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Resumo 

A análise da segurança (Safety Assessment) é um processo bem conhecido que serve para 

garantir que as restrições de segurança de um sistema crítico sejam cumpridas. Dentro dele, a 

análise de segurança quantitativa lida com essas restrições em um contexto numérico 

(probabilístico). 

 Os métodos de análise de segurança, como a tradicional Fault Tree Analysis (FTA), são 

utilizados no processo de avaliação da segurança quantitativo, seguindo as diretrizes de 

certificação (por exemplo, a ARP4761 – Guia de Práticas Recomendadas da Aviação). No 

entanto, este método é geralmente custoso e requer muito tempo e esforço para validar um 

sistema como um todo, uma vez que para uma aeronave chegam a ser construídas, em média, 

10.000 árvores de falha e também porque dependem fortemente das habilidades humanas para 

lidar com suas limitações temporais que restringem o âmbito e o nível de detalhe que a análise e 

os resultados podem alcançar. Por outro lado, as autoridades certificadoras também permitem a 

utilização da análise de Markov, que, embora seus modelos sejam mais poderosos que as 

árvores de falha, a indústria raramente adota esta análise porque seus modelos são mais 

complexos e difíceis de lidar. Diante disto, FTA tem sido amplamente utilizada neste processo, 

principalmente porque é conceitualmente mais simples e fácil de entender. 

 À medida que a complexidade e o time-to-market dos sistemas aumentam, o interesse em 

abordar as questões de segurança durante as fases iniciais do projeto, ao invés de nas fases 

intermediárias/finais, tornou comum a adoção de projetos, ferramentas e técnicas baseados em 

modelos. Simulink é o exemplo padrão atualmente utilizado na indústria aeronáutica. 

Entretanto, mesmo neste cenário, as soluções atuais seguem o que os engenheiros já utilizavam 

anteriormente. Por outro lado, métodos formais que são linguagens, ferramentas e métodos 

baseados em lógica e matemática discreta e não seguem as abordagens da engenharia 

tradicional, podem proporcionar soluções inovadoras de baixo custo para engenheiros. 

 Esta dissertação define uma estratégia para a avaliação quantitativa de segurança baseada na 

análise de Markov. Porém, em vez de lidar com modelos de Markov diretamente, usamos a 

linguagem formal Prism (uma especificação em Prism é semanticamente interpretada como um 

modelo de Markov). Além disto, esta especificação em Prism é extraída de forma sistemática a 

partir de um modelo de alto nível (diagramas Simulink anotados com lógicas de falha do 

sistema), através da aplicação de regras de tradução. A verificação sob o aspecto quantitativo 

dos requisitos de segurança do sistema é realizada utilizando o verificador de modelos de Prism, 

no qual os requisitos de segurança tornam-se fórmulas probabilísticas em lógica temporal. 

 O objetivo imediato do nosso trabalho é evitar o esforço de se criar várias árvores de falhas 

até ser constatado que um requisito de segurança foi violado. Prism não constrói árvores de 

falha para chegar neste resultado. Ele simplesmente verifica de uma só vez se um requisito de 

segurança é satisfeito ou não no modelo inteiro. 

 Finalmente, nossa estratégia é ilustrada com um sistema simples (um projeto-piloto), mas 

representativo, projetado pela Embraer. 

 

Palavras-chave: Análise Quantitativa de Segurança, Prism, Verificador de Modelos 

Probabilístico, Métodos Formais, Análise de Markov, Sistemas Aeronáuticos  
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Abstract 

Safety assessment is a well-known process to assure that safety constraints on a critical 

system are met. It includes quantitative safety assessment that deals with safety 

constraints stated in numerical (probabilistic) terms. 

 Safety analysis methods, such as the traditional Fault-Tree Analysis (FTA), are used 

in the quantitative safety assessment process, following certification guidelines (For 

instance, the ARP4761- Aerospace Recommended Practice). However, this method is 

usually expensive and requires much time and effort to validate an entire system, since 

for an aircraft it can be constructed, on average, 10,000 fault-trees mainly because it 

strongly depends on human skills for dealing with time limitations that constrain the 

scope and level of detail that the analysis and results can reach. Certification authorities 

also allow the use of Markov analysis. Although Markov models are more powerful 

than fault-trees, industries rarely use this analysis because Markov models are more 

complex to be handled. Therefore, FTA has been widely used during this process 

mainly because it is conceptually more simple and easy to understand. 

 As complexity and time-to-market pressure increases, the interest in addressing 

safety issues during the early design phases, rather than during the intermediate/final, 

popularized the use of model-based design notation, techniques, and tools. Simulink is 

the current de facto standard in the aerospace industry. But, even in this scenario, 

current solutions follow what engineers were using previously. On the other hand, 

Formal Methods, which are languages, tools and methods based on logic and discrete 

mathematics and do not follow traditional engineering approaches, can provide 

innovative cost-effective solutions to engineers. 

 This dissertation defines a strategy for quantitative safety assessment based on 

Markov analysis. But instead of dealing with Markov models directly we use the Prism 

specification language (a Prism specification is semantically interpreted as a Markov 

model). Furthermore, a Prism specification is extracted systematically from a high-level 

model (Simulink diagram annotated with failure logic) via the application of translation 

rules. The verification of quantitative safety requirements is performed using the Prism 

model-checker, where safety requirements become probabilistic temporal logic 

formulas. 

 The immediate contribution of our work is a process that avoids the creation of 

several fault-trees until a safety requirement is violated. Prism does not build fault trees 

to reach this result. It just checks whether a safety requirement is satisfied or not in the 

entire model. 

 Finally, our strategy is illustrated with a simple (a pilot project) but representative 

system designed by Embraer. 

 

 

Keywords: Quantitative Safety Assessment, Probabilistic Model-Checking, Formal 

Methods, Prism, Markov Analysis, Aircraft Systems  
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Chapter 1  

Introduction 

Critical systems are increasingly being controlled by complex computer solutions. This 

imposes an even stronger requirement on reliability and safety. The occurrence of 

failures in these systems is almost unacceptable because failures can result in loss of 

human lives, financial losses or damage to the environment. 

 For instance, to allow the operation of an aircraft (civil or military), the authorities of 

this sector, as the FAA (Federal Aviation Administration) of the USA and ANAC 

(National Civil Aviation Agency) of Brazil, require stability in the control and 

enforcement functions of an aircraft [2, 4, 12]. The guarantee of stability depends on all 

systems and their subsystems and components and how they are related in the plane (see 

Fig. 1.1). 

 

Fig 1.1 - Airplane parts and functions 

 During an aircraft development, a major challenge is designing a guaranteed system 

architecture that conceives the functional aspects to operate safely under the several 

hazard situations that can occur. Demonstrating that a solution (design) tackles such a 

challenge is mandatory for the certification authorities to approve the system. 

 Therefore, a safety assessment process is followed by the airborne industry in order 

to ensure the correct construction of a safe aircraft. This process is guided by rigorous 
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norms and patterns such as DO 178B [12] and ARP 4761 (Aerospace recommend 

Practice) [2] that propose a well-established set of guidelines and methods for civil 

aircraft systems1. Although the safety assessment process determines a common 

framework for the aeronautics industry to handle the safety issues of aircraft systems, 

the fulfillment of this process involves long and arduous engineering tasks, given the 

complexity and magnitude of the projects involved. These tasks are based, in most 

cases, on engineers’ judgment and can present problems and limitations [4]. 

 Furthermore, according to FAR 25.1309 (Federal Aviation Regulations) [24], which 

defines the requirements for certifying the systems and software loaded into an aircraft, 

there is a classification of the aircraft's functions and their systems with respect to the 

losses they can generate for the aircraft itself, its passengers and crew (from level A that 

means a catastrophic effect - most critical, to level E that means a no effect - least 

critical). A failure is the inability of a system to perform its required functions within 

specified performance requirements. The greater the criticality of a failure condition 

(hazard situation), the lower must be the probability of its occurrence (risk). This 

derives safety requirements that must be defined and satisfied under qualitative or 

quantitative analyses. 

 More specifically, the relation between the criticality of a failure and its probability 

of occurrence within the system exposition time defines the risk of an accident. Hazard 

is the potential to cause harm; risk on the other hand is the likelihood of harm (in 

defined circumstances, and usually qualified by some statement of the severity of the 

harm). Hence, the qualitative analysis refers to the characterization of the behavior of 

different faults (abnormal condition that may cause a reduction in, or loss of, the 

capability of a functional unit to perform a required function) that may result in a 

hazard, whereas the quantitative analysis refers to reliability predictions for system 

components that may cause or contribute to this hazard (based on a risk evaluation). The 

safety assessment process must take into account both analyses to assess the system 

architecture under all safety requirements that can be foreseen. 

 Concerning the quantitative aspect of the safety assessment process of aircraft 

systems, it is traditionally addressed using Fault Tree Analysis (FTA) [1]. This method 

is frequently used in industrial applications and it is also indicated by certification 

authorities. The main reason for its practical acceptance is that FTA is conceptually 

simple and easy to understand [2]. However, certification authorities also accept the use 

of Markov Analysis (MA) [16] to assure safety requirements of a system design. 

 Both FTA and Markov models use system failure logic information derived from 

well-known analysis techniques such as Failure Mode and Effect Analysis (FMEA) and 

Failure Hazard Analysis (FHA) presented in the ARP 4671 [2]. Based on this 

information, the analysis methods evaluate the probabilities of the undesired failure 

conditions to check whether a safety requirement is satisfied or not. Each technique 

executes this analysis using different mathematical representations; FTA uses static 

event-based trees and Markov analysis uses stochastic processes. Although Markov 

models are more powerful than fault-trees [2], they are more complex to be handled; 

                                                 
1 MIL-STD-882D [3] covers the same purpose in the military domain. 
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thus, they are scarcely adopted in industry. Furthermore, in practice, they are created in 

a non-systematic ad hoc fashion [6, 23]. 

 In recent decades, quantitative analysis has appeared as an arduous and expensive 

process, mainly due to the complexity and variety of systems involved as well as the 

several different situations of hazard under which they are evaluated. Even guided by 

well-defined standards and methods, the major representatives of the airborne industry 

such as Boeing, Embraer and Airbus still have several difficulties to handle this process 

efficiently [4, 6, 17]. Given this scenario, investment in tools and methods to support 

the development of safe systems on the established time and budget is still a big 

challenge [6, 13]. In particular, time constraints on the operation of these systems, that 

determine their correct operation, require the use of methods and tools that guide the 

entire process of design and validation. Such methods need to be rigorous, systematic 

and have a practical focus on validation, verification and quality assurance. Moreover, 

the quality of this product should act as a competitive advantage without affecting 

demand and time to market. 

 Currently, promising initiatives are directing towards proposals of advanced model-

based design techniques to support the development process mainly at initial stages of 

the development during which engineers have more flexibility to evaluate different 

solutions and to propose improvements. The advent of high-level tools like 

Matlab/Simulink [9], SCADE [10] and Statemate [58] makes possible to model large 

complex systems using hierarchical diagrams, while preserving structural and functional 

aspects of the intended design. In the safety analysis view, these approaches have been 

extended to include the failure logic of a system inside its own diagrammatic model. On 

the qualitative analysis side, parameterized verification algorithms have been developed 

to identify failure causes and consequently constructing the corresponding fault trees 

automatically [5, 14, 40]. However, as described previously, qualitative analysis 

methods alone are not sufficient for addressing completely all safety aspects. The safety 

assessment process also demands probability constraints to be addressed by quantitative 

analysis. 

 Despite several automatic model-based approaches being proposed for FTA [11, 13, 

14, 15] using a high-level tool like Simulink or SCADE, their treatment of quantitative 

parameters still depend of some human intervention. This can introduce errors in the 

analysis. Moreover, they are not cost-effective, because the probability of each failure 

condition (top event) must be evaluated singly (just one failure condition at a time), 

requiring more effort to undertake the analysis of the whole system. Thus, for each of 

the thousands of possible failure conditions of an aircraft, a fault-tree must be 

constructed and analyzed qualitatively and quantitatively to ensure that the probability 

of occurrence of such failure conditions is in accordance with the safety requirements. 

Considering that about 10,000 fault-trees are built during the safety assessment process 

of an aircraft, containing hundreds of basic events and whose depth we can reach many 

of the levels (see Fig. 1.2), the analysis of these fault-trees can be very stressful. This 

has a direct influence on development time of an aircraft that can reach 5 years and 

involve about 300 to 400 engineers [4, 17]. Furthermore, integrating quantitative 

analysis into a model-based solution, considering probabilistic models such as Markov 
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chains in a semantically sound manner, is still a challenge. Nevertheless, a link to 

effective probabilistic verification tools has not been established so far. 

 

Fig 1.2 - Distant view of a fault tree for one failure condition 

 On the other hand, formal methods comprise mathematically founded methods 

designed to describe the properties of a system (requirements) in a precise and non-

ambiguous way as well as allows one to assure that corresponding implementations 

satisfy such properties. Formal methods are equipped with a formal specification 

language that has a well-defined semantics. Formal specifications can be analyzed by 

model checkers or theorem provers to demonstrate that system design models meet the 

requirements. Consequently, this can greatly increase the confidence in the safety and 

correctness of the corresponding system. Examples of formal languages are CSP [59], 

Prism [7], Z [60] and Probmela [57]. Given the clearly importance of validating and 

verifying the safety requirements of the system throughout the safety assessment 

process, probabilistic models should be created using formal specifications in order to 

offer reliability predictions for the system that can properly support the process of 

quantitative analysis [6, 7, 13]. 

 Despite the best practices provided by formal methods and their current conquered 

maturity, they are not successfully integrated into many development processes. The 

principal issues are related to a typical aversion on the part of the development teams in 

dealing with formal notations because such notations are not usual to them. Moreover, 

formal verification tools typically have their specific variants of the original language, 

which implies a bigger learning curve. 

