27) are responsible for this.
Rule 26 |{ Ports, And(Annot1 , Annot2) }|

 fExpression
 

 (|{ Ports, Annot1 }|
 fExpression

,) & (|{ Ports, Annot2 }|
 fExpression

)

Rule 27 |{ Ports, Or (Annot 1 , Annot2) }|
fExpression

 

 (|{ Ports, Annot 1}|
 fExpression

) | (|{ Ports, Annot2 }|
 fExpression

)

 To complement the expression formation, it is necessary to identify the terminal

terms of the logic expression. As we can see in the annotation type definition, there are

two kinds of terminal terms. The first is the component malfunction name (Rule 28) and

the other is the input port deviation name (Rule 29).
Rule 28 |{ Ports, MfName }|

fExpression
  (MfName)

Rule 29 |{ Ports, (DName, Port_ID) }| fExpression 

 (DName . |{ Port_ID, Ports }|
Associated

)

 Finally, to express the formulas on compositional form, is need to change the input

port deviation name to its associated port deviation. So an input deviation is replaced by

its respective formula that describes the associated output port deviation.
Rule 30 |{ Port_ID, (Port_ID’, AssocPort): tail }|

Associated
 

 |{ Port_ID, tail }|
Associated

61

Rule 31 |{ Port_ID, < (Port_ID, AssocPort) > }|
Associated

 

 |{ AssocPort }|
AssociatedName

Rule 32 |{ (MName, Port_ID) }|
AssociatedName

 (MName . Port_ID)

 For instance, in order to generate the failure logic expressions about the Sensor

deviations, we have to apply Rules 23 through 32. This translation results in the

following Prism code:

|{sensor, (In1, (PS1, Out1)): tail, (OmissionSignal, Out1, Annot, “”): tail,

true}|
repairCommands

 

 formula OmissionSignal_Sensor_Out1 = sensor_sensorfailure |

 LowPower_Monitor_Out1 | OmissionSpeed_Actuator_Out1;

 formula CorruptedSignal_Sensor_Out1 = sensor_sensordegradation;

 Using these translation rules, we generate a valid formal failure model retaining the

semantics of diagrams and the system hierarchical model.

4.4.7 Generation of system verification expressions

In this step we create the set of expressions in the CSL language to analyze the failures

conditions of the system. The failure conditions are represented as deviations of the

system associated with a criticality. They are selected to be evaluated based on the FHA

analysis that also specifies their tolerable probability in the tabular structures. Thus, for

each Failure Condition to be evaluated, the following verification expressions are

created.

P = ? [true U<=T "Failure Condition"]

((P=? [true U<=T " Failure Condition"]) / T)

(((P=? [true U<=T " Failure Condition"]) / T) <= Crit)

where Crit is the tolerable probability of the failure condition

 Next, we present the translation rules used to generate the above mentioned

verification expressions. This translation strategy follows the same principle of the

strategy for the generation of the formal Prism specification. Rule 33 declares a variable

of type Double to be used as a time argument in the verification expression.
Rule 33 |{ (SName , Subsystems) }|

system
  const double T;

 |{ Subsystems }|
subsystem

 Rules 34, 35 and 36 are similar to Rules 1, 2, 3 and 4 defined previously, except that

instead of calling the function module, they call the function expressions.

Rule 34 |{ <S> }|
subsystem

  |{ S }|
expressions

Rule 35 |{ S: tail }|
subsystem

  |{ S }|
 expressions

 |{ tail }|
subsystem

Rule 36 |{ (SName, SubSys) }|
expressions

  |{ SubSys }|
subsystem

62

 Rules 37 and 38 are used to access each component deviation in the respective list.
Rule 37 |{ (MName, Type , Ports, Deviation: tail, Mfuncs) }|

expressions


 |{ MName, Deviation }|
expr

 |{ MName, Type , Ports, tail, Mfuncs }|
expressions

Rule 38 |{ (MName, Type , Ports, <Deviation>, Mfuncs) }|
expressions



 |{ MName, Deviation }|
expr

 Rule 39 calls the function responsible for the creation of the verification expression.

A deviation is considered a failure condition if Crit ≠ empty. Firstly the rule creates the

label that will compose the argument of the verification expressions. After, it creates

two different temporal expressions.
Rule 39 |{ MName, (DName, Crit, Port_ID, Annot) }|

expres
 ->

 Label “DName._.MName._.Port_ID“ = DName._.MName._.Port_ID
 P =? [true U <= T “ DName._.MName._.Port_ID “]
 ((P =? [true U <= T “ DName._.MName._.Port_ID “]) / T)
 (((P =? [true U <= T “ DName._.MName._.Port_ID “]) / T) <= Crit)
 provided Crit ≠ empty

4.4.8 Model Considerations

Our solution still does not consider bidirectional data flows (such as the propagation of

failure as short-circuit). However, such features can be added by considering new

translation rules. Our strategy is sound with respect to the following assumptions:

 Component failures are detected in flight only and repaired during ground

maintenance or before the next flight (description level), but the failures and

repairs occur at constant rates (model level).

 The system is assumed with perfect failure coverage and can to reconfigure to a

degradable mode within no time.

 In terms of completeness, our rules are complete in the sense that they can translate

any Simulink diagram annotated with failure logic in the IF-FMEA style [5]. Besides,

this approach is not limited to just using the Simulink diagram as input. Actually, the

necessary input data, which contains information from the qualitative model and the

respective failure logic and propagation, is obtained from the tabular structures, which

are user defined. Simulink diagrams work implicitly with these structures [10].

 Our strategy follows a systematic process that has proved viable and of little impact

in practice, since the tabular structures are generated by traditional methods and analysis

used by the aircraft industry during the qualitative safety assessment (FHA, FMEA, IF-

FMEA, CCA). So, adding a plug-in to some usual design tool, it is possible to automate

our systematic approach.

 The primary limitation of a stochastic model-checking is the size of the reachable

state space, though recent breakthroughs allow very large (> 10
7
 reachable states) state

spaces to be explored in reasonable time.

63

4.5 Quantitative Analysis

In this section we analyze the generated model specified in Prism. Basically, from this

Prism model we propose analytical expressions that allow calculating the average

failure rate of the possible failure conditions of the system from the analysis of the

temporal evolution of its possible states, whose behavior is defined by transition rates,

parameterized using the mode failure rates and repair time of the model.