1.1 Context and Objectives 

 Our research has been developed in the context of a cooperation with Embraer 

(Empresa Brasileira de Aeronáutica S.A.). A central motivation is the fact that safety 

assessment can be improved by more systematic solutions instead of following just 

checklists as well as informal guidelines. Embraer has used the standards of its sector, 

briefly discussed here, as a means of fulfilling requirements for system development 
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and certification. Particularly, Embraer heavily uses model-based solutions, through 

Simulink based tools provided by plug-ins. 

 This work is an initial effort to integrate quantitative safety assessment into a model-

based solution considering formal models equipped with stochastic events. Such 

languages have specialized probabilistic verification tools that allows us to check the 

safety requirements of a system. 

 Therefore, this work is part of a larger project presented in [43] that defines a 

methodology that integrates a functional (qualitative) analysis [42] with a non-

functional (quantitative) analysis over the system design with the support of formal 

methods. In this dissertation we detail the non-functional analysis strategy [65], with 

focus on the systematic model generation and analysis from Simulink diagrams. 

 We propose a strategy for quantitative safety assessment based on the Prism 

language [7, 8, 53]. By using this language, one can deal with Markov models indirectly 

and using a high-level and modular specification language (Prism). Additionally, Prism 

provides a probabilistic model checker which allows us to check probabilistic temporal 

logic formulas. And checking such formulas mean performing a quantitative analysis on 

the underlying Markov model in a high-level and versatile way, obtaining a lot of 

different analysis (compared to the traditional ones employed by engineering) easily. 

This is one of the most powerful advantages of Prism. 

 The additional effort and cost to create formal models in a traditional safety 

assessment process has been a significant barrier. Manually creating models aiming at 

formal analysis is labor intensive, because this requires significant skills of formal 

methods notations as well as those models must be kept faithfully synchronized to 

justify the results of the analysis. Consequently, there is a need to offer formal 

verification techniques available in notations common to engineers, such as Simulink. 

 Our proposed strategy addresses these problems by hiding the interaction with Prism. 

This is achieved by using translation rules that take a Simulink diagram, annotated with 

failure conditions and logic [5, 10], as input and produce a Prism model and CSL 

formulas [8] (to check safety requirements) in such a way that we are able to report to 

the user only those safety requirements that are not satisfied. The Simulink’s notations 

have straightforward formal treatment. This means that it is possible to use the models 

designed in these notations as the basis for formal analysis, removing the incremental 

labor for constructing formal model. It is worth noting, however, that in this work we do 

not provide the implementation of our proposed framework. 

 Hereby, a model-driven safety assessment approach combined with formal methods 

can provide more efficient means to assess the validity of the safety requirements in line 

with the system architecture. 

 A large amount of work has been done for quantitative safety assessment which is 

based mainly on a model-based approach with the support of formal methods. An 

example of an effort in this direction is the use of the MRMC [37] model checker to 

compute the failure conditions probability. This model checker is used in the 

COMPASS project [14] that aims at developing an alternative design language, based 

on the architectural description language AADL [37, 38]. Another relevant effort is the 

Probabilistic FMEA [18], a fault injection approach where Prism is used for modeling 
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and safety analysis. Although the recent proposed approaches, many positive results and 

reasonable technical advantages in this context, our work is relevant in the sense that it 

proposes a systematic integration with a well-established model-based design tool such 

as Simulink, allowing it to be used directly in industry. Such systematization also allows 

us to prove that our translation is valid and always works. Moreover our strategy 

prevents that the formal notation is exposed to the user, avoiding that engineers, not 

familiar with this notation, have any impact for its adoption. 

1.1.1 Main contributions 

The main contributions of this dissertation are: 

 A (occult) Markov-based quantitative model-based safety assessment process; 

 Translation rules that systematically transform Simulink diagrams (tabular 

structures), into Prism models augmented with CSL formulas that can 

automatically verify the quantitative requirements of the system; 

 The use of a single model from which it is possible to check any stipulated 

failure condition for the system; 

 A case study that illustrates the overall approach. 

1.1.2 Development of a case study 

 Our case study, although simple, was provided by Embraer and is a common 

subsystem found in aircrafts. But in the near future, Embraer itself intends to use the 

results provided by our work in several other case studies to measure its practical 

feasibility. Considering this, we intend to develop a plug-in for Simulink to automate 

our systematic approach. In this sense, the outcome of this project will have the 

potential to increase the quality of the products developed as well as the productivity; 

reducing development costs and generating competitive advantages. 

1.2 Related Work 

The remarkable interest in providing support for the safety assessment process by the 

introduction of formal methods and model-based approaches is evident in various 

relevant works. An example of an effort in this direction is the use of FTA to compute 

the failure conditions probability such as the HAZOP [14], which provides a design 

developed in Simulink; another relevant effort is the ISAAC project where SCADE is 

used for modeling and safety analysis [11, 13]. It is also worth mentioning 

FSAP/NuSMV-SA [15], a fault injection approach developed in the ESACS project.  

 Due to the limitations of static FTA methods, as discussed in Chapters 1 and 2, more 

recently, approaches considering dynamic reliability have been proposed, based on 

timed-probabilistic models that perform quantitative safety assessment based mainly on 

a previous qualitative analysis [23, 36, 68, 69]. Other interesting works have also 

incorporated coverage modeling (the probability that a system can automatically recover 
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from a fault, given that a failure occurs), the failures on demand (that is, failure of a 

component to intervene), human intervention, the role of control/protection systems, 

expert judgment, and also the ordering of events during accident propagation [33]. 

These different approaches usually include BDD-based techniques for the evaluation of 

static fault trees and state transitions of semi-Markov models [31, 32], Stochastic Petri 

Nets [35], dynamic fault trees [34] and direct simulation via Monte Carlo analysis [29, 

30]. Also, they can use a hybrid stochastic model that takes into consideration the 

mutual interactions between the hardware components of a plant and the physical 

evolution of its process variables by the integration of continuous time semi-Markov 

processes and Bayesian belief networks, for instance [28]. Our approach, which is 

concerned with the systematic generation of Markov models, differs from the previous 

works in the sense that they are more concerned with the manual modeling and direct 

evaluation of a given plant whereas we focus at mechanization (and ideally at 

automatization) of correct solutions as well as integration with accepted design tools, 

such as Simulink. Furthermore, we use model checking to support automatic 

verification of arbitrary CSL properties (in particular, safety properties). In the 

following section we highlight some works that are more closely related to ours. 

1.2.1 FSAP/NuSMV-SA 

FSAP/NuSMV-SA [15, 27] is a tool developed as part of the project ESACS [16] to 

automate the generation of fault trees. The methodology of ESACS aims to integrate the 

design with the safety analysis of the systems. The FSAP tool requires that the system 

model be specified in the NuSMV-SA language and uses its model checker on temporal 

logic to generate a fault tree from a particular top event. After the failure modes are 

defined, the user can automatically inject faults in the system model to create a new 

extended model. The model of the extended system adds a degraded performance 

compared to the original system, corresponding to the failure modes defined. This 

model can be used to assess the safety of the system. 

 A significant advantage of the FSAP automatic analysis tool is that it eliminates the 

need for manual creation of fault trees, since the system and failure model are specified. 

NuSMV-SA also provides a trace for every minimum cut it generates. The trace shows 

how the top event is reached, given a particular configuration of fault determined by the 

minimum cut set. FSAP/NuSMV-SA can also automatically perform analysis of events 

considering ordering a top event and a minimum cut set. Traditionally FTA is restricted 

to static analysis but using FSAP it is possible to investigate the influence of failure 

modes in dynamic situations. 

 Although FSAP is a very powerful tool, it has drawbacks, which may limit its 

practical applicability. A fault tree generated by the FSAP has a fixed structure, in the 

style "or-and", that is, it is a disjunction of all minimal cutsets, where each minimal 

cutset is as a product of basic events. A fault tree generated by a traditional manual 

analysis is usually more intuitive to read because the engineers create the fault tree 

corresponding to the structure of the system. Moreover, we note that there is not much 
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flexibility in defining the fault model --- no reasonable way to indicate the fault 

propagation, simultaneous/dependent failures, or persistent/intermittent faults. 

1.2.2 COMPASS Approach 

In the COMPASS project [22], the model-based safety assessment approach results 

from the combination of the NuSMV [67] symbolic model checker and the MRMC [37] 

probabilistic model checker which allow the analysis of aircraft systems. The model is 

specified in the SLIM (System-Level Integrated Modeling) [12] design language, which 

is inspired by AADL [37, 38], architecture-based and model-driven top-down and 

bottom-up engineering. 

 The approach allows the extension of the nominal model of the system adding 

probabilistic fault behavior, providing a precise characterization of them and describing 

the system error propagation, recovery mechanisms, timing and probability based on a 

formal semantics. The analysis is based on a set of verification tools (FSAP/NuSMV, 

RAT, Sigref, and MRMC) which allow verifying safety/dependability aspects and 

quantitative analyses (probabilistic analysis of dynamic FTA). 

 

Fig 1.3 - Architecture of the Compass Toolset [22] 
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 Fig. 1.3 shows the architecture of the COMPASS tool. It receives as inputs the SLIM 

model and the properties patterns. The latter describes the properties of the system, 

which are expressed in a user-friendly pattern, called ProProST [66]. ProProST converts 

these properties to its respectively CSL or CTL formulas. These inputs are processed 

and the tool generates several artifacts as output. For instance, the NuSMV checks the 

system's correctness by property verification, generating counterexample traces when 

some property is violated. Furthermore, the SLIM models can be adjusted and resulting 

in an interactive Markov chain, allowing that performance requirements are analyzed 

with MRMC. Moreover, the MRMC also computes the probability of the top events in 

fault-trees. 

 The completeness and consistency of this approach qualify it as a promising solution, 

but the formal modeling language adopted is exposed to the user (except the properties 

notation), demanding that engineers to be familiar with this notation. Thus, the impact 

for the adoption of this solution might be significant; our approach follows the hidden 

formal methods view. 

1.2.3 Probabilistic FMEA 

The work reported in [18] (which proposes pFMEA or Probabilistic FMEA) also uses 

the Prism model-checker to support quantitative analysis. The approach integrates the 

failure behavior into the system model described in CTMC via failure injection. An 

overview of pFMEA approach is illustrated in Fig. 1.4. 

 

Fig 1.4 - Probabilistic FMEA (pFMEA) – Approach Overview [18] 

 As illustrated in Fig. 1.4, first, the user describes the system probabilistic model in a 

functional vision (normal behavior). Then the user can describe the failure view for each 

component by injecting in the system specification, their failure modes. After that, the 

user feeds a matrix that specifies the possible transitions, including their transition rates 

between the normal operation of system and failure situation. Therefore it is possible to 

determine quantitatively and formally if a violation happens of the safety requirements 
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stipulated using the Prism probabilistic model checker with the support of temporal 

expressions. Also, using temporal languages (CSL, PCTL), we can infer the probability 

that the failures can occur when the system is in a particular failure mode. This 

advantage makes this approach interesting if comparing the standard FMEA with 

existing techniques. 

 

Fig 1.5 - Example of modeling using PFMEA [18] 

 In one sense, pFMEA performs a more detailed analysis than ours because it 

considers faulty as well as normal behaviors of a system (see Fig. 1.5). However, this 

approach does not generate the model systematically, so there is no notion of soundness 

concerning the model generation, and is more likely to generate state explosion, since it 

does not present techniques to enable reduction of the Markov model generated. 

1.3 Dissertation Organization 

This dissertation is organized as follows. Chapter 2 provides the background on the 

safety assessment process as well as the prominent model-based solution. 

 Chapter 3 presents an overview of probabilistic models outlining basic concepts of 

Markov Chains. Furthermore, it presents the Prism formal language with its model 

checker (Prism). 

 Then, in Chapter 4 we present the approach developed to achieve formal 

probabilistic analysis of aircraft systems in a model-based context. All phases of the 

process are detailed and justified for use in our case study. 

 The other contribution of this work is given to the development of a case study which 

is shown in Chapter 5. We describe the application of our strategy in a simple aircraft 

subsystem.  

 Finally, Chapter 6 shows our conclusions that discuss the benefits and drawbacks of 

our strategy. Moreover, we give a brief overview of some future works. 
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Chapter 2  

Safety Assessment Process 

In this chapter we introduce the safety assessment process used in the aeronautical 

industry. This process involves complex phases and activities [2, 4] that are executed 

during the design of aircraft systems, aiming to minimize the occurrence likelihood of 

potential hazards of a system. 

 The process covers several aspects (hardware, software and architecture) of the 

system, performing qualitative and quantitative analysis, necessary to validate the safety 

requirements stipulated. Thus, we also describe these analyses during this process as 

well as the model-based solution, which is the state-of-the-art in the safety assessment 

process. Finally, we illustrate a model-based scenario with a simple aircraft system that 

is used in our case study. This process is very detailed and complex and we only explain 

its essential parts (for a deeper description please refer to [2, 4]). 

2.1 Safety Assessment of Aircraft Systems 

Safety Assessment is the process used to ensure the adequacy of a system's architecture 

design with its respective risk of hazard situations, which must be kept at tolerable 

levels. In short, this process aims to produce a safe aircraft.  

 This process is driven by aircraft functions that are organized in different stages as 

can be seen in Fig. 2.1. During this process, hazard analysis is performed in parallel 

with system design where the failure conditions (potential failures that can affect the 

aircraft functions) are identified and classified according to its severity. Starting with 

the functions of the highest level, the assessment goes down gradually to the low-level 

functions, guided by the system's architecture. As a consequence of this gradual 

analysis, the derived safety requirements that emerge can be either in qualitative or 

quantitative form. These new safety requirements are introduced in the top-level and 

subsystem design. They comprehend the high-level airplane safety goals as well as 

system safety goals that must be considered in the proposed system architectures. 

 Industry standards, such as the ARP 4761 [2] for civil aviation, provide the criteria to 

determine the corresponding criticality of a hazard and which levels are considered 

acceptable or not. Such standards aim at providing common guidance for engineers and 

certification authorities on how to address safety and reliability issues throughout the 

development lifecycle of complex systems. 
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Fig 2.1 - Overview of the safety assessment process 

 The central element of the safety assessment process is the method FHA (Functional 

Hazard Analysis). The goal of the method FHA is to identify all possible conditions on 

which an aircraft function can fail. For example, a failure condition would be "failure of 

the longitudinal control during the cruise." For each failure condition, a criticality is 

assigned. The criticality is used to indicate the effect on the aircraft if that failure 

condition occurs (see Fig. 2.2). 

 As long as different systems are assigned to a given function, defined on the aircraft 

level, the effects caused by the loss of this function can spread among them. For 

instance, the hydraulic system is a system that helps the longitudinal control. If it was 

defined previously that the loss of longitudinal control is catastrophic, possibly the loss 

of the hydraulic system is catastrophic as well. In this sense, FHA hierarchically 

unpacks the systems until the low-level functions are considered and derives the safety 

requirements based on the defined failure conditions.  
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Fig 2.2 - List of criticality levels and its effects 

 Therefore, FHA is responsible to generate requirements such as ―a catastrophic 

failure condition shall not occur more frequently than 10
-9

 per flight hour‖ or ―No 

catastrophic failure condition result from a single failure". The former restriction (10
-9

), 

associated to the first requirement, corresponds to the allowable quantitative probability, 

determined by the FAR 25.1309, for the failure conditions whose likelihood of 

occurrence must be extremely improbable. The latter illustrates a common qualitative 

requirement. 

 After identifying the failure conditions in the FHA (Fig. 2.3 illustrates an example of 

an aircraft FHA table that addresses a failure condition), the engineers employ other 

techniques to determine which single failures or combinations of failures can exist at the 

lower levels that might cause each failure condition and verify if the proposed system 

architecture satisfies the safety objectives defined in the FHA. 

 They create their own system behavior understanding and perform the safety 

assessment using a classical technique (Fault Tree Analysis - FTA, Dependence 

Diagrams - DD, Markov Analysis - MA) to validate the safety requirements as well as 

demonstrate the design concept. The Preliminary System Safety Assessment (PSSA) 

usually takes the form of such a technique and also includes the Common Cause 

Analyses (CCA). A Common Cause Analysis assesses the specific system architecture 

by evaluating the overall architecture sensitivity to common cause events [2, 4]. 

 During the PSSA stage a systematic examination of the proposed system architecture 

is performed to determine how failures can cause the functional hazards identified by 

FHA. PSSA aims to establish the safety requirements of the system in accordance of the 

safety objectives identified by the FHA. 
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Fig 2.3 – Partial Aircraft FHA example that address only “Decelerate Aircraft on the Ground” 

 The PSSA performs an interactive process associated with the design definition. It 

includes consideration of the system qualitative issues and consists of analyzing its 

architecture with focus:  

 Required resources for the nominal behavior of each system component: 

definition of ports and association, control variables and its transfer functions; 

 Fail-safe design concept that uses the following design principles or techniques 

in order to ensure a safe design: designed integrity and quality to ensure 

intended function and prevent failures: redundancy or backup systems, isolation 

and/or segregation of systems and components, etc.; 

 Possible failure modes and functional mechanisms (monitoring, reconfiguration) 

elaborated to limit/control their effects: monitor, switches, auxiliary 

mechanisms; 

 Dependencies between system components: power supply and basic components 

.  

 Traditionally the PSSA and SSA (System Safety Assessment) stages are based on the 

FTA, the well-known top-down technique used in industry, with support of the CCA, 

both described in detail in the ARP 4761 [2]. A fault tree is a graphical model that 

describes the combination of failure events [1]. It is formed by a top event, intermediary 

and basic events as well as logic gates ("OR", "AND", etc.) aiming at capturing the 

relationship between the events whose occurrence, according to the logic captured by 

the gates, enables a high level event to occur as well (representing the failure condition). 

Fig. 2.4 illustrates an example of a generic fault tree model. 
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Fig 2.4 Example of a generic fault tree diagram 

 For each basic event, occurrence probabilities are assigned and the probability of 

occurrence of a high level event can be calculated from the lower level dependent 

events. The FTA facilitates subdivision of system level events into lower level events 

for ease of analysis. At the lowest level, the PSSA determines the safety design 

requirements of the related systems. 

 The SSA is responsible to assess each implemented system to show that safety 

objectives from the FHA and its derived safety requirements from the PSSA are met. 

The SSA analysis is similar to the PSSA , except that instead of evaluating proposed 

architectures and deriving system safety requirements, SSA performs a an extensive 

verification to check if the implemented design meets both the qualitative and 

quantitative safety requirements as defined in the FHA and PSSA. An assessment to 

identify and classify failure conditions is necessarily qualitative. On the other hand, an 

assessment of the probability of a failure condition may be quantitative. 

 The SSA is commonly derived from the PSSA FTA (DD or MA) and, at component 

level, it uses the quantitative values obtained from the Failure Modes and Effects 

Summary (FMES). The FMES is a summary of failures identified by FMEA (Failure 

Mode Effective Analysis [2]). FMEA is a bottom-up method for assessing the failure 

modes of a system and determining the effects of the relations among these failures. 

FMEA is used to evaluate the effects on the system and airplane of each possible 

element or component failure. When properly formatted, it aids in identifying the 

possible causes of each failure mode. The system FMEA is summarized into the system 

FMES to support the failure rates of the failure modes considered in the FTA. 

Therefore, SSA must verify that all significant effects identified in the FMES are 

considered for inclusion as basic events in the FTA. 
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Fig 2.5 - Relationship between FHA, FTA and FMEA 

 Currently, FTA acts as a logical complement to FHA. The relationship between them 

can be seen in see Fig. 2.5. That is, fault trees must be created for the aircraft, 

decomposing top level hazards into their causes, down to single events. These events 

correspond to system and component failures with associated failure rates. The failure 

rates of the basic events (failure modes) are determined by reliability prediction 

methods such as FMEA. Considering the failure conditions identified in the FHA, the 

PSSA and SSA can be applied mainly to determine: 

 Which single failures or combination of failures can exist at the lower levels 

(basic events) that can cause each failure condition; 

 The average probability of occurrence per flight hour for each failure condition. 

 As result, for each failure condition, it should be determined if the associated safety 

requirements are met. As an example, Fig 2.6 shows a fragment of System FHA table of 

the Wheel Brake System (WBS) [2], which is derived from the Aircraft FHA shown in 

Fig. 2.3. The WBS is used to provide safe retardation of the aircraft during taxiing and 

landing phases, and in the event of a rejected take-off. The following expressions are a 

set of significant safety requirements of this system resulted from its FHA analysis: 

 Loss of all wheel braking during landing or RTO shall be less than 5E-7 per 

flight; 

 Asymmetrical loss of wheel braking coupled with loss of rudder or nose wheel 

steering during landing or RTO shall be less than 5e-7 per flight; 
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 Undetected inadvertent wheel braking on one wheel w/o locking during takeoff 

shall be less than 5e-9 per flight. 

 

Fig 2.6 - Partial Wheel Brake System FHA (addresses only “Decelerate the Wheels on the Ground) 

 According to the certification authorities, the proposed system design must assure, 

for instance, that the probability of catastrophic failure conditions that can occur is 

extremely improbable. So, this class of failure conditions may be analyzed in a 

quantitative basis (in addition to qualitative analysis), because these failures are more 

critical. Consequently, the average probability of occurrence for each failure condition 

per flight hour must be calculated assuming a typical average flight and considering the 

appropriate exposure and risk times to check if a certain failure condition is kept at 

acceptable levels [2, 24]. 

 Considering all these issues, system architecture may be designed and verified in 

such a way that the system safety requirements at low-level (SSA) satisfy the system 

high-level requirements As components are integrated into system and systems are 

integrated into the aircraft, the failure effects are compared with the failure conditions 

identified in the FHA. This comparison is called an "Integration cross-check" [2]. 

 In summary, the safety assessment process has four basic steps: 

1. Clearly identify undesired events, its effects and criticality; 

2. Perform a qualitative analysis by constructing a model of the sequence of events 

leading to an undesired event. This model accurately describes the logic flow of 

the entire process leading to the event; 

3. Perform a reliability prediction for the component elements parts; 

4. Perform a quantitative analysis by constructing a mathematical model (a set of 

equations based on the logic derived from the qualitative model), and calculating 

the probability of the undesired failure conditions over a certain exposure time. 
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 This process can involve other safety techniques as well but this is out of the scope 

of this work. For further information about this please refer to ARP 4761 [2]. As was 

already described, traditionally, steps 2 and 4 are performed using FTA. However this 

method strongly relies on human intervention and thus it presents limitations directly 

proportional to the complexity of the airborne systems, mainly because a quantitative 

analysis of a fault-tree must include the following concerns: 

1. Influence of repeated events in the probability of occurrence of top event of 

fault-trees; 

2. Influence of change of flight duration in the value of the probability of 

occurrence of top event of fault-trees; 

3. Adjusts on the procedure to calculate the probability of occurrence of top event 

given the existence of latent events in fault-trees. 

 Furthermore, note that there is a critical factor in the application of this method. As a 

usual complex system has several failure conditions, several different fault trees are 

constructed, one for each failure condition. These fault trees are constructed to assess 

the cause and probability of single top event. The key point is that each time a safety 

requirement is violated, the system architecture must be revised to reduce the likelihood 

of the hazard occurring and consequently all related fault trees must be constructed 

again. 

2.2 Quantitative Analysis 

 The relation between the criticality of a failure and its probability of occurrence 

within the system operational lifetime is commonly the factor that determines the risk of 

an accident. Hereby, the qualitative aspect concerns the characterization of the behavior 

of different faults that may result in a top level hazard whereas the quantitative aspect 

concerns the reliability predictions for the system that may cause or contribute to this 

hazard. Although the concept of safety itself is not necessarily associated with the 

concept of reliability, both should be considered simultaneously in order to obtain 

practical results. Knowing that a system is never free from critical failures, safety 

analysis methods must consequently consider reliability issues to demonstrate that the 

likelihood of critical accidents are minimized by using numerical evidences. 

 Hence, the objective of the quantitative analysis is to ensure an acceptable safety 

level for systems on the aircraft using numerical evidences. When using quantitative 

analysis to help determining compliance with the safety requirements, the following 

descriptions of the probability terms referenced in FAR 25.1309 are mandatory, because 

they are commonly accepted by the certification authorities. They are expressed in 

terms of acceptable ranges for the average probability per flight hour: 

 Probable: failure conditions whose average probability occurrence per flight 

hour is greater than the order of magnitude of 10
-5

; 

 Remote: failure conditions whose average probability occurrence per flight hour 

is less than the order of magnitude of 10
-5

, but greater than 10
-7

; 
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 Extremely Remote: failure conditions whose average probability occurrence per 

flight hour is less than the order of magnitude of 10
-7

, but greater than 10
-9

; 

 Extremely Improbable: failure conditions whose average probability occurrence 

per flight hour is less than the order of magnitude of 10
-9

. 

 According to FAR 25.1309, a logical and acceptable inverse relationship must exist 

between the average probability per flight hour and the severity of failure condition 

effects, as shown in Figure 2.7: 

 

Fig 2.7 - Relationship between Probability and Severity of Failure Condition Effects [24] 

 It is worth noting that Fig. 2.7 does not exhibit the failure conditions with No Safety 

Effect because they have no numerical probability constraint. For the Minor failure 

conditions, they can even be Probable. On the other hand, Major failure conditions may 

be at most Remote but not Probable; Finally the two most critical failure conditions are 

Hazardous, which may be at most Extremely Remote, and Catastrophic, which needs to 

be Extremely Improbable. Considering the relationship between the severity of failure 

conditions effects and their acceptable ranges for the average probability per flight hour, 

the quantitative requirements associated with failure condition are described in Fig. 2.8. 

 ARP 4761 also accepts Markov analysis or dependence diagrams as alternatives to 

perform quantitative analysis during the SSA. The basic information used as input to 

these methods is failure conditions and failure rates of the primary events. As described 

in previous sections, failure conditions are identified during the FHA analysis, which 

considers the severity of the occurrence of each failure condition over the aircraft 

functions to define the related safety requirement, using an argument (maximum 

tolerable probability). For example, FHA determines that the probability of occurrence 

of a catastrophic failure condition must not be greater than 10
-9

 per flight hour. Failure 

rate is an attribute used to model the likelihood of each basic failure mode (primary and 

independent failure) of the system. FMEA supplies the failure rates considered in the 

system. 
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Fig 2.8 - Relationship between probability and severity of failure condition 

 Independent of the quantitative analysis to be used (FTA, Dependence Diagrams or 

Markov Analysis), the probabilities are estimated from the failure rates and exposure 

time of the events. For the purpose of these analyses, the failure rates are commonly 

constant over time, based on exponential distribution function. They are estimates of 

mature failure rates after infant mortality and prior to wear-out, as described in Fig 2.9.  

 

Fig 2.9 - The classic “Bathtub Curve” used to diagram the constant failure rate period in the life of 

an electronic component 

 Thus, these analyses disregard the wear-out or infant mortality. When wear-out or 

infant mortality has to be considered, other distribution functions (such as Weibull) 
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need to be employed. When available, service history of same or similar components in 

the same or similar environment should be used. 