 At first, our strategy focuses on identifying situations of violation of safety

requirements of the system. Thus, it is possible to examine whether the probability of

occurrence of certain failure conditions violates the standard safety limit (≤ 10
-9

 in

catastrophic failure condition, for instance).

 Considering our context, to analyze the failure behavior of these systems, we can

use, depending on the purpose, a steady-state or transient analysis [7, 16]. Transient

analysis represents the instantaneous failure rate over a single period T whereas the

steady-state analysis approximates the long-term average failure rate over multiple time

intervals T, as illustrated in Fig. 4.4. The choice over these types of analyses depends on

how system repairs are handled. Transient analysis can be performed in either closed-

loop (models with repairs) or open-loop models (models without repairs), whereas the

steady-state analysis can be performed only on closed-loop models.

Fig 4.4. Graph plotting the common behavior of different Markov analysis.

 Our proposed strategy creates models that consider repair transitions as if they

occurred at constant rates. Thus they are typical closed-loop models and both analyses

can be performed. We calculate the average rate of a failure condition applying the

transient analysis.
 Particularly, the transient analysis with continuous repair provides adequate accuracy on

their results for our purposes, since (see examples in Fig. 3.5 and 3.6) most critical

systems are modeled in such a way that they can deal with latency. In this scenario,

several components affecting the system functionality must be monitored, maintained at

regular intervals and repaired if they are faulty and the transient analysis with continuous

64

repair is more representative in this situation. On the other hand, the transient analysis

without repairs it applies strictly to just a single interval T, as if this was the entire life

of the system, whereas most critical systems have maintenance cycles, where they are

periodically restored to the full-up condition. Hence, the more representative analysis

for this scenario is when the period T usually represents a repetitive repair interval

rather than a life limit [16].

 Fig. 4.4 shows that a transient analysis on the open-loop model represents a repair

interval as a discrete limit, because it applies strictly to just a single interval T, repeating

the interval until the entire life of the system, if necessary. Its entire plot in the figure (a

sawtooth function) represents a situation in which the period T usually stands for a

repetitive repair interval rather than a life limit (performed by several transient results).

The mean value of the sawtooth function is almost equivalent to the continuous value.

However, calculating the mean value of this function can generate extra work. This task

is typically adopted in the traditional aeronautical approaches that use FTA to evaluate

the average probability of the system failure conditions [4, 24].

 Comparing with the steady-state analysis, the transient behavior during the first

several hours is insignificant, requiring more care for the engineers to perform the

analysis appropriately. But the instantaneous rate of the transient analysis generally has

already come close the asymptotic steady-state rate in few hours and can be explored in

a lot of instants rather than steady-state that only analyses the long-run situation.

Moreover, a transient analysis can determine the contour of the instantaneous failure

rate as a function of time, showing the system sensitivity. A steady-state analysis does

not provide this information.

 Therefore, to perform the quantitative safety analysis, we use the CSL language [8].

The operators P (transient) and S (steady-state) of Prism can be used to reason about the

tolerable probabilities of all system failure conditions. For example, with the formula:

S  10
-9

 [―Failure Condition‖] . (1)

we can check if, in the long run, the probability that a certain ―Failure Condition‖ can

occur is less than or equal to 10
-9

. The satisfaction of a property (―true‖ or ―false‖) is

defined for a single state of a model. When analyzing a property, PRISM considers it

to be true if it is satisfied in all states of the model, and false otherwise. We can also

use the following formula to obtain this probability value in the long term:

S = ? [―Failure Condition‖] . (2)

 We can also check the exact probability itself by using other CSL formula:

P = ? [true U  T ―Failure Condition‖]. (3)

 This yields the instantaneous probability of occurrence of a certain ―Failure

Condition‖ at time instant T. We can also perform such an analysis for a range of values

of T in order to gain insight into the likelihood of the system as time progresses.

Therefore, Prism can support both analysis solutions (steady-state or transient analysis).

65

Moreover, as the steady-state analysis value is considered to a limit situation

(equilibrium state), to calculate the average probability of a failure condition on the

situation where the equilibrium state is not achieved during the lifetime of the system,

we can applying another formula in Prism using the transient operator normalized with

a specific time T:

((P = ? [true U  T ―Failure Condition‖])./T) (4)

 Following this principle, we also can check if the probability that a certain ―Failure

Condition‖ can occur is less than or equal to 10-9.using the transient operator:

((P = ? [true U  T ―Failure Condition‖])./T) <= 10
-9

 (5)

 Whereas we reported in this section, the formulas 3, 4 and 5 are more appropriated to

analyze our models.

66

Chapter 5

Case Study

In this section we illustrate our strategy using a very simple example to ease

understanding all elements of the strategy. We demonstrate our proposed strategy using

a feedback control system—the Elevator Control System (ECS), which is responsible

for commanding an electro-hydraulic actuator, according to the longitudinal orientation

desired by the pilot. This case study was already introduced in Section 2.3. It is

presented graphically in Figure 2. Although it is a simple example, it is representative in

the aeronautics context in the sense that it has dependent and independent failures, a

hierarchical architecture, latency, evident, repeated and developed events [1, 2].

5.1 System Description

This system acts in one type (elevator) of the several flight control surfaces, which are

designed to allow pilots to change the forces and moments acting on the aircraft. Fig.

5.1 shows the main components of the ECS: the reference unit (Reference) captures

commands from the pilot and it is usually a side-stick (or yoke) providing longitudinal

deflections in degrees, the controller (Controller) is an Actuator Control Electronics

device (ACE) responsible to process the reference signal and the elevator position

provided by the sensor component (Sensor) to generate the correct commands to the

associated power control unit (PCU or Actuator). Moreover, this system is powered by

two power sources (PowerSource) which are monitored by a monitor (Monitor). The

further details about this system already introduced in Section 2.3.4. Next we will

describe the maintenance strategy of this system that as related in Section 4 is necessary

to generate the formal model.

 The main details about the system description and its failure behavior were already

described in Section 2.3.3, where a qualitative model of this system was generated using

tabular structures. Now, we will explain the maintenance strategy applied for the system

that will be useful to create the additional tabular structures also necessary to the

strategy application.