 For various reasons, component failure rate data are admittedly not precise enough to 

enable accurate estimates of the probabilities of failure conditions [4]. This results in 

some degree of uncertainty, as indicated by the wide line in Fig. 2.7, and by the 

expression "on the order of" in the descriptions of the quantitative probability terms that 

are provided previously. When calculating the estimated probability of each failure 

condition, this uncertainty should be accounted such that it does not compromise safety. 

 When performing quantitative analysis, consistence must be guaranteed with the 

maintenance tasks and intervals used by the maintenance program for the aircraft. The 

following maintenance scenarios can be used to show compliance with FAR 25.1309: 

 Evident failures will be corrected before the next flight, or a maximum time 

period will be established before a maintenance action is required. If the latter is 

acceptable, the analysis should establish the maximum allowable interval before 

the maintenance action is required; 

 Latent failures will be identified by a scheduled maintenance task (a latent 

failures is a failure that is not detected and/or annunciated when it occurs). 

Following its removal and repair, the Mean Time Between Failures (MTBF) of a 

component should be the basis for checking the interval time. 

 When one or more failed elements in the system can persist for multiple flights 

(latent failure), the calculation should consider the relevant exposure times (that is, time 

intervals between maintenance and operational checks/ inspections). In such cases the 

probability of the failure condition increases with the number of flights during the 

latency period. 

 Hereby, a probabilistic model based on the failure logic of the system is generated 

aiming to calculate the average probability of such failure conditions per flight hour, 

assuming the appropriate exposure time of failures and shows if the results are tolerable. 

 For instance, a Markov Analysis calculates the probability of the system being in 

various states as a function of time. A transition from one state to another occurs at a 

given transition rate, which reflects component failure rates and redundancy. A system 

changes state due to various events such as component failure, completion of repair, 

reconfiguration after detection of a failure, etc. Each state transition is a random process 

which is represented by a specific differential equation. The probability of reaching a 

defined final state can be computed by combinations of the transitions required to reach 

that state. 

2.3 Model-based Safety Assessment 

In the safety-critical systems domain there is an increasing trend towards model-based 

safety assessment [11, 13]. It extends the existing model-based development activities 

(simulation, verification, testing and code generation), which are based on a high-level 

model of the system (expressed in a notation such as Simulink or Statemate), to 

incorporate the safety analysis. These new alternatives are interesting because they are 
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simple, compositional, and depend of less engineer's skills to be applied. In addition, 

they can use formal methods, for instance theorem provers, model-checkers and static-

checkers [13, 15], to automate, even if partially, the analysis. Moreover, formal methods 

are one of the alternative methods proposed in DO-178B [12] for the airborne software 

certification. 

2.3.1 Principles of Model-based Safety Assessment  

 The Model-based Safety Assessment process consists in building a representative 

concrete model that can be exercised by dedicated tools to perform assisted safety 

assessments. The model is created to represent the system architecture and relevant 

behavior data. Details about each system component can be included considering 

functional and safety aspects. The modeling environment offers means to represent 

safety/abstract behaviors of the system components, which describe the relationship 

between inputs and outputs data in nominal situation as well as its failure events with 

their occurrence conditions (based on input data and failure mode) and their effects on 

its outputs. At system level, links between components are created according to the 

system architecture. 

 To enhance the readability of the model, a graphic representation is associated to 

each component so that the model looks like a system architecture diagram (block 

diagrams). Figure 2.10 illustrates such a system architecture diagram.  

 

Fig 2.10 (a) Assembling design components to construct a model. (b) Test of multiples scenarios [9] 
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 Furthermore, models are hierarchical: preliminary high level pieces of the system 

may be further refined into lower level components. Thus the design engineer gets a 

support to validate the safety analyst system understanding and to reduce the risk of 

misinterpretation. The model based safety assessment process can be composed in five 

main steps:  

 Engineer interpretation; 

 Model creation; 

 Validation (components, systems and safety criteria); 

 Assisted assessment (safety assessment and simulation results); 

 Model update (refining/updating the model). 

 Fig. 2.11 summarizes a model-based safety assessment process: 

 

Fig 2.11. A Common Model Based Safety Assessment Process 

 The first step details the safety description of the system architecture content and its 

behavior according to its failure conditions. The model serves to analyze several failure 

conditions impacting a given system architecture and it is performed by the extraction 

of failure conditions from the FHA. So the engineers can list the relevant data into a 

safety specification of the system. 

 Next, the system architecture modeling is done using component library from public 

or private sources. At component level, the behavior and I/O are summarized in events 

that are limited to failure or reconfigurations (from FMEA/FMES if available or from 

previous design). Hence the system safety specification is implemented into the system 

architecture model.  

 Syntactic/semantic tool support permits to verify the correctness of the model 

according to formal language notation. Then the system designer has to validate the 
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model, that is, verify that its behavior is consistent with the system specification or the 

expected system behavior. 

 After that, the safety requirements need to be validated, considering the failure 

conditions of the system. This validation can be done during a review between 

designers and FHA safety analysts. Hence, the potential advantage to safety analysts, 

formal methods can ease the validation process by providing mathematical tools to 

exploit the model. So, qualitative and quantitative results are obtained and used to 

validate the safety requirements of the system. 

 When a design correction decision is taken to replace a component or to modify the 

architecture, the model is refined or updated. The last step consists in refining/updating 

the model in case of an architectural modification. This occurs primarily when the initial 

architecture does not fulfill some requirements, or if a technical decision leads to a 

component replacement. 

 The assurance that a model representation conforms to the real system can be 

reinforced by simulating combinations of failures seen on aircraft and checking that the 

results are coherent. 

2.3.2 HiP-HOPS 

The approach proposed in this work is based on the HiP-HOPS (Hierarchically 

Performed Hazard Origin and Propagation Studies) [40] method, which is one of the 

most prominent model-based approaches [10]. It has attracted great interest from the 

industry and demonstrated a (comparatively) high level maturity. 

 HiP-HOPS is a systematic method of safety analysis based on the techniques FHA 

and IF-FMEA (Interface-Focused FMEA) [5, 10]. IF-FMEA is an extension of FMEA 

inspired by the work described in [41], which defines a graphical notation (called 

Failure Propagation and Transformation Notation---FTPN) for the representation of the 

transformation and propagation of failures in a system. It defines a set of equations 

which characterize the logical relationships between input and output failure events. 

 HiP-HOPS allows an integrated analysis of a complex system from the high 

functional level to the low level, represented by the component failure modes. It makes 

the analysis of the system model in a hierarchical form. HiP-HOPS can assist the 

development of an appropriate initial architecture for the system, as well as its 

decomposed sub-systems and basic component elements.  

 FHA can assist the development of an appropriate initial architecture for the system, 

as well as its decomposed sub-systems and basic failure elements. Following the FHA 

analysis, HiP-HOPS allows an integrated analysis of a complex system from the high 

functional level to the low level, represented by the component failure modes. It makes 

the analysis of the system model in a hierarchical form that progressively records the 

increasing details of the implementation of the system. Constraints are used on the 

modeling notation for describing the levels of design to achieve the consistency in the 

model. Following the architecture of the system, flow diagrams are used to describe the 

relations between a system and its subsystems. Fig. 2.12 illustrates the primitive 
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elements of the proposed notation used in HiP-HOPS. This notation is semantically and 

syntactically linked to the design representation of the system. 

 

Fig 2.12 – HiP-HOPS modeling notations [5] 

 The support for a graphical notation enables that complex systems are modeled as 

hierarchies of architectural diagrams that can be represented either as components or 

subsystems. When a module is represented as a basic component, its failure behavior is 

known, and it can be recorded in an IF-FMEA table. Otherwise, the module is rendered 

as a subsystem, and is further decomposed into architecture of more basic components 

whose failure behaviors will be also determined using IF-FMEA (see Fig. 2.13). 

 

Fig 2.13 – Overview of the HiP-HOPS technique 

 Knowing how the behavior of local (in a lower level) failures of all components is 

determined, we can determine how the functional failures, which were identified in 

exploratory analysis of the FHA, arise from combinations of low-level components that 

have the failure modes identified in IF-FMEA. As illustrated in Fig. 2.14, an IF-FMEA 

table records how a component reacts to failures generated by other components and set 
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the failure modes of the component itself as well as how the failure spreads to the other 

components. 

 

Fig 2.14 - IF-FMEA of a hypothetical component system 

 The table shown in Fig. 2.14 records five columns of failure based information and a 

descriptive field: (i) the possible failure modes of a component; (ii) the description of 

failure (iii) the dependency of such failure modes with respect to the identified failures 

via its input ports; (iv) what happens upon a certain failure mode occurrence and (v) a 

failure rate. 

 The application of this method results in a consistent semi-automatic constructed 

qualitative safety analysis that determines the origins and global propagation of failure 

in the system. 

2.3.3 Applying HiP-HOPS to an Aircraft System 

 In this section we show some details on how HiP-HOPS is applied to an aircraft 

system, which generates a qualitative model of the system. To explain the analysis using 

this model-based solution, we use a pilot system designed by Embraer that represents a 

hypothetical Elevator Control System (ECS). Its function is to control the displacement 

of an electro-hydraulic actuator, according to the longitudinal orientation desired by the 

pilot. 

 The implementation of the system is done using the Matlab/Simulink design tool. In 

this framework, the system is modeled using graphical and block diagrams 

representations. Also, Matlab's environment variables are accessed to create matrix 

structures, which are used to represent the tabular annotations of the system failure 

model. This last resource is not available via a user-friendly graphical interface as 

default from the Matlab/Simulink tools, however, this tool allows that plug-ins and 

scripts to be programmed to support and incorporate these features. 

System Description 

 In most aircrafts, the pitching movement (the up-and-down motion of the aircraft’s 

nose) is controlled by elevator surfaces at the rear of the aircraft as shown in Fig. 2.15. 



27 

 

These surfaces are driven by electrical-hydraulic actuators of the ECS, controlled by the 

pilot intent. This system is part of the Flight Control Systems (FCS), which commands 

all flight control surfaces (elevators, ailerons, rudders, etc.) [42]. 

 

Fig 2.15 - (a) Aircraft control surfaces and axes of motion. (b) Pitch motion. 

 The ECS has a reference unit (Reference), a device commanded by the user to 

generate the reference signal which that represents the desired displacement; and a 

sensor component (Sensor) that converts the displacement of an actuator in an electric 

signal. The Actuator Control Electronics (ACE) device (Controller) processes three 

signals: from the reference, from the sensor, and a third one that computes the actuation 

signal. All of these components have an input of electrical power supply. The power 

supply is provided by two power sources (PowerSource1 and PowerSource2) and a 

monitor box (Monitor). The ACE receives the pilot command (control column), 

compares this computed command to the actuator output to define the current servo 

command. Fig. 2.16 shows the block diagram of the ECS expressed in Simulink. 

 

Fig 2.16 - Blocks diagram of the Elevator Control System 
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 After the FHA Analysis of the entire aircraft is performed, the following expressions 

are a set of significant safety requirements of this system extracted from its FHA 

analysis: 

Omission of speed of the Elevator Control System shall be less than 3.10
-3

 per 

flight; 

 A Wrong Position signal from the Elevator Control System shall be less than 

5.10
-3

 per flight; 

 Commission of speed of the Elevator Control System shall be less than 3.10
-3

 per 

flight. 

 In normal operation the monitor box receives electrical power from both power 

sources and makes it available to the other components. In a case of internal failure of 

one power source (a short circuit for example), the monitor is capable of switching to 

receive power from the remaining power source. We consider here that the loads do not 

affect the power sources, to simplify the example. This simplification may be done 

whenever the effects of the loads over the sources can be neglected. The electrical 

actuator has an input of power supply, an input of control signal that comes from 

controller and an output of mechanical displacement. The controller has an internal 

component that processes the signal from reference (Component1 in Fig. 2.17), another 

that processes the signal from the sensor (Component2), and a third one that computes 

the actuation signal (Component3).  

 

Fig 2.17 - Details of controller subsystem 

Performing System Analysis 

Since the operation of the system and the function of each of its components are known, 

it is possible to analyze the failure behavior by performing the IF-FMEA. According to 

the notation, the module of the architecture can be represented either as components or 

subsystems. If the failure behavior of a module is known, and it can be recorded in an 

IF-FMEA table, then the module is represented as a basic component. In the opposite 

case, the element is rendered as a subsystem, and is further decomposed into an 

architecture of more basic components, where failure behavior of each can be 

determined using IF-FMEA. For instance, the controller module is represented as a 

subsystem, because it contains internal components that have a failure behavior and 
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must be taking into account for the analysis. Next we describe the failure logic of the 

Monitor.  

 The monitor has two inputs and one output. Each input of this component receives 

power from a power source, while the output provides power to the other components. 

For each input of the monitor, the only important deviation (failures that that can be 

displayed at the output port of a component/system and propagated to other 

components/systems) is a low level of power, insufficient for operation of the 

components. Consequently, in the output the only relevant deviation would be the low 

level of power. Considering the function of the monitor (detect a low level from one of 

the inputs) and switching to the remaining power source, and assuming that its detection 

mechanism does not fail, the only relevant failure that may occur internally is the failure 

of the monitor to switch the source. In this case, the monitor would not be able to supply 

power to the other components in a level above the minimum required. From the 

behavior of this component and the simplifications assumed, it can be concluded that a 

low level of power at the output of the monitor would occur when at least one of the 

following events below occur: 

1. Both inputs have low level of power simultaneously; 

2. One input has low level of power and the monitor fails to switch to the other 

input. 

 This analysis results in the following boolean equation: 

LowPower-Monitor.Out1 = (SwitchFailure AND (LowPower-Monitor.In1 OR 

LowPower-Monitor.In2)) OR (LowPower-Monitor.In1 AND LowPower-

Monitor.In2) 

(1) 

  

 Note that the term SwitchFailure is the failure mode of the Monitor, where its failure 

rate is 5.10
-4

 (that is, Median Time Between Failures - MTBF = 2,000 flying hours). 