67

Fig 5.1. Elevator Control System

 The maintenance strategy for this system is as follows: The PowerSource 1 and 2

have no self-monitoring, but are monitored continuously by a monitor. If some

PowerSource fails and the monitor is working, the PowerSource is repaired before the

next dispatch. If the monitor is not working, the PowerSources can fail latently, but it is

checked every 10 flights (we are considering that the median time of flight is 5 hours, so

10 flights = 50 hours) and if some has failed during one of these periodic checks, it is

repaired at that time. If some PowerSource unit is found faulty at one of these 50-hour

checks, with no indication of this failure from the monitor, it is assumed that the

monitor system has also failed, so all units are repaired prior to the next flight. The

monitor can be repaired from two ways. First, as noted above, if some PowerSource unit

has failed at its periodic 50-hour inspection and there was no monitor indication of this

failure, then the monitor is repaired along with the PowerSource unit prior to the next

flight. Second, a periodic check of the monitor is performed every 100 flights (500

hours), and if the monitor has failed, it is repaired prior to the next flight. The Reference

is a self-monitored component, hence it is inspected and repaired if necessary before of

every dispatch. The maintenance strategy of the remaining modules (Controller, Sensor

and Actuator) are similar to the Reference and were omitted for conciseness.

5.2 Applying the Strategy

Considering the highlighted Simulink diagram in Fig. 5.1, the failure analysis of the

system is performed following the model-based system safety assessment process

explained in Section 2.3.3, where all tabular structures of the system resulting from this

68

process was described in Table 2.1, Table 2.2, Table 2.3 and Table 2.4. Since all

components are analyzed, describing their failure behaviors and registering its

information about the topology, it is now possible to apply the proposed strategy to

generate the formal specification in Prism and perform a quantitative analysis over this

system using the probabilistic model checking. We implement our strategy following

the five steps defined in Section 6.

 As described in Section 2.3.3, the extended tabular information is user defined using

Simulink. So, when we include these maintenance strategy and inspection time defined

for each component, the resulting tabular information about this system can be depicted

(see Table 4.1). Subsequently, the failure model of this system is stored in matrix

structures kept in the Simulink environment variables and these data are extracted

accessing a text file provided by the tool. Therefore, all data is processed and organized

following the abstract syntax defined in Section 4.3. The resulting data structure is

shown in Fig. 4.2. We create a script program to implement this last two steps and we

intend to incorporate this program into an automation tool for future work.

5.2.1 Model Generation

Considering the resulting data information about these components and including the

appropriate repair scheduled, the system failure model is ready to be used to generate

the formal specification. To illustrate this, we simply apply the transformation rules

presented in Section 4.4 on the system step by step.

 Firstly, each system component is represented by a module in the specification. If a

component is also a system, this component is discarded and its subcomponents will be

represented by a module.

Fig 5.2. Step that demonstrate the module creation

The next part describes the declaration instructions. For each component malfunction (failure
modes), local boolean variables initialized with false must be defined to represent the failure
state for each malfunction associated with the module.

69

Now we create a set of failure transition commands into each module. For each local variable in
the module, a state transition command is created. Their guard expressions are stated as a
conjunction of the negations of the local failure as well as the system's failure. The update
commands of the local variable value are based on the corresponding failure rate. These
commands represent transitions to a failure state associated with the malfunction represented by
the local variable.

Depending on the component maintenance strategy, different set of repair transition
commands are created into each module. If the component is self-monitored (Sensor, for
instance) or non-monitored, just one state transition command is created. This command has no
synchronization and its guard expression is assigned with the local variables. The command
updates all local variable value to an operational situation based on its repair rate (the used value
is the inverse of T, where T is the inspection time

2
. For self-monitored components, T =

MedianTimeOfFlight.

In the situations where the component is externally monitored (PowerSource), instead of the
previous command, two synchronized transition commands are created, and these commands
are synchronized with the repair command of the stateful component. The first command occurs
when both components fail (to represent repair of latent failure). The last occurs when the
monitor detects that a monitored component fails. The transition rate of this last command is
always 1 (it’s a Prism best practice used to quantify synchronized transitions: just one command
controls the transition rate).

The last case covers the monitor type. In addition to adding the non-synchronized transition
(because it is an non-monitored component), we have to create repair transition commands
synchronized with all monitored components. Note that this is a complement to the previous
item and allows us to represent the possible cases: 1) the monitor is repaired without failure
occurred in the monitored components, 2) the monitor is repaired together with the components

2 A continuous transition can represent a periodic inspection/repair using a rate that gives the same mean time

between a component failure and repair. To provide a conservative representation, the appropriate value of this time

must be in the range from T/2 to T.

70

monitored. See also that the guard expression of no synchronized transitions is assigned with the
negation of input deviation logic of the monitor failure mode (that is this kind of repair only
occurs if no fails was detected from the monitored components).

 The last part of the generation creates a set of formulas. Each failure logic expression that

can compose the failure conditions of the system is transformed into a PRISM formula. Like the

expressions, the formulas are also written in compositional form. That is, they are formed from

formulas already established, which are based on the local variables of each component

representing their malfunctions. The complete system failure state is transformed into a single

PRISM formula too. This formula is composed by an AND logic with its failure conditions. The

negation of this formula is put into all guard expression of the modules using a AND operator.

After applying the translation rules, we obtain the formal specification of the ECS which is

depicted in Appendix A.

5.2.2 Quantitative Analysis

The next step we use the Prism model-checker to check whether any critical failure

condition probability violates the permitted limit. To accomplish this, we execute the

Prism model checker using the expressions in the CSL language (see Fig. 5.3) obtained

after applying the rules defined in Section 4.4:

71

Fig 5.3. Generated expressions in CSL

Considering the tabular information of the ECS (see Table 2.3), our strategy creates

probabilistic temporal formulas to check the following failure conditions:

Omission of speed at Actuator output port shall be less than 3.10
-3

per flight;

Commission of speed at Actuator output port shall be less than 5.10
-3

per flight;

Wrong position signal at Actuator output port shall be less than 3.10
-3

 per flight.

 Following ARP 4761, only catastrophic, hazardous, and major failures are analyzed

quantitatively. In principle, considering only the tolerable values of these failure

conditions we could mistakenly conclude that none of them need a quantitative analysis.

However, as we describe in Section 2, the safety assessment process is hierarchical and

based on levels, where the high-level safety requirements are decomposed into smaller.

Consequently the tolerable rates of some potential hazard are also decomposed to the

extent that the aircraft systems are broken down into other subsystems. The task

responsible for check the tolerable probabilities of each subsystem and evaluate if the

high-level safety requirements are really preserved in the entire hierarchy is called

integration of cross-checking [2]. Therefore, knowing that the ECS is a subsystem

which composes a high-level system of an aircraft [42], the proposed values for these

system failure conditions are consistent with the context. We verify if some failure

condition violates theses safety requirements using the formula shown in (4):

((P=? [true U<=T "OmissionSpeed_Actuator_Out1"])/T)

((P=? [true U<=T "ComissionSpeed_Actuator_Out1"])/T)

((P=? [true U<=T "WrongPosition_Actuator_Out1"])/T)

 By asking the model checker, we obtain the results shown in Fig. 5.4.

72

Fig 5.4. Results of expression verification (numerical value)

5.3 Quantitative Results

After checking these formulas, the model checker shows that only the first formula was

not satisfied. Because the exact value of the average probability obtained via transient

analysis for this situation was 3.04e
-3

. So the Prism result indicated that this failure

condition was violated. Furthermore, we can check using the formula shown in (4):

(((P=? [true U<=T "OmissionSpeed_Actuator_Out1"])/T)<=0.003)

(((P=? [true U<=T "OmissionSpeed_Actuator_Out1"])/T)<=0.005)

(((P=? [true U<=T "OmissionSpeed_Actuator_Out1"])/T)<=0.003)

if some failure condition satisfies these safety requirements considering all states of the

model. Figure 5.5 shown that the Prism result was false, indicating that all failure

condition is not satisfied for, at least, one state of the model.

73

Fig 5.5. Results of expression verification (satisfaction of a property)

 As we have said previously, this strategy can be performed in a hidden way by

instructing the Prism model-checker to check each formula automatically; in such a way

that only when a formula is violated this result can be sent back to engineers using

Simulink plug-ins, for example. Thus the complete quantitative safety analysis can be

hidden from the engineers.

 So, from such reports, control engineers must adjust the system design by inserting

more fault-tolerance features to avoid such failure violations. When all safety

requirements are satisfied, the current system design (including its failure and repair

rates) is acceptable. To show this analysis to certification authorities, the Markov model

can be extracted from Prism by using certified tools like SHARPE or HARP [20].

 Furthermore, one can also investigate scenarios of different phases and maintenance

strategies using graphs of the instantaneous probabilities during a certain time interval.

For instance, Fig. 5.5 is the result of evaluating the following formulas defined in (3),

setting the T parameter from 0 to 100 hours.

P=? [true U<=T ("OmissionSpeed_Actuator_Out1")]

P=? [true U<=T ("CommissionSpeed_Actuator_Out1")]

P =? [true U<=T ("WrongPosition_Actuator_Out1")]

74

Fig 5.6. Instantaneous probability during a period of time

 With respect to this quantitative analysis, the main advantage is that the Prism

models basically use booleans and thus they are not so complex. To give an idea of the

probabilistic model checking complexity, the effort to analyze the ECS design required

262,144 states and 3,858,432 transitions. But only a few seconds were necessary to

analyze them using Prism 3.3 beta 1 in an Intel Core 2 Duo of 1.8 GHz, 2GB RAM, HD

160GB, Windows 7 Professional. It is worth noting that Prism supports models of more

than 10
7
 reachable states.

75

Chapter 6

Conclusion

The new generation of aircraft systems brings more advanced control systems to the

context where size and complexity challenges the current verification and validation

approaches. On the positive side, the recent adoption of model-based development

tools, such as Simulink, by the aerospace industry, is making it feasible to use formal

methods as verification solutions.

 In the same way Simulink interacts with Matlab to provide the desired solution,

Simulink can also interact with several different formal method solutions to tackle a

wide variety of problems that the control system engineers have to confront in practice.

Furthermore, the current tendency is to hide these formal method solutions completely

in terms of Simulink interactions to ease the use by engineers to avoid any decrease in

development productivity. For instance, Airbus [64] reports that formal methods were

used and, with an equivalent effort of a usual test campaign, were able of finding

problems (bugs) not detected by testing.

 In this work we propose a systematic strategy to perform quantitative safety

assessment of critical systems. Our approach generates a Prism specification from a

Simulink diagram, annotated with failure logic. The strategy also creates CSL formulas

that allow us to mechanically check whether all safety requirements are satisfied.

 There are several potential benefits associated with the systematic approach we

propose: an alternative to represent and analyze probabilistic models, understanding the

context of the system, and the validation of required properties are a few examples.

 Another potential benefit emerges from the safety assessment process. In the

traditional fault-tree technique, several fault-trees are explicitly built even if all safety

requirements are met. However, if a problem is detected in one of such fault-trees, the

system architecture may be changed and several fault-trees (in some cases a

considerable sub fault-trees which corresponds to low level systems) associated to that

problem must be rebuilt. With our Prism based approach, no fault-tree is built. It only

reports a safety violation, if one exists, indicating the failure mode [2, 10]. With Markov

chains, for instance those created via Prism, it is possible to represent all failure

conditions of a system with a single model. Also, checking the CSL formulas can be

more efficient than creating several fault-trees. We consider this as a distinguishing

feature of our approach when contrasted with the traditional fault-tree analysis

technique.

 Prism specifications are also interesting because they allow the creation and analysis

of Markov chains in a more user-friendly and condensed way. They also ease the

exploration of aspects such as latent and evident failure, monitoring and repair

76

scheduling, which are essential to aeronautical systems. Furthermore, engineers can use

the Prism specification (Markov chains) to investigate dynamic aspects of a system:

experiments to check existing failure scenarios can be performed by simply changing

the values of local variables of the model. Maintenance scheduling experiments can be

created to determine the Minimum Equipment List, and Phased Mission and

reconfiguration triggers based on synchronization with failure events [2, 8].

 However, the current version of the Prism tool also has some limitations.

Particularly, the tool has no facility to generate counter-examples when some property

is violated. Fortunately, recent researches are already identifying counter-examples of

stationary models, allowing a better traceability of the basic failures and facilitating the

cycle of checking and validating the system design [21]. Unfortunately, this solution is

not available in Prism yet. On the other hand, our research group proposes a work based

on this dissertation, which explores quantitative analysis using CSP [63], and is able to

generate traces and hierarchical fault-trees.

 Nowadays, the low incidence of tools and methods that provide the development of

trusted systems within the goals of dispatchability, safety requirements and costs is still

a major challenge [6, 10]. Therefore, we think that the development of a model-based

strategy for analyzing the safety and reliability of aircraft systems using a formal

language is of great value.