The failure rates associated with each failure mode can be defined by manufacturers' 

specification, historical data, similar components or even specialist judgment [2]. The 

resulting IF-FMEA table of the component Monitor is described in Table 2.1. 

Table 2.1 IF-FMEA Table of the monitor component 

Output Failure 

Mode 
Description Input Deviation Logic 

Component 

Malfunction Logic 
 (f/h) 

LowPower-

Monitor.Out1 

The component is not 

able to supply power 

LowPower-Monitor.In1 OR 

LowPower-Monitor.In2 SwitchFailure 5.10
-4

 

LowPower-

Monitor.Out1 

The component is not 

able to supply power 

LowPower-Monitor.In1 AND 

LowPower-Monitor.In2 - - 

  

 An electrical actuator usually has an electric motor, an electronic driver that controls 

the motor, and may also have a mechanism or transmission between the motor shaft and 

the output of displacement. In the power source input it can be considered as a deviation 

a low level of power. In the signal input, the deviations that could occur are the 

omission of control signal and an erroneous control signal. In the actuator output the 

deviations are the omission of speed (movement), erroneous position of the output 
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displacement, and a non-commanded (by the user) speed. A level of power in the supply 

input below the minimum required for operation would render the motor inoperative. 

The same effect occurs when the control signal is omitted. Both deviations would cause 

an omission in the output of the actuator.  

 Other possible causes for the omission of output could be the failure of the electronic 

driver, the failure of the electric motor and the jamming of the mechanism/transmission. 

A wrong output displacement could occur due to an erroneous control signal, or an 

internal degradation of the driver, or also due to a worn mechanism/transmission. A 

non-commanded movement of the actuator could occur due to a degradation of the 

driver, or a non-commanded input signal. This non commanded behavior is called here 

as ―commission‖. The following equations define the failure logic of the actuator and its 

corresponding tabular structure is described in Table 2.2. 

OmissionSpeed-Actuator.Out1 = LossOfDriver OR LossOfMotor OR 

MechanismJamming OR LowPower-Actuator.In1 OR OmissionSignal-Actuator.In2 
(1) 

 
 

WrongPosition-Actuator.Out1 = MechanismDegradation OR DriverDegradation OR 

CorruptedSignal-Actuator.In2 
 

(2) 

CommissionSpeed-Actuator.Out1 = DriverDegradation OR CommissionSignal-

Actuator.In2 

 

(3) 

Table 2.2 IF-FMEA table of the actuator component 

Output Failure 

Mode 
Description Input Deviation Logic 

Component Malfunction 

Logic 
 (f/h) 

OmissionSpeed

-Actuator.Out1 

The component 

fails to generate 

speed signal 

LowPower-Actuator.In1 

OR OmissionSignal-

Actuator.In2 

LossOfDriver OR 

LossOfMotor OR 

MechanismJamming 

1.10
-4

 

1.10
-3

 

1.10
-3

 

WrongPosition

-Actuator.Out1 

The component 

generate a wrong 

signal 

CorruptedSignal-

Actuator.In2 

MechanismDegradation 

OR DriverDegradation 

1.10
-3

 

1.10
-4

 

CommissionSp

eed-

Actuator.Out1 

The component is 

not able to supply 

the speed signal 

CommissionSignal-

Actuator.In2 
DriverDegradation 1.10

-4
 

  

 This table records the synthesis of the deviations present in each component. It 

contains the logic of failures propagation established in terms of input-output 

connections between components. For conciseness, only the monitor and actuator 

examination is shown here. The other components are relatively straightforward (follow 

the same principle). Table 2.3 lists the respective equations for all the components of 

the system and the tolerable probability of each deviation which needs to be evaluated. 
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Table 2.3. Set of deviation for the Elevator Control System 

Component Deviation Criticality Port Annotation 

PowerSource LowPower  Out_1 PowerSourceFailure 

Monitor LowPower  Out_1 

(SwitchFailure and (LowPower-In1 or 

LowPower-In2)) or (LowPower-In1 and 

LowPower-In2) 

Reference 

Omission Signal  Out_1 ReferenceDeviceFailure or LowPower-In1 

Corrupted Signal  Out_1 ReferenceDeviceDegradation 

Component1 

OmissionSignal  Out_1 
LossOfComponent1 OR LowPower-In1OR 

OmissionSignal-In2 

CorruptedSignal  Out_1 
Component1Degradation OR CorruptedSignal-

In2 

Component2 

OmissionSignal  Out_1 
LossOfComponent2 OR LowPower-In1 OR 

OmissionSignal-In2 

CorruptedSignal  Out_1 
Component2Degradation OR CorruptedSignal-

In2 

Component3 

OmissionSignal  Out_1 
LossOfComponent3 OR LowPower-In1 OR 

OmissionSignal-In2 OR OmissionSignal-In3 

CorruptedSignal  Out_1 
Component3Degradation OR CorruptedSignal-

In2 OR CorruptedSignal-In3 

ComissionSignal  Out_1 Component3Degradation 

Sensor 

OmissionSignal  Out_1 SensorFailure OR LowPower-In1 

CorruptedSignal  Out_1 SensorDegradation 

Actuator 

OmissionSpeed 3.10
-3

 Out_1 

LossOfDriver OR LossOfMotor OR 

MechanismJamming OR LowPower-In1 OR 

OmissionSignal-In2 

WrongPosition 5.10
-3

 Out_1 
MechanismDegradation OR DriverDegradation 

OR CorruptedSignal-In2 

ComissionSpeed 3.10
-3

 Out_1 DriverDegradation OR ComissionSignal-In2 

  

 This table states that a PowerSource can exhibit a LowPower deviation via its Out1 

port when a PowerSourceFailure (a boolean condition) occurs. A more complicated 

situation occurs in the Monitor. A LowPower can also occur but its origin can be 

internal (SwitchFailure and one of the connected power sources also failed) or external 

(both power sources have failed). An OmissionSignal deviation can be exhibited in the 

Reference when an internal (ReferenceDeviceFailure) or external (LowPower via its In1 

port) failure occur. Reference still can exhibit a CorruptedSignal deviation when a 

ReferenceDeviceDegradation occurs. The controller annotation is not set because it 

contains subcomponents and consequently only its subcomponents are described. 

Finally, the Elevator can exhibit the three deviations, whose annotations have already 



32 

 

been shown. These last deviations are special because they represent the failure 

conditions associated for this system. Based on its severity, a tolerable probability is 

considered. Also, to capture the organization and component interconnections shown in 

Fig. 2.15 and Fig. 2.16 in tabular form, we use a topology table (see Table 2.4).  

Table 2.4. Topology table of the Elevator Control System 

Component Hierarquical Division Port Connected or Associated Port 

Monitor No 
In_1 PowerSource1-Out_1 

In_2 PowerSource2-Out_1 

Reference No In_1 Monitor-Out_1 

Controller Yes 

In_1 Monitor-Out_1 

In_2 Reference-Out_1 

In_3 Sensor-Out_1 

Out_1 Controller/Component3-Out1 

Sensor No 
In_1 Monitor-Out_1 

In_2 Actuator-Out_1 

Actuator No 
In_1 Monitor-Out_1 

In_1 Controller-Out_1 

Component1 No 
In_1 Controller-In_1 

In_2 Controller-In_2 

Component2 No 
In_1 Controller-In_1 

In_2 Controller-In_3 

Component3 No 

In_1 Controller-In_1 

In_2 Component1-Out_1 

In_3 Component2-Out_1 

  

 Once all the system components are analyzed, their failure behavior are completely 

and correctly annotated, the architectural information is registered, and the failure 

conditions are chosen, it is possible to generate a mathematical model referenced in 

ARP 4671 (such as Markov Analysis or FTA) to evaluate a quantitative analysis in the 

system. 

2.3.4 Support for Quantitative Analysis 

 The main advantage of a model-based approach like HiP-HOPS is its ability to 

generate and analyze a qualitative model of a system using a design tool such as 

Simulink. The reason to use this tool as a design environment is that Simulink models 

are already used in practice and exert a helpful role in the design of programmable 
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systems during all the system development process (see Fig. 2.1). In the early stages of 

the design, for example, such models help to define and validate through simulation the 

functional structure of the system. In later stages, they serve as a basis for modeling 

non-functional (timing behavior, for example) aspects and for the automatic generation 

of code, which can be usefully employed in the effective implementation of the system. 

 Like HiP-HOPS, most model-based proposals are mainly based on FHA and FMEA 

(and in particular in its extended version, IF-FMEA). IF-FMEA is of particular interest 

because its tabular structure (see Fig. 2.12) is very useful to capture the transformation 

and propagation of failures in a system, allowing that complex systems are modeled in a 

compositional way.  

 The component failure characterizations (IF-FMEA tables) can be overlaid over the 

system model as well as the failure conditions and its tolerable rates, identified during 

the FHA analysis. They can also be included in a tabular structure [2, 5] and is easily 

incorporated into the system model, using annotations, as described in Fig. 2.18. 

 Although a qualitative model can address the aspects that refer to the characterization 

of the behavior of different failures (that may result in a top level hazard), it is also 

necessary to perform reliability predictions for system components that may cause or 

contribute to this hazard. This analysis is essential to quantitatively validate the safety 

constraints of the proposed model. This can be supplied by constructing a mathematical 

model (a set of equations based on the logic derived from the qualitative model), and 

calculating the probability of the undesired event over an exposure time. 

 

Fig 2.18 – Simulink diagram and a GUI for annotation of components with failure data [70]  

 As a result, this qualitative model, which represents the failure logic model of the 

system, recommends some methods of the ARP 4671 (FTA, Markov Analysis, DD) to 
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be applied to provide a quantitative analysis of the model. This type of analysis can be 

applied iteratively during design, allowing a consistent and continuous assessment of 

the models as they naturally evolve in the course of the design life-cycle. For instance, 

HiP-HOPS allows the automatic synthesis of system fault trees from the qualitative  

model (annotated with appropriate descriptions of component failures and their local 

effects) of the system (see Fig. 2.19). The Safety Argument Manager (SAM) is one of 

the tools that support this technique [5]. 

 

Fig 2.19 – A overview of model-based synthesis of fault trees using HiP-HOPS  
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Chapter 3  

Probabilistic Model Checking and Prism 

Model checking [19] is a well-established and widely used automatic technique for 

verifying the properties (requirements) of systems. Recently, model checking has 

become increasingly present in the industry, with large companies such as NASA and 

Airbus investing considerable resources in this area. 

 This technique requires two inputs: a description of the system in some high-level 

modeling formalism (such as process algebra or a Petri net [44]), and the specification 

of the desired properties of that system, usually in temporal logic such as CTL 

(Computation Tree Logic) or LTL (Linear-time Temporal Logic).  

 From the formal description of the system (known as the formal specification), a 

precise mathematical model is constructed, which typically defines the set of all 

possible states of the system and the transitions that can occur between these states. And 

with the formal properties (requirements stated in temporal logics for instance), a model 

checker can automatically determines whether or not each property is satisfied via a 

systematic and exhaustive exploration of the model. In the case of a violation, a 

counterexample is often generated: an explicit trace (sequence of states and 

corresponding transitions) of the system’s behavior that illustrates why such a property 

was not satisfied. 

 Probabilistic model checking is a variant which permits automatic formal verification 

of systems involving stochastic behavior. Several systems can be analyzed by 

probabilistic model checking, particularly those involving unreliable or unpredictable 

processes, such as fault-tolerant systems or communication networks, and randomized 

algorithms [46]. 

 As in the non-probabilistic case, this technique involves constructing, from a 

description in some high-level formalism, a finite-state model of a real-life system. But 

in probabilistic model checking, the models are augmented with quantitative 

information regarding the likelihood that transitions occur as well as the time to perform 

a transition. Models can be also endowed with labels in states and transitions, for 

example to describe propositional characteristics of the state or expected costs. In 

practice, these models are typically Markov chains or Markov decision processes 

(MDP). In this chapter, we focus on continuous-time Markov chains (CTMC), in which 

transitions between states are assigned (positive, real-valued) rates, interpreted as the 

rates of negative exponential distributions.  

 Properties of probabilistic modeled systems are now quantitative in nature and stated 

in a variant of temporal logic able to describe such a quantitative aspect of a system. 

These probabilistic extensions allow specification of properties such as: ―the system 
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eventually shuts down with probability at most 0.001‖; or ―what is the long-run 

probability that an adequate number of sensors are operational?‖. Probabilistic 

specification formalisms include PCTL [47], a probabilistic extension of the temporal 

logic CTL applicable for MDP, and the logic CSL [48, 49], a temporal language based 

on CTL and PCTL that is used for CTMC models. 

 In particular, CSL includes the means to express both transient and steady-state 

performance measures of CTMC. Transient properties describe the system at a fixed 

real-valued time instant t, whereas steady-state properties refer to the behavior of a 

system in the ―stationary state‖. 

 A probabilistic model checker applies algorithmic techniques to analyze the state 

space of the probabilistic model and determine whether such properties are satisfied. A 

typical probabilistic model checker uses operations based on graph-based analysis and 

solution of linear equation systems or linear optimization problems. 

 In the remainder of this chapter we present an introduction to CTMC and the Prism 

language and model checker, which provides support for probabilistic model checking 

of CTMC models using CSL. Furthermore, we also describe how to specify an aircraft 

system using the Prism specification. For further details about the probabilistic model 

checking and Prism, please refer to [8, 46, 50]. 

3.1 Probabilistic (Stochastic) Models 

In some scenarios, it is impossible to describe a system by deterministic models. 

However, there are theoretical results that allow modeling such systems by means of 

stochastic processes. 