6.1 Future Work

As future work we intend to mechanize the translation strategy and incorporate it as a

plug-in in the Matlab/Simulink software. This allows immediate use of our work. From

this, we will collect some metrics, check how much the strategy scales, and identify

practical advantages/disadvantages of the strategy.

 An obvious improvement to the current work is to capture the behavior of the

components through its defined state machine, which can also be obtained from the

Simulink tool. Also, considering the system reconfiguration and failure covering aspects

will provide a more detailed fault tolerant modeling, which can capture the dynamic

information in the same way as the static information.

 Another concern we intend to tackle in the future is the size and complexity of the

Markov chains generated by Prism. This can make it difficult for our proposal to scale

in practice. Therefore we plan to investigate the use of abstraction strategies to reduce

the Markov chains, such as State Aggregation and Model Truncation, as well as

compositional verification.

 When any system requirement is not satisfied then the current system design must be

revised and improved to reduce the likelihood of a hazard occurring, and ensure the

correct execution of its functions. Thus another direction is to study refinement relations

that allow obtaining an improved design from a previous version while preserving the

original characteristics concerning functionality. We see that fault-tolerance patterns

and analysis of model evolution as feasible alternatives to achieve this goal. The initial

steps to realize this was also reported in [43], where we propose a methodology to

assess the entire process.

77

 Moreover, we also intend to study the stochastic behavior of a system, considering an

open-loop model to represent a specific aircraft mission, to evaluate the defined

maintenance strategy using a more detailed transient analysis supported by CSL

formulas. In some scenarios, a transient analysis of the open-loop model (without

repairs) is useful. For instance, when determining the minimum acceptable system

configuration for a dispatch and the length of time allowed for such a dispatch, we

could know the worst case of instantaneous failure rate as a function of time, for a given

configuration. We could also know the sensitivity of the worst-case instantaneous

failure rate to variations in the dispatchability interval, to account for in-service waivers,

and so on. Using this analysis we can determine the ―kind‖ of the instantaneous failure

rate as a function of time, enabling us to assess its sensitivity.

 Finally, we intend to improve the model to allow other types of analysis can be

performed such as Fussell-Vesely, that investigates about how much influence a

component on a failure condition; analysis of uncertainty propagation to evaluate the

propagation of uncertainty about the availability of the system and assess, for instance,

the uncertainty distribution of MTTF or MTBF; traceability of failure: Markov is not

causal and loses traceability. Thus, we will investigate the use of Bayesian Networks as

a superset of Markov.

78

Bibliography

1. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick III, J. Railsback. Fault

Tree Handbook with Aerospace Applications. NASA Office of Safety and Mission

Assurance, Washington, DC. Aug. 2002.

2. ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process

on Civil Airborne Systems, SAE Inc, Nov. 1996.

3. MIL-STD-882D – Standard Practice for System Safety. February 2000.

4. P. R. Serra, Safety Assessment of aircraft systems. 2º Edition. 2008.

5. Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner. Analysis and synthesis of

the behaviour of complex programmable electronic systems in conditions of failure.

Reliability Engineering & System Safety, 71 (3):229-247, 2001.

6. R. D. Alexander and T. P. Kelly. Escaping the non-quantitative trap. 27th

International System Safety Conference, pages 69-95, 2009.

7. M. Kwiatkowska, G. Norman and D. Parker. PRISM: Probabilistic Model Checking

for Performance and Reliability Analysis. ACM SIGMETRICS Performance

Evaluation Review, 36(4), pages 40-45.March 2009.

8. M. Kwiatkowska, G. Norman and D. Parker. Quantitative analysis with the

Probabilistic Model Checker PRISM. Electronic Notes in Theoretical Computer

Science, 153(2), pages 5-31, Elsevier. May 2005.

9. The MathWorks Inc. Simulink User's Guide, 2008.

10. J. A. McDermid, O. Lisagor, D. J. Pumfrey. Towards a Practicable Process for

Automated Safety Analysis. 24th Int. System Safety Conference, 596-607, 2006

11. A. Joshi and M. P. Heimdahl. Model-Based Safety Analysis of Simulink Models

Using SCADE Design Verifier. In SAFECOMP, volume 3688 of LNCS, pages 122–

135. Springer-Verlag, Sept 2005.

12. Software Considerations in Airborne Systems and Equipment Certification. DO-

178B, RTCA Inc., Washington D.C., December 1992.

13. O. A. Kerlund, P. Bieber, E. Boede, M. Bozzano, M. Bretschneider, C. Castel, A.

Cavallo, M. Cifaldi, J. Gauthier, A. Griffault, O. Lisagor, A. Lüdtke, S. Metge, C.

Papadopoulos, T. Peikenkamp, L. Sagaspe, C. Seguin, H. Trivedi, L. Valacca.

ISAAC, A Framework for Integrated Safety Analysis of Functional, Geometrical

and Human Aspects. In ERTS, 2006.

14. Y.Papadopoulos, M. Maruhn, Model-based Synthesis of Fault trees from Matlab-

Simulink Models, Inter. Conference on Dependable Systems and Networks, 2001.

http://www.prismmodelchecker.org/bibitem.php?key=KNP09a
http://www.prismmodelchecker.org/bibitem.php?key=KNP09a

79

15. M. Bozzano and A. Villafiorita. Improving system reliability via model checking:

The FSAP/NuSMV-SA safety analysis platform. In Proceedings of SAFECOMP

2003, LNCS 2788, Edimburgh, Scotland, UK, pages 49-62. Springer, 2003.

16. B. R. Haverkort. Markovian Models for Performance and Dependability Evaluation,

volume 2090, of Lectures on Formal Methods and Performance Analysis, pages 38-

83. Springer Berlin/ Heidelberg, 2001.

17. Saglimbene, Mark S. Reliability analysis techniques: How they relate to aircraft

certification. Reliability and Maintainability Symposium, p. 218-222, 2009.

18. L. Grunske, R. Colvin, K. Winter. pFMEA: Probabilistic Model-Checking Support

for FMEA. 4th Int. Conference on the QEST, 2007.

19. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

20. D. Siewiorek, R. Swarz. Reliable Computer System: Design and Evaluation, 3th

edition, 1998.

21. H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner, S. Leue. Safety Analysis

of an Airbag System Using Probabilistic FMEA and Probabilistic Counter

Examples. p. 299-308, In QEST, 2009.