 The dynamic behavior of the possible failures of a system, for example, can be 

modeled by some fundamental concepts of statistics and probability theory. The 

uncertain outcome of an event is captured by a random variable. Random variables are 

characterized and distinguished by their distribution function. Furthermore, a stochastic 

process allows one to describe a sequence of related events. The class of Continuous 

Markov processes is of special interest here. All its concepts are summarized as follows 

and, for more details see [51]. 

3.1.1 Continuous-Time-Markov Chains 

 A stochastic process is considered a Markovian process if the conditional probability 

of any future event, depends only of the present state, regardless of past events. This 

type of stochastic process is also called a memoryless process, because the past is 

ignored. This is a feature naturally present in electro-electronic components in the case 

of functions that represent its operational performance over its lifetime [51]. 

 Moreover, a Markovian process is considered a Markov chain only if the random 

variables are defined in terms of a space of discrete states. When time is discrete, the 

Markov chain is called a Discrete Time Markov Chain (DTMC). In the continuous time 

we have the Continuous Time Markov Chain (CTMC) which is characterized by 
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discrete states and exponential distribution time that determines the rate of the transition 

for each state. 

 The Markov chain standard representation is given by a state transition diagram, 

suitable for graphical representation, or a transition matrix, used for calculations. The 

transition states diagram shows the number of possible states and transition rates 

between them. Figure 3.1 shows some examples of state transitions diagrams and its 

correspondent generator matrix. 

 

Fig 3.1 – Examples of Markov state transition diagrams and its correspondent generator matrix 

 Formally, a CTMC is defined by a finite set of states S and a transition rate matrix R: 

S × S → ≥0, where a positive rate  = R(s, s’) between two states s and s’ denotes that 

the probability of moving from s to s’ is described as a negative exponential distribution 

(1 - e
-.t

, where t is the exposed time), with the rate used as the parameter. Typically, in 

a state s, there is more than one state s’ for which  > 0. This is known as a race 

condition, because a race between the outgoing transitions from s occurs and the first 

transition to be triggered determines the next state. So, the probability of moving from 

state s to s’ in a single step is the probability that this transition is enabled first (that is, 

the delay of this transition finishes before the delays of all other transitions leaving s). 

In the context of reliability, the transition rates represent parameters such as failure rates 

and repair rates of the system. 

 To illustrate the operation of Markov chains, we consider, for example, the simplest 

case of a system with two possible states: operating system (available) and failure 

(system unavailable). In this case, transitions between these states could represent the 

failure and repair processes to which the system is subjected. Therefore, the dynamic 

behavior of the system can be regarded as a sequence of states of the system as time 

evolves. Thus, in Fig. 3.2, we can see a system consisting of two components in 

parallel, which is operational when at least one of these components is working. 
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Fig 3.2 - Markov diagram of two components in parallel 

 As each component has two states, the system in parallel has four possible states, as 

shown in Table 3.1: 

Table 3.1. Topology table of the Elevator Control System 

System state State of the component 1 State of the component 2 

0 operational operational 

1 failure operational 

2 operational Failure 

3 failure Failure 

 

 Markov chains are not limited to sequential structures. As shown in Fig. 3.2, multiple 

transitions can occur from a state. The model enables a direct transition from the state 0 

to state 3. Within the context of reliability, this transition could represent the 

simultaneous failure of two components (due to a common cause failure of 

components), resulting in immediate unavailability of the system. Thus, there is the 

possibility of characterizing both independent failures and dependent failures while the 

system is in state 0. 

 The representation of behavior of Markovian processes is captured by the system 

called the Chapman-Kolmogorov equation for the probability of transition. The solution 

of the equation gives the probability of the unconditional state (determining the 

probability of a state without depending of the probability of others). This temporary 

solution is very significant when the system under investigation must be evaluated with 

respect to its behavior in short term. 

 Assuming a long term, however, it can be shown that the state probabilities often 

converge to constant values. These stationary state or equations of equilibrium can be 

derived from the system of differential equations that expresses the appearance and 

disappearance of a state s relative to other states, through a statistical equilibrium [16, 

51]. 
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 CTMC can be analyzed using two traditional properties: transient behavior, which 

considers the state of the model at a particular time instant; and steady-state behavior, 

which describes the state of the CTMC in the long-run. The transient probability s,t(s’) 

is defined as the probability, having started in state s, of being in state s’ at time instant 

t. The steady-state probability s(s’) is the probability of, having started in state s, being 

in state s’ in the long-run, that is, in the equilibrium state of the system. The steady-state 

probability distribution, that is, the values s(s’) for all s’  S, can be used to infer the 

percentage of time, in the long-run, that the CTMC spends in each state. 

3.2 Prism 

 Prism [52, 53] is a formal probabilistic analysis tool developed by the University of 

Birmingham. It accepts probabilistic models described in a simple, high-level modeling 

language. Prism enables the analysis of Markov models specified in discrete time 

(DTMC), continuous (CTMC), and Markov decision processes (MDP). The verification 

of the specified properties in the model is made with the aid of the temporal logic 

language PCTL for DTMC and MDP models and CSL for CTMC. 

 The choice of model to be specified (DTMC, CTMC and MDP) will depend on the 

nature of the system to work. DTMC provides a relatively simple model for systems 

where the exact probability of different behaviors for a sample of discrete time is 

known. MDP contains DTMC and adds support for non-determinism, which can be 

used to model competition between processes running in parallel or for specifications 

whose exact values of some system parameters are unknown. CTMC extends DTMC by 

allowing transitions to occur in real-time (using exponential distributions), rather than 

only in discrete steps. 

 

Fig 3.3 – The structure of Prism [52] 

 Fig. 3.3 illustrates how this tool acts: first, it reads and analyzes a system's 

description written in Prism, then builds the corresponding representation in DTMC, 

CTMC or MDP, calculates the set of all reachable states, and identifies any deadlock 

states (that is, absorbing states). If necessary, the transition matrix from the constructed 

probabilistic model can be exported for use in another tool such as Matlab [9] or 

MRMC [37]. Then Prism analyzes one or more properties in PCTL or CSL determining 

if the model satisfies each property. 
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 The underlying data structures in Prism are BDD (Binary Decision Diagram) [50] 

and MTBDD (Multi-Terminal Binary Decision Diagram) [62]. However the tool 

provides three different engines that can be used for numerical computation (a 

conventional explicit version using sparse matrices, a pure MTBDD-based 

implementation, and hybrid approach of both). 

 The tool is implemented in a combination of Java and C++. The high-level parts of 

the tool, such as the user interface and parsers, are written in Java. The low-level 

libraries are written in C++ and the CUDD package [61], which is written in C, enabling 

the use of BDD and MTBDD. Prism is a free, open source application that can be 

downloaded from its website [53]. It is available from either a command-line or a 

graphical user interface. The graphical user interface provides a built-in text-editor for 

the Prism language, an editor for Prism properties, tools for plotting of graphs and a 

simulator tool for exploring and debugging Prism models (see Fig. 3.4).  

 

Fig 3.4 - Screenshots of the PRISM tool running 

3.2.1 Prism Modeling Language 

A large range of formalisms have been proposed for specifying probabilistic models. 

These include stochastic variants of process algebras (such as Probabilistic CSP [54], 

PMaude [55]), Petri nets [44, 56], stochastic activity networks [57] and many others. 

Nowadays, Prism is one of the most prominent formalism, because it provides a simple, 

textual modeling language, based on the concept of reactive modules formalism defined 

by Alur and Henzinger [45]. It is the only formalism that specifies and analyzes all 
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these variations using efficient and viable techniques of representation of states that 

allows modeling larger systems than the other formalisms. 

 In this section, we present a brief introduction to the Prism language. It offers a solid 

way of describing all model types (DTMC, CTMC and MDP) supported by the tool. For 

further details about the Prism language and its semantics, see the Prism documentation 

and case study at [53]. 

Modules, variables and commands 

 Modules and variables are the basic components of this language and the system is 

built as a parallel composition of the declared modules. Its datatypes include: integers, 

reals and booleans and can be declared local or globally. Modules can interact with each 

other (synchronization) and contain a number of variables that reflect their possible 

states. Its behavior (the changes between states via quantified transitions) is determined 

by a list of guarded commands. For a CTMC, a command uses the following syntax: 

[action] <guard> → rate : <update>; 

 Each command (initiated by a [], possibly with an action label inside) is formed of a 

guard (boolean expression before the symbol →, which is a predicate over the model 

variables) followed by a rate (an non-negative real-valued expression, where 1 means 

100%) and the update expression gives the new values of the variables in the module by 

the following form: 

(v1’ = u1) & (v2’= u2) & … & (vk’= uk) 

where v1, v2, …, vk are local variables of the module and u1, u2, …, uk are expressions 

over all variables. A module can access all the variables of the model, but it can only 

update its own local variables. The transitions represent which state changes are 

possible and how often they occur. A simple command for a module with one variable 

sensor_sensorfailure might be: 

[](!sensor_sensorfailure) -> (5E-4) : (sensor_sensorfailure' = true); 

which states that whether sensor_sensorfailure is false, it is changed by one (the 

sensor_sensorfailure' denotes the new value of the variable). In this case, the update of 

the variable occurs with rate 5E-4 (that is, the delay before this transition is completed 

is sampled from a negative exponential distribution with parameter 5E-4). 

Composing modules 

The modules are integrated typically using the standard CSP [59] parallel composition 

(that is, modules synchronize over all their common actions). Prism also supports other 

CSP process-algebraic operators (alphabetized parallel, interleaving, etc) that can 

specify more precisely the synchronization between the modules. 

 A command (belonging to any of the modules) is enabled in a global state of the 

probabilistic model whether the actual state satisfies the predicate guard. If a command 

is enabled, a transition that updates the module's variables can occur with rate. For 
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CTMC, the choice between which command is performed (that is, the scheduling) 

depends on the race condition. 

 The multi-way synchronization provides interactions between multiple modules, that 

is, simultaneous changes in their states. It is modeled by augmenting guarded 

commands with action labels that are placed inside the square brackets. We illustrate 

this with a simple example derived from the Elevator control system described in 

Chapter 2 (see Fig. 3.5). It implements a PowerSource and a Monitor unit, whose two of 

the repair update situations are defined by synchronized commands. For example, the 

last command of both modules is labeled with Monitor_In1_Repair name, because if 

both components fail, they must be repaired simultaneously, because the PowerSource is 

monitored by the Monitor. 

 

Fig 3.5. System representation using Prism 

This Monitor_In1_Repair action is used to force two modules to make transitions 

simultaneously. For example, in the state (ps1_lowpower = true and m_swithcFailure = 

true), the composed model can move to state (ps1_lowpower = false and 

m_swithcFailure = false), synchronizing over the Monitor_In1_Repair action. The rate 

of a synchronous transition is defined as the product of the individual rates. In this 

example, there is only one initial state, but Prism allows the specification of a set of 

initial states. Therefore, we can define formulas that can be used as shorthand for the 

expressions. 

3.2.2 Property Expressions 

 In the Prism Model Checking, verification properties are interpreted in a similar way 

to non-probabilistic case, in which a formula containing temporal expressions can 

typically returns all executions that satisfy a certain property, or that there is an 

execution that satisfies it. In this section, we use the temporal logic CSL (Continuous 

Stochastic Logic) which is designed for specifying properties of CTMC specifications. 

 The two principal operators in the Prism property specification language are the P 

(probabilistic) and S (steady-state) operators. P allows one to reason about the 



43 

 

probability that executions of the system satisfy some property. For instance, the 

formula P  5e
-4

 [ F
[t;t]

 !MonitorOutFailure ] checks if the probability of the 

instantaneous availability of the system is 0.0005 or less, the, that is, the probability that 

it is operational at time instant t. Moreover, the formula P  1e
-3

 [ true U
<=200

 

“PowerSourceFailure” ] indicates that, with probability 0,001 or greater, the power 

source component will fail within 200 time units. The operator S deals with the system 

behavior in the stationary state (long term). The formula S < 1e
-3

 [ 

“MonitorOutFailure” ] for instance, says that in the long term, the probability that the 

output port of the monitor does not exhibit a failure is less than 0.001. 

 Hence, the satisfaction of a property (that is whether it is true or false) is defined for 

a single state of a model. When analyzing a property, Prism considers it to be true if it is 

satisfied in all states of the model, and false otherwise. 

 In Prism, we can also directly specify properties that evaluate to a numerical value. 

This is achieved by replacing the probability bounds from the P and S operators with 

=?. Thus, we can write an expression of the form P =? [F
[0;600]

 !PowerSourceFailure], 

for which the model checker will return a real probability that the system ends. This 

formula checks the probability that power source component fails within 600 time units. 

Moreover, the formula S =? [ num sensors  min sensors ] checks what is the long-run 

probability that an acceptable number of sensors are operational. 

 In many cases, the most useful form of analysis is to compute such values for a range 

of models or properties. For example, one might determine P = ? [ true U<=T 

“Monitor_Failure” ] for a range of values of T in order to gain insight into the 

likelihood of the system terminating as time progresses. 

 In addition, other properties can be analyzed. Prism models can be augmented by 

introducing the notion of costs and rewards. The properties state some characterisation 

about the expected value of these costs/rewards. These are specified using the R 

operator, which works in a very similar fashion to the P and S operators [7, 8]. 

3.2.3 Prism Model Checker 

 Prism is a symbolic model checker and incorporates a range of model analysis 

techniques [50]. The model construction and reachability are implemented using 

MTBDD and BDD respectively. The Prism implementation use data structures based on 

BDD. This offers an important feature for this model checker, because it provides 

compact representations and efficient manipulation of large probabilistic models to 

exploit their structure and regularity. Prism also uses MTBDD in combination with a 

conventional explicit storage scheme such as sparse matrices and arrays in order to store 

numerical values. The model size capacity of Prism is nearly to 10
7
 for CTMC and 

higher for other types of models.  