22. M. Bozzano, A. Cimatti, J. Katoen, V. Y. Nguyen, T. Noll, M. Roveri. The

COMPASS Approach: Correctness, Modelling and Performability of Aerospace

Systems, Proceedings of the 28th Int. Conference on Computer Safety, Reliability

and Security, September 15-18, 2009.

23. A. D. Dominguez-Garcia, J. G. Kassakianb, J. E. Schindallb, J. J. Zinchukc. An

Integrated Methodology for the Dynamic Performance and Reliability Evaluation of

Fault-tolerant Systems. Reliability Engineering & System Safety. Volume 93, Issue

11, November 2008, Pages 1628-1649.

24. Federal Aviation Regulations FAR part 25.1309: System Design and Analysis.

Advisory Circular, FAA, USA.

25. P. Bieber, C. Castel, and C. Seguin. Combination of Fault Tree Analysis and Model

Checking for Safety Assessment of Complex System. In Proc. 4th European

Dependable Computing Conference, Volume 2485 of LNCS, pages 19-31, Springer-

Verlag, 2002.

26. P. Bieber, C. Bougnol, C. Castel, J. P. Heckmann, C. Kehren, S. Metge, and C.

Seguin. Safety Assessment with Altarica - Lessons Learnt Based on Two Aircraft

System Studies. In 18th IFIP World Computer Congress, Topical Day on New

Methods for Avionics Certification, Toulouse France, 26 - 26 August 2004. IFIP.

27. Bozzano, M. Villafiorita, A. The FSAP/NuSMV-SA Safety Analysis Platform.

International Journal on Software Tools for Technology Transfer. Volume 9, Pages

5-24, June, 2006

http://www.amazon.com/Daniel-P.-Siewiorek/e/B000API138/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Robert%20S.%20Swarz
http://portal.acm.org/citation.cfm?id=1612423&dl=GUIDE&coll=GUIDE&CFID=92180224&CFTOKEN=43122819
http://portal.acm.org/citation.cfm?id=1612423&dl=GUIDE&coll=GUIDE&CFID=92180224&CFTOKEN=43122819
http://portal.acm.org/citation.cfm?id=1612423&dl=GUIDE&coll=GUIDE&CFID=92180224&CFTOKEN=43122819
http://portal.acm.org/citation.cfm?id=1612423&dl=GUIDE&coll=GUIDE&CFID=92180224&CFTOKEN=43122819
http://www.sciencedirect.com/science/journal/09518320
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235767%232008%23999069988%23692279%23FLA%23&_cdi=5767&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=387bd636608ee9c72690045178dee79c
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235767%232008%23999069988%23692279%23FLA%23&_cdi=5767&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=387bd636608ee9c72690045178dee79c

80

28. Moura, Márcio José das Chagas; Droguett, E. A. L. A Continuous-Time Semi-

Markov Bayesian Belief Network Model for Availability Measure Estimation of

Fault Tolerant Systems. Pesquisa Operacional, v. 28, p. 353-373, 2008.

29. Marseguerra, M., Zio, E., Devooght, J., Labeau, P.E.: A concept paper on dynamic

reliability via Monte Carlo simulation. Math. Comput. Simulat. 47, 371–382 (1998)

30. Smidts, C., Devooght, J.: Probabilistic reactor dynamics II. A Monte-Carlo study of

a fast reactor transient. Nucl.Sci.Eng. 111(3), 241–256 (1992)

31. G.G. Infante-Lopez, H. Hermanns, and J.-P. Katoen. Beyond memoryless

distributions: Model checking semi-Markov chains. In Process Algebra and

Probabilistic Methods, LNCS 2165: 57–70, Springer-Verlag, 2001.

32. Papazoglou, I.A.: Markovian reliability analysis of dynamic systems. In:Aldemir,

T., Siu, N.O., Mosleh, A., Cacciabue, P.C., Göktepe, B.G. (eds.) Reliability and

Safety Assessment of Dynamic Process Systems, vol. 120 of NATO ASI Series F,

pp. 24–43. Springer, Berlin Heidelberg New York (1994)

33. Siu, N.O.: Risk assessment for dynamic systems: an overview. Reliab. Eng. Syst.

Safe. 43, 43–74 (1994)

34. J. B. Dugan, S. Bavuso, and M. Boyd. Dynamic fault-tree models for fault-tolerant

computer systems. IEEE Transactions on Reliability, 41(3):363–77, 1992.

35. M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling

with Generalized Stochastic Petri Nets. Wiley series in parallel computing. Wiley,

New York, 1995.

36. Herbstritt, Marc; B, Eckard; Adelaide, Michael; Johr, Sven. AVACS Analysis of

Large Safety-Critical Systems : A quantitative Approach.

37. Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and

David N. Jansen. The ins and outs of the probabilistic model checker MRMC. In

Quantitative Evaluation of Systems (QEST), pages 167-176. IEEE Computer

Society, 2009.

38. Marc Herbstritt, Ralf Wimmer, Thomas Peikenkamp, Eckard Böde, Michael

Adelaide, Sven Johr, Holger Hermanns, and Bernd Becker. Analysis of Large

Safety-Critical Systems: A quantitative Approach. AVACS Technical Report No. 8,

SFB/TR 14 AVACS, Feb 2006.

39. Anthony Hall. Realising the Benefits of Formal Methods, Formal Methods and

Software Engineering, Lecture Notes in Computer Science, LNCS 3785, Springer,

p.1 – 4, 2005.

40. Y. Papadopoulos, J. A. McDermid, HiP-HOPS: Hierarchically Performed Hazard

Origin and Propagation Studies. In SAFECOMP '99, Toulouse, LNCS 1698, pages

139-152, Sept. 1999.

81

41. Fenelon P., McDermid J.A., Nicholson M. and Pumfrey D.J, Towards Integrated

Safety Analysis and Design, ACM Applied Computing Review, 2(1):21-32, 1994.

42. J. B. J. Jesus. Designing and formal verification of fly-by-wire flight control

systems. Master’s thesis, Federal University of Pernambuco, 2009.

43. A. Mota, A. Gomes, J. Jesus, F.Ferri and E. Watanabe. Evolving a Safe System

Design Iteratively. Accepted for publication in Proceedings of SAFECOMP (2010).

44. Kurt Jensen. Coloured Petri Nets: A high level language for system analysis and

design. In G. Rozenberg, editor, Advances in Petri Nets 1990, volume 483.

Springer-Verlag, 1991. Also a technical report from the CS Dept, Aarhus

University, DAIMI PB-338, Nov. 1990.