 Reachability analysis using BDD forms the basis of non-probabilistic symbolic 

model checking. For both PCTL and CSL, model checking generally reduces to a 

combination of reachability-based computation and the solution of linear equation 

systems. More specifically, the underlying computation in Prism involves a 

combination of: 
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• Graph-theoretical algorithms, for qualitative probabilistic model checking and 

conventional temporal-logic model checking. 

• Numerical computation, for quantitative probabilistic model checking, to 

provide solution of linear equation systems (for DTMC and CTMC) and linear 

optimization problems for (MDP). 

Graph-theoretical algorithms are always performed in Prism using BDD. They are 

comparable to a non-probabilistic model checker. For numerical computation, Prism 

uses iterative methods rather than direct methods due to the size of the models that need 

to be handled. For transient analysis of CTMC, Prism incorporates an iterative 

numerical method known as uniformisation or Jensen’s method. For solving linear 

equation systems, it supports a range of well-known techniques, including Jacobi, 

Gauss-Seidel and SOR (successive over-relaxation) methods. Finally, for the linear 

optimization problems which arise in the analysis of MDP, Prism uses dynamic 

programming techniques, in particular, value iteration. 

 In the case of numerical computation, Prism actually provides three distinct 

numerical engines. The first is implemented purely in MTBDD; the second uses more 

conventional data structures for numerical analysis: sparse matrices and full vectors; 

and the third is a hybrid, using a combination of the two. Typically the sparse engine 

provides faster numerical computation than its MTBDD counterpart, but it requires 

more memory. Sometimes, MTBDD can also exploit the models' structure and represent 

them far more compactly than a sparse matrix. Moreover, in cases where high regularity 

occurs, MTTB is able to perform quantitative analysis for models extensively larger 

than those used in a sparse matrix form. Thus, the performance of the tool may vary 

depending on the choice of the engine. The hybrid engine stores models in a MTBDD 

structure which is adapted so that numerical computation can be performed in 

combination with a full vector. It aims to use less memory than sparse matrices, but 

providing a faster computation than pure MTBDD. By default, PRISM uses the hybrid 

engine.  

3.2.4 Modeling a Simple System using Prism 

 The system shown in Fig. 3.6 consists of a primary component (Comp1) with 

continuous failure monitoring, a backup component (Comp2) with no self-monitoring, 

and an external monitoring component (Monitor) whose function is to monitor the 

health of the backup component. 

 The failure rate of Comp1 is 1 = 5x10
-5

 per hour. The self-monitoring strategy of 

this component enables its functionality to be verified prior to every flight. (The median 

time duration of each flight is assumed to be 5 hours). Thus, the repair rate of Comp1 is 

1 = 1/5 per hour. If this component is failed or inoperative, it is repaired before the 

next dispatch. The failure rate of Comp2 is 2 = 2.5x10
-5

 per hour. The backup 

component has no self-monitoring, but it is monitored continuously by an independent 

monitor. If the backup system fails and the monitor is working, the backup is repaired 

before the next dispatch. If the monitor is not working, the backup component can fail 



45 

 

latently, because the backup component is checked only every 10 flights (50 hours - 2 

= 1/50 per hour). If the backup component is failed at one of these scheduled 

inspections, with no indication of a failure informed from the monitor, it is assumed that 

the monitor is also failed, so both are repaired prior to the next flight. 

 

Fig 3.6 - Diagram of a system with an component and backup with an independent monitor 

 The monitor has a failure rate of 3 = 2.5x10
-5

 per hour. Whether the monitor is 

failed, it can be repaired in two different situations. First, as noted above, if the backup 

component is failed at its periodic 50-hour inspection and there was no monitor 

indication of a component failure, then the monitor is repaired along with the 

component before the next dispatch. Second, the monitor is checked periodically every 

100 flights (500 hours - 3 = 1/500 per hour), and if the monitor is failed, it is repaired 

prior to the next flight. 

 As described in this chapter, Prism can be used to analyze the behavior of fault-

tolerant systems. Also, it offers an interesting language specification to abstract the 

mathematical representations of the system. Considering this specification, the method 

that we use for modeling repairable systems is traditionally called as components 

approach, because we consider the components individually. In this method it is 

necessary to know the density functions of failure and repair probability for each 

component and how they are connected. 

 The failure model of a repairable system usually includes the reliability of 

components, system architecture, the physical layout of operation, as well as aspects 

related to availability, maintainability and maintenance practices used. In aeronautical 

context, all such information results from the safety analysis are performed in such a 

system. To generate a stochastic process of a repairable system, the random variables of 

interest are the median time between failures (MTBF) and median time to repair 

(MTBR).  

 Once we perform the analysis of random variables on time between failures and 

repair times and if it is observed the adequacy of the exponential distribution for both 

variables, the system can be modeled using Markov models.  

 Fig.3.7 illustrates a Prism specification of this system. The first module, Comp1, 

specifies an abstract failure behavior of the Comp1. The variable c1_failure represents 

its single failure mode. The first transition captures one of the possible changes in the 
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failure mode: from an operational state it can fail with a rate of 5e
-5

 (failure/hour). The 

next command represents a repair transition. Comp2 is the second module, which has 

different repair transitions command. One of them is synchronized (the labels inside [ 

and ] state the synchronization points) with the module Monitor. They work similarly to 

the first transition of this module, except that they need to synchronize with the 

corresponding labels of the module Monitor, allowing them to be triggered. The module 

Monitor also uses a single variable: monitor_failure. Its first command states a failure 

transition command whereas the second represents the capability of its single failure 

mode being repaired with a rate of 1/500 (repair/hour). The last command represents 

repair transitions corresponding to the repair transitions of the Comp2. 

 

Fig 3.7- Prism specification of a small system 

 The first line of this specification states that we are considering a continuous time 

Markov chain that is composed of a set of discrete states, where each of them is the 

representation of the state (operational, degraded and faulty) of each failure mode (local 
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variables) of a component. This chain of events requires the use of exponential 

probability distributions for modeling failure mode rates and repairs (this is why we use 

the CTMC model). Therefore, the model is basically composed of modules, internal 

variables and instruction of transition states that can be synchronized or not. Also, we 

use the ―formula‖ operator, which is used to represent the logic of propagation of failure 

and acts as a variable in the observation on the stage of model verification. 

 Fig. 3.8 shows the set of states and the transition matrix that represents the respective 

Markov model of the system as well as the transient probabilities of each state 

considering an exposition time of 1000 hours. The states 6 and 7 represent the situation 

of the system failure. 

 

Fig 3.8 – States, matrix transitions and steady-state probabilities of the small system specification  
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Chapter 4  

Proposed Strategy 

This chapter presents a strategy to perform quantitative safety assessment of aircraft 

systems using probabilistic model checking. The main objective is to use formal models 

as support for verification and validation of the system safety requirements. The used 

formal notation is a textual representation of Markov chains (it is called Prism) and is 

systematically generated from a Simulink diagram, annotated with failure logic, by 

applying translation rules. Hence in this chapter, we also describe the rules responsible 

for the systematic formal model generation. An overview of the strategy is described in 

Section 4.1. Section 4.2 presents the extended tabular notation used in our strategy. The 

details about collecting and processing the input data for the formal model generation 

are outlined in Section 4.3. Afterwards, Section 4.4 discusses how to generate the 

formal model by applying the set of proposed translation rules. Finally, Section 4.5 

shows how to perform the quantitative analysis from a Prism model. 

4.1 Strategy Overview 

 Our strategy aims to perform a quantitative analysis over an aircraft system, which is 

designed using a well-established model-based approach. The quantitative analysis is 

based on the use of probabilistic formal models. The formal model is specified using the 

Prism language which is later on verified by model checking. In the Prism analysis, 

time and probability queries are dealt with in the model checker using the CSL temporal 

languages. By using the Prism model checker we can detect whether any criticality level 

condition is violated without building any fault-tree. 

 Most of the techniques to create probabilistic formal models of aeronautic systems 

are highly subjective, because they are dependent on the skill of engineers that specify 

the formal model in a non-systematic ad hoc fashion [6, 18]. But instead of creating a 

Prism specification implicitly via a tool, we follow a systematic strategy by providing 

formal translation rules that transform a high-level system description (Simulink 

diagrams) into a Prism specification. The input information necessary for this strategy 

comes from a qualitative model constructed during a common safety assessment 

process, enabling to mechanize the strategy. 

 Fig. 4.1 presents an overview of our strategy. It starts by collecting the system 

description, which contains the system block diagrams and a failure logic model. With 

this information, we apply our translation rules to create a Prism specification and the 

associated CSL formulas to analyze the safety requirements of the system. Then, the 
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Prism model-checker is invoked to check all formulas and only when one of them is not 

satisfied, this is reported to the user. 

 

Fig 4.1 Overview of proposed strategy 

 The generated Prism model has a Continuous-Time Markov Chain (CTMC) 

representation and captures the failure logic about the system. Using this Prism model, 

the probabilistic model checker can automatically perform quantitative analysis that can 

answer several kinds of questions about the system. Hence, using a notation of ease 

understanding instead of working directly with their Markovian representation, we 

provide a more user-friendly notation to engineers. 

 The key idea is to incorporate the support of formal analysis in the process of safety 

assessment to provide time and probability characteristics, enabling a more dynamic 

and efficient safety analysis. As result, we describe the system in a high-level 

specification, capable of providing an efficient quantitative analysis, considering the 

architectural issues in order to maintain integrity with the usual solution. The translation 

strategy is divided into the following steps: 

 Extending the tabular notation: Recall from Sections 2.3.2 and 2.3.3 that we 

used tabular annotation (IF-FMEA tables) to describe the failure model of a 

system. In this step these tabular structures are extended to add information 

about system component repairs and its failures monitoring. 

 Collecting and processing the input data: The model is generated from its 

textual and tabular Simulink representation. We organize the data following an 

abstract syntax, allowing that the translation rules can be applied to generate the 

Prism specification. 

 Translation Rules: In this step, the generated structure from the previous step is 

processed and its respective Prism specification is generated as output according 

to the semantics given by the translation rules. 

 Quantitative Analysis: Finally, we show how to analyze the generated 

probabilistic model using the Prism model checker which is supported by 

verification of formulas expressed in CSL language. 

 We describe these steps in the following sections. The details are applied in practice 

using the case study presented in Chapter 5. 
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4.2 Extending the tabular notation 

Although all tabular structures presented in Section 2.3.3 are consistent and integrated 

with respect to the system failure mode and propagation, they are not sufficient to create 

a probabilistic formal model to perform a quantitative analysis using Markov models in 

a systematic way. To represent aeronautical systems consistently and according to the 

ARP 4761 and FAR 25.1309, we need more information to model the non-monitored 

failures of the system. This involves knowing about component's latency (if a 

component is monitored or not) and how often a repair takes place (Mean Time To 

Repair [MTTR]). According to the FAR 25.13.09 [24]: 

 

“If one or more failed elements in the system can persist for multiple flights (latent, 

dormant, or hidden failures), the calculation should consider the relevant exposure 

times (e.g. time intervals between maintenance and operational checks/ inspections). In 

such cases the probability of the Failure Condition increases with the number of flights 

during the latency period” 

 

Thus, we extend this modeling notation (tabular structures) with the addition of such 

information. As result, a new tabular structure is defined. 

 The first information to be incorporated is the classification of each basic component 

of the system about its failures' monitoring. In the aeronautic context, some components 

are checked before each flight to confirm that they are working, and repaired if 

necessary. So, this type of component can be called as self-monitored, because we need 

to know if it is working before of each flight. But some aircraft systems include 

components that are not inspected before and during every flight. Failures in such 

components are called latents because they are not detected unless another combined 

failure occurs and compromise a function that needs such components or during 

scheduled maintenance (generally, after some flights). For this last type of component 

we must consider two situations: externally monitored and non-monitored components. 

The first type of components is monitored continuously by an independent monitor. If 

the component fails and the monitor is working, the component can be repaired before 

the next dispatch. If the monitor is not working, latency reappears. The type monitor is a 

particular component responsible for monitoring relevant components. The latter type 

represents all components that are not monitored and naturally they have latent failures. 

Their faults are only checked in regular periods of maintenance. In short, we need to 

distinguish between a monitored and non-monitored failure of a component because 

non-monitored failures are more severe in safety analysis. 

 Based on reliability predictions and safety factors (dispatchability, MTBF, severity, 

redundancy, and other several reasons) the periodic inspection/repair intervals for each 

component is also defined. This is the second information that we added to the input 

model. Table 4.1 presents a summary of this additional information. 
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Table 4.1. Definition of the additional information 

Maintenance strategy 
Inspection Time 

Self-monitored 

Monitored 

Non-monitored  

Monitor 

It is the maximum exposure time which a component is 

submitted without inspection or repair. Ex.: 50 hours, 10 

flights. 

 

 Considering these assumptions, the tabular structure of Section 2.3.3 is extended to 

store this data. Table 4.2 shows only the additional information. 

 

Table 4.2. Additional information using a tabular notation 

Component Maintenance strategy External Component Inspection Time 

PoweSource_1 Monitored Monitor-In1 50 hours 

PoweSource_2 Monitored Monitor-In2 50 hours 

Monitor Monitor  100 hours 

Reference Self-monitored  5 hours 

Controller Self-monitored  5 hours 

Sensor Self-monitored  5 hours 

Actuator Self-monitored  5 hours 

4.3 Collecting and Processing the Input Data 

Recall from Section 2.3.3 that the component failure characterizations can be captured 

by hierarchical tabular structures (Table 2.1 through Table 2.4). These tables, also 

considering the additional notation of the previous section, are a concrete representation 

of the system failure model. Although the system model is illustrated in a graphical and 

diagrammatic view, its failure model is commonly stored in this tabular structure. This 

facilitates the data extraction and processing as well as model transformation [5, 13]. 