45. R. Alur and T. Henzinger. Reactive Modules. Formal Methods in System Design,

15:7-48, 1999.

46. M. Kwiatkowska. Quantitative Verification: Models, Techniques and Tools. In Proc.

6th joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),

pages 449-458, ACM Press. September 2007.

47. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal

Aspects of Computing, 6(5):512–535, 1994.

48. A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous time Markov

chains. In Proc. CAV’96, volume 1102 of LNCS, pages 269–276. Springer, 1996.

49. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of

continuous-time Markov chains. In Proc. CONCUR’99, volume 1664 of LNCS,

pages 146–161. Springer, 1999.

50. M. Kwiatkowska, G. Norman and D. Parker. Probabilistic Symbolic Model

Checking with PRISM: A Hybrid Approach. International Journal on Software

Tools for Technology Transfer (STTT), 6(2), pages 128-142. September 2004.

51. Ross, S.M. Introduction to Probability Models. 8ª Edition. 2003.

52. M. Kwiatkowska, G. Norman and D. Parker. PRISM: Probabilistic Symbolic Model

Checker. In T. Field, P. Harrison, J. Bradley and U. Harder (editors) Proc. TOOLS

2002, volume 2324 of Lecture Notes in Computer Science, pages 200-204, Springer.

April 2002.

53. Oxford University Computing Laboratory. PRISM web site. Available in:

http://www.prismmodelchecker.org/

54. Sorensen, E.V.; Nordahl, J.; Hansen, N.H.; From CSP models to Markov models.

Software Engineering, IEEE Transactions, Volume: 19 Issue:6, page(s): 554 - 570,

ISSN: 0098-5589, 1993.

55. Gul Agha, José Meseguer and Koushik Sen. PMaude: Rewrite-based Specification

Language for Probabilistic Object Systems. Proceedings of the Third Workshop on

http://www.prismmodelchecker.org/

82

Quantitative Aspects of Programming Languages (QAPL 2005), Volume 153, Pages

213-239, May 2006.

56. Benveniste, A.; Fabre, E.; Haar, S.; Markov nets: probabilistic models for

distributed and concurrent systems. Automatic Control, IEEE Transactions .

Volume: 48, Issue:11, page(s): 1936 - 1950, ISSN: 0018-9286, Nov. 2003

57. Baier, C.; Ciesinski, F.; Grosser, M.; PROBMELA: a modeling language for

communicating probabilistic processes. Formal Methods and Models for Co-Design,

Proceedings. Second ACM and IEEE International, ISBN: 0-7803-8509-8, page(s):

57 - 66, Germany, 2004

58. Peikenkamp,T., Böede, E.,Brückner, I., Spenke, H.,Bretschneider, M., Holberg, H.-

J.: Model-based safety analysis of a flap control system. In: Proceedings of the

International Symposium INCOSE 2004 (2004)

59. C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666-

677, 1978.

60. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice

Hall, 1996.

61. F. Somenzi. CUDD: CU Decision Diagram package. Public software, Colorado

University, Boulder, 1997.

62. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multiterminal

binary decision diagrams: An efficient data structure for matrix representation. In

Proc. International Workshop on Logic Synthesis (IWLS’93), pages 1–15, 1993.

Also available in Formal Methods in System Design, 10(2/3):149–169, 1997.

63. A. Mota, Quantitative Analysis with CSP. Submitted to the Information Processing

Letters (IPL), (2010).

64. Third International Conference on Software Testing, Verification and Validation

(ICST 2010), http://vps.it-sudparis.eu/icst2010/

65. A. Gomes, A. Mota, A. Sampaio, F. Ferri, J. Buzzi. Systematic Model-Based Safety

Assessment via Probabilistic Model Checking. Accepted for publication in

Proceedings of ISOLA (2010).

66. Lars Grunske. Specification patterns for probabilistic quality properties. InWilhelm

Schafer, Matthew B. Dwyer, and Volker Gruhn, editors, ICSE, pages 31–40. ACM,

2008.

67. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic

model checker. International Journal on Software Tools for Technology Transfer,

2(4):410–425, 2000.

68. Matthias Güdemann and Frank Ortmeier.Probabilistic Model-Based Safety

Analysis, EPTCS 28, pp. 114-128, volume 1006.5101, 2010.

http://vps.it-sudparis.eu/icst2010/

83

69. Elmqvist, J.; Nadjm-Tehrani, S.; Formal Support for Quantitative Analysis of

Residual Risks in Safety-Critical Systems. High Assurance Systems Engineering

Symposium, HASE 2008. 11th IEEE, ISSN: 1530-2059, page(s): 154 - 164, 2008.

70. Y. Papadopoulos, D. Parker, C Grante; A Method and Tool Support for Model-

based Semi-automated Failure Modes and Effects Analysis of Engineering Designs.

Proceedings of the 9th Australian workshop on Safety critical systems and software

- Volume 47, Pages: 89 - 95, 2004

84

Appendix A

Elevator Control System.sm

ctmc

module PowerSource1

 powersource1_lowpower : bool init false;

 [] (!(powersource1_lowpower)) -> (5E-4) : (powersource1_lowpower' = true);

 [Monitor_In1_Dependent_Repair] (powersource1_lowpower)
 -> (1/5) : (powersource1_lowpower' = false);

 [Monitor_In1_Repair] (powersource1_lowpower) -> (1) :
 (powersource1_lowpower' = false);

endmodule

formula LowPower_PowerSource1_Out1 = powersource1_lowpower;

module PowerSource2

 powersource2_lowpower : bool init false;

 [] (!(powersource2_lowpower)) -> (5E-4) : (powersource2_lowpower' = true);

 [Monitor_In2_Dependent_Repair] (powersource2_lowpower)
 -> (1/5) : (powersource2_lowpower' = false);

 [Monitor_In2_Repair] (powersource2_lowpower) -> (1):
 (powersource2_lowpower' = false);

endmodule

formula LowPower_PowerSource2_Out1 = powersource2_lowpower;

module Monitor

 monitor_switchFailure : bool init false;

 [] (!(monitor_switchFailure)) -> (1E-4) : (monitor_switchFailure' = true);

85

 [] (monitor_switchFailure) -> (2/50) : (monitor_switchFailure' = false);

 [Monitor_In1_Repair] (!monitor_switchFailure)
 -> (2/5) : (monitor_switchFailure' = monitor_switchFailure);

 [Monitor_In2_Repair] (!monitor_switchFailure)
 -> (2/5) : (monitor_switchFailure' = monitor_switchFailure);

 [Monitor_In1_Dependent_Repair] (monitor_switchFailure) -> (1) :
 (monitor_switchFailure' = false);

 [Monitor_In2_Dependent_Repair] (monitor_switchFailure)-> (1) :
 (monitor_switchFailure' = false);

endmodule

formula LowPower_Monitor_Out1 = (monitor_switchFailure &
 (LowPower_PowerSource1_Out1 | LowPower_PowerSource2_Out1))
 | (LowPower_PowerSource1_Out1 & LowPower_PowerSource2_Out1);

module Reference

 reference_devicefailure : bool init false;
 reference_devicedegradation : bool init false;

 [](!reference_devicefailure) -> 2E-4 : (reference_devicefailure' = true);

 [](!reference_devicedegradation) -> (2E-4) :
 (reference_devicedegradation' = true);

 [] ((reference_devicefailure | reference_devicedegradation) &
 !(SystemFailure)) -> (1/5) : (reference_devicefailure' = false) &
 (reference_devicedegradation' = false);

endmodule

formula OmissionSignal_Reference_Out1 = reference_devicefailure |
 LowPower_Monitor_Out1;
formula CorruptedSignal_Reference_Out1 = reference_devicedegradation;

module Sensor

 sensor_sensorfailure : bool init false;
 sensor_sensordegradation : bool init false;

 [](!sensor_sensorfailure) -> (5E-4): (sensor_sensorfailure' = true);

 [](!sensor_sensordegradation) -> 5e-4: (sensor_sensordegradation' = true);

 [] ((sensor_sensorfailure | sensor_sensordegradation)) -> (1/5) :
(sensor_sensorfailure' = false)
 & (sensor_sensordegradation' = false);

86

endmodule

formula OmissionSignal_Sensor_Out1 = sensor_sensorfailure |
 LowPower_Monitor_Out1 | OmissionSpeed_Actuator_Out1;

formula CorruptedSignal_Sensor_Out1 = sensor_sensordegradation;

module Component1

 component1_lossofcomponent1 : bool init false;
 component1_component1degradation : bool init false;

 [](!component1_lossofcomponent1) -> (9E-5) :
 (component1_lossofcomponent1' = true);

 [](!component1_component1degradation) -> (9e-5) :
 (component1_component1degradation' = true);

 [] ((component1_lossofcomponent1 | component1_component1degradation)) ->
(1/5) : (component1_lossofcomponent1' = false) &
 (component1_component1degradation' = false);

endmodule

formula OmissionSignal_Component1_Out1 = component1_lossofcomponent1 |
 LowPower_Monitor_Out1 | OmissionSignal_Reference_Out1;
formula CorruptedSignal_Component1_Out1 = component1_component1degradation |
 CorruptedSignal_Reference_Out1;

module Component2

 component2_lossofcomponent2 : bool init false;
 component2_component2degradation : bool init false;

 [](!component2_lossofcomponent2) -> (1E-4) :
 (component2_lossofcomponent2' = true);

 [](!component2_component2degradation) -> (1E-4) :
 (component2_component2degradation' = true);

 [] ((component2_lossofcomponent2 | component2_component2degradation)) ->
(1/5) : (component2_lossofcomponent2' = false) &
 (component2_component2degradation' = false);

endmodule

formula OmissionSignal_Component2_Out1 = component2_lossofcomponent2 |
 LowPower_Monitor_Out1 ;
formula CorruptedSignal_Component2_Out1 = component2_component2degradation |
 CorruptedSignal_Sensor_Out1;

87

module Component3

 component3_lossofcomponent3 : bool init false;
 component3_component3degradation : bool init false;

 [](!component3_lossofcomponent3) -> (6E-5) :
 (component3_lossofcomponent3' = true);

 [](!component3_component3degradation) -> (6e-5) :
 (component3_component3degradation' = true);

 [] ((component3_lossofcomponent3 | component3_component3degradation)) ->
(1/5) : (component3_lossofcomponent3' = false) &
 (component3_component3degradation' = false);

endmodule

formula OmissionSignal_Component3_Out1 = component3_lossofcomponent3 |
 LowPower_Monitor_Out1 | OmissionSignal_Component1_Out1 |
 OmissionSignal_Component2_Out1;
formula CorruptedSignal_Component3_Out1 = component3_component3degradation |
 CorruptedSignal_Component1_Out1 | CorruptedSignal_Component2_Out1;

formula CommissionSignal_Component3_Out1 = component3_component3degradation;

module Actuator

 actuator_lossofdriver : bool init false;
 actuator_lossofmotor : bool init false;
 actuator_mechanismjamming : bool init false;
 actuator_mechanismdegradation : bool init false;
 actuator_driverdegradation : bool init false;

 [](!actuator_lossofdriver) -> (1E-4) : (actuator_lossofdriver' = true);

 [](!actuator_lossofmotor) -> (1E-3) : (actuator_lossofmotor' = true);

 [](!actuator_mechanismjamming) -> (1E-3) :
 (actuator_mechanismjamming' = true);

 [](!actuator_mechanismdegradation) -> (1E-3) :
 (actuator_mechanismdegradation' = true);

 [](!actuator_driverdegradation) -> (1E-5) :
 (actuator_driverdegradation' = true);

 [] ((actuator_lossofdriver | actuator_lossofmotor |
 actuator_mechanismjamming | actuator_mechanismdegradation |
 actuator_driverdegradation)) -> (1/5):
 (actuator_lossofdriver' = false) & (actuator_lossofmotor' = false) &
 (actuator_mechanismjamming' = false) & (actuator_mechanismdegradation' =
 false) & (actuator_driverdegradation' = false);

88

endmodule

formula OmissionSpeed_Actuator_Out1 = actuator_lossofdriver |
actuator_lossofmotor | actuator_mechanismjamming | LowPower_Monitor_Out1 |
OmissionSignal_Component3_Out1;

formula WrongPosition_Actuator_Out1 = actuator_mechanismdegradation |
actuator_driverdegradation | CorruptedSignal_Component3_Out1;

formula CommissionSpeed_Actuator_Out1 = actuator_driverdegradation |
 CommissionSignal_Component3_Out1;

formula SystemFailure = OmissionSpeed_Actuator_Out1 &
 WrongPosition_Actuator_Out1 & CommissionSpeed_Actuator_Out1;