 In Matlab/Simulink, for instance, matrix structures (tabular notation) are created 

using Matlab environment variables to store the failure model [9]. These structures store 

user data related to each component in a Simulink model. The matrix structures can be 

accessed from the variable UserData calling the function get_param. Hence, all 

information required for parsing the model is read from the UserData variable, 

considering the structure defined. Irrelevant information about the graphics of the model 

is discarded, extracting only the relevant information. Matlab/Simulink also allows 

accessing these structures via a single text file. 

 Although the annotations that we collect in the Simulink diagram are similar to the 

tabular structures presented during the safety analysis, first we need to process the input 

data in the tabular format to systematically generate the Prism specification. Currently, 

our translation rules are stated in terms of the abstract syntax presented in Fig. 4.2. 
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These data structures are an abstract representation of all the information introduced 

previously (see Section 2). 

 

Fig 4.2 - Defined types based on tabular annotations 

 We start by considering a system (System) as a structure that contains a name 

(System_Name) and a list of subsystems (Seq(Subsystem)). Each subsystem can be 

another system or a module; because components can also be systems. A module 

(Module) represents the lower level component that contains a name, a list of ports 

(Seq(Ports)), a list of deviations (Seq(Deviation)), a list of malfunctions 

(Seq(Malfunction)), the maintenance strategy info and the inspection time. All these 

types (Port, Deviation, Malfunction, MaintenanceStrategy and InspectionTime) are 

associated with the tabular structures used to store all system information about its 

architecture, hierarchy, failure conditions, failure modes, repairs and the characteristics 

of monitoring and propagation of component failures. Port is a structure that contains a 

Port_ID (representing the identifiers of input/output ports) and an AssociatedPort 

(which stores the connected port of other components).  

 Annotation is a boolean expression that represents the failure logic of deviations. Its 

definition considers And/Or operators and their terminal terms can be malfunction 

names or deviations from any port. Criticality represents a real number ( ) used to 

quantify the tolerable probability associated with a failure condition (expressed via a 

deviation). Finally, InspectionTime and Rate are also real numbers used to represent the 

rate of occurrence of a malfunction and of a repair, respectively. 

To exemplify this abstract syntax, we describe below the equivalent representation of 

the Elevator Control System described in Section 2.3.3: 
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 Lines 2 through 18 define the monitor component, whose maintenance strategy 

attributes are defined in line 3. Association between its ports is described in lines 7 to 

12. Lines 13 to 15 describe the deviations and its failure logic expression and lines 16 

and 17 relates the attributes of component failure modes. Next, lines 19 through 43 

describe the controller which is treated as a subsystem. So inside its correspondent 

tags, this structure defines the three subcomponents that compose this subsystem 

(Component_1, Component_2, Component_3) and the input/output port associations (lines 

37 through 42). For conciseness, only the Component_1 is described (lines 20 through 

34). Finally, the remaining system components are listed in lines 44 to 49, whose data 

structures are similar to the monitor and Component_1. 
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4.4 Translation Rules 

In this section, our strategy applies a set of translation rules which are based on the 

abstract syntax of Fig. 4.2 to generate the Prism specification. To ease the overall 

understanding about their applicability we also provide the typical sequence of their 

application in Fig. 4.3. Also, we will describe meticulously the main concept and 

description of these rules. 

 

Fig 4.3 - Translation Strategy Overview 

 The strategy always starts by applying Rule 1, which state that we are dealing with a 

CTMC Markov model and applies other rules to create the several Prism modules from 

the system components (Rules 2–4). The body of a module is effectively created by 

Rule 5. After that, basic declaration instructions (Rules 6-8), commands (Rules 9-11) 

and repair transitions (12-22) are created. To complete the translation strategy, formula 

expressions are created (Rules 23-28) using a set of rules that decomposes all logic 

expressions (Rules 29-35). 

4.4.1 Compound Systems and Subsystems  

Our rules are inductively defined on the structure of a Prism system. We start with Rule 

1 that takes as argument a pair where the first element has the name of a system (SName) 

and the second element a list of its subsystems (SubSys). 
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Rule 1 |{ (SName, SubSys) }|
system

   ctmc  |{ SubSys }|
subsystem 

Following Rule 1, the resulting Prism code is basically the directive ctmc (instructing Prism 
to perform a CTMC interpretation), and a call to the function subsystem. This function is 
defined by Rules 2 (base case) and 3 (recursive case). 

Rule 2 |{ <S> }|
subsystem 

  |{ S }|
module

 

Rule 3 |{ S: tail }|
subsystem 

  |{ S }|
module

 |{ tail }|
subsystem

 

 Rules 2 and 3 do not produce Prism code. They access each component of this 

system and call the function module recursively for each component (Rules 4 and 5). 

For instance, applying these rules on the ECS, we obtain the following situation: 

Step1: |{ PowerSource_1: tail }|
subsystem   

  
  |{ PowerSource_1 }|

module 
   |{ tail }|

subsystem  

Step2: |{ PowerSource_2: tail }|
subsystem 

   
  |{ PowerSource_2 }|

module  
  |{ tail }|

subsystem  

Step3: |{ Monitor : tail}|
subsystem  

  
  |{ Monitor }|

module  
   |{ tail }|

subsystem  

... 
Step7: |{<Actuator>}|

subsystem 
-> |{ Actuator }|

module   

4.4.2 Module 

As modules can be subsystems as well, we translate modules by using two rules: Rule 4 

(which calls function subsystem) and Rule 5 (which starts the creation of a Prism 

module).  

Rule 4 |{ (SName, SubSys) }|
module

          |{ SubSys }|
subsystem 

 Rule 4 can be distinguished from Rule 5 by pattern matching. One of them will be 

applied depending on the type that they are dealing. For instance, the Controller has 

internal components, that is it is a subsystem. So this type matches with the Rule 4. 

|{ Controller, Component1:tail}| 
module   

  |{Component1: tail}|
subsystem 

 Rule 5 takes as input a tuple containing the module elements: name, type, set of 

ports, set of deviation logics, malfunctions, maintenance strategy and inspection time. 

The module name (MName) is used to name the Prism module (between the keywords 

module and endmodule). Inside the module, the function declars is called to create the 

declaration part, and the function commands the behavioral part. Finally, the function 

formulas is called to create the set of Prism formulas outside the module. 

Rule 5 |{ (MName,Type,Ports,Deviations,Malfuncs,MStrategy,IT) }|
module 

 

module MName 
     |{ MName, Malfuncs }|

declars
 

     |{ MName, Ports, Malfuncs }|
failureCommands

 
     |{ MName, Ports, Malfuncs, MStrategy, IT }|

repairCommands
 

endmodule 
|{  MName, Ports, Deviations, true }|

formulas 
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 For example, the Monitor is a lower level component, and then by pattern matching 

the Rule 5 will be used in its translation that is shown below: 

|{ (Monitor, Monitor, (In1, (PS1, Out1)): tail, <LowPower>, 

<switchFailure>, Monitor, 50) }|
module  

  

 
module Monitor 
    |{ Monitor, <switchFailure> }|

declars
  

    |{ Monitor, (In1, (PS1, Out1)): tail, <switchFailure> }| 
failureCommands

 
    |{ Monitor, (In1, (PS1, Out1)): tail, <switchFailure>, Monitor, 50 
     }|

repairCommands
 

endmodule 
 
|{ Monitor, (In1, (PS1, Out1)): tail, <LowPower>, true }|

formulas
 

4.4.3 Declarations 

Rules 6 and 7 act in the same style of rules 2 and 3 and is used to access each 

component malfunction by your list. 

Rule 6 |{ MName, Malfuncs: tail }|
declarations

  

    |{ MName, Malfuncs }|
declar

 

    |{ MName, tail }|
declarations

 

Rule 7 |{ MName, <Malfuncs> }| 
declarations

    |{ MName, Malfuncs }|
declar

 

 Malfunctions are representations of possible failures within a component. To capture 

this feature in Prism, for each component malfunction, local boolean variables 

initialized with false are defined. 

Rule 8 |{ MName, (MfName, Rate, Annot) }|
declar

     

 MName . _ . MfName: bool init false; 

Rule 8 uses each component malfunction to generate the declaration of its respective 

local variable inside the module block. Module’s name (MName) and malfunction’s name 

(MfName) are used to create the local variable name. For instance, the translation of 

sensor malfunctions using Rules 6, 7 and 8 generates the following Prism: 
 
module Sensor 

 |{ sensor, (sensorfailure, 1e-4, Annot): tail }|
declarations

  

     sensor_sensorfailure: bool init false; 

     sensor_sensordegradation: bool init false; 

… 
endmodule 
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4.4.4 Failure Transition Commands 

Prism transition commands are responsible to update the state of the local variables. We 

translate malfunction structure (rates and logic expression) into failure transition 

commands which updates the malfunction to a failure state based on its failure rate. The 

Rules 9 and 10 act in the same style of rules 2 and 3 and is used to access each 

component malfunction by your list. 
Rule 9 |{ MName, Ports, Malfuncs: tail }|

failureCommands
  

 |{ MName, Ports, Malfuncs }|
fCommand

 

 |{ Name, Ports, tail }|
failureCommands

 

Rule 10 |{ MName, Ports, < Malfuncs > }|failureCommands   

 |{ MName, Ports, Malfuncs }|
fCommand

 

 Rule 11 translates each malfunction into a Prism command. It always assumes the 

guard as a logical conjunction between the negation of a malfunction (this comes from 

Rule 8) and the negation of the fully failed system situation (a term defined by a Prism 

formula). If such a guard is valid then, with a rate given by Rate, this malfunction is 

activated. 

Rule 11 |{ MName, Ports,(MfName, Rate, Annot) }|
 fCommand

  

 [] (!(MName .MfName)) -> Rate: (MName .MfName’=true); 

 As an example, we present the translation of the Sensor malfunctions in Prism 

commands using Rules 9, 10 and 11. 
module Sensor 

 sensor.sensorfailure: bool init false; 

 sensor. sensordegradation: bool init false; 

  |{sensor, (In1, (PS1, Out1)): tail, (sensorfailure, 1e-4, Annot): tail 

       }|
failureCommands

  

  [](!sensor_sensorfailure) -> (5E
-4
) : (sensor_sensorfailure' = true); 

  [](!sensor_sensordegradation) -> (5e
-4
) : 

   (sensor_sensordegradation' = true); 

… 
endmodule 

4.4.5 Repair Transition Commands 

Rules 12 through 17 translate the maintenance strategy (defined for each component) 

into Prism repair commands. This is performed according to the classification of each 

basic component of the system with respect to the treatment of the type of monitoring of 

its faults. Rule 12 considers two types: Self-monitored and Non-monitored (note the 

provided clause), whereas Rules 13 and 14 tackle the other cases: Monitored and 

Monitor, respectively. 
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 In Rule 12, if the corresponding guard is valid, then, with a rate (1/Inspection Time), 

all component malfunctions are deactivated. Function orLogic takes a logical 

disjunction between all malfunctions (this comes from Rule 8) and function Update 

deactivates all malfunctions (set the value false to each malfunction). 

Rule 12 |{ MName,Ports,Malfuncs,(MSType, AssocPorts:tail),IT}|
repairCommands

  

 [] ( |{ MName, Malfuncs }|
orLogic 

) -> (1/IT): |{ MName, Malfuncs }|
update 

; 

provided MSType = Self-Monitored or MSType = Non-monitored 

 However, if the component is Monitored, its repair commands must be synchronized 

with the Monitor component (function monitoredRCommmand). 

Rule 13 |{ MName,Ports,Malfuncs,(MSType, AssocPorts:tail),IT }|
repairCommands

  

 |{ Malfuncs, AssocPorts, IT }|
 monitoredRCommand

 

 |{ MName,Ports,Malfuncs,(MSType, tail),IT }|
repairCommands  

 

provided MSType = Monitored 

Rule 14 |{ MName,Ports,Malfuncs,(MSType, <AssocPorts>),IT }|
repairCommands

  

 |{ Malfuncs, AssocPorts, IT }|
 monitoredRCommand

 

provided MSType = Monitored 

 

If a component is a Monitor, instead of the synchronized repair commands 
corresponding to the monitored component (function sincronizedRCommand), another 
repair command is created to represent the single repair of this component. 

Rule 15 |{ MName,Ports,Malfuncs,(MSType, AssocPorts:tail),IT }|
repairCommands

  

   |{ MName,Malfuncs, AssocPorts, IT}|
sincronizedRCommand

 

provided MSType = Monitor 

Rule 16 |{ MName,Ports,Malfuncs,(MSType, <AssocPorts>),IT }|
repairCommands

  

   |{ MName,Malfuncs, AssocPorts, IT}|
sincronizedRCommand

 

 [] (|{ MName, Malfuncs }|
orLogic

) -> (1/IT): |{ MName,Malfuncs}|
update 

;  

provided MSType = Monitor 

Rules 17 and 18 are used to define the synchronized repair commands between the 
monitored (Rule 17) and the monitoring component (Rule 18). 

Rule 17 |{ Malfuncs, (MName, PortID), IT }|
 monitoredRCommand 

  

 [MName._.PortID._.DependentRepair] ( |{ MName, Malfuncs }|
orLogic 

) -> 

(1/IT): |{ MName, Malfuncs }|
update 

; 

 [MName._.PortID._.Repair] (|{ MName, Malfuncs }|
orLogic 

) -> (1) : 

 |{ MName,Malfuncs }|
update

; 
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Rule 18 |{ MName,Malfuncs, (MName, PortID), IT }|
 sincronizedRCommand

  

 [MName._.PortID._.Repair] ( |{ MName,Malfuncs }|
OrLogic 

) -> (1/IT): 

 |{  MName,Malfuncs }|
update 

; 

 [MName._.PortID._.DependentRepair] (( |{  MName,Malfuncs }|
 orLogic 

)  

        -> (1): |{ MName,Malfuncs }|
update 

; 

 Rules 19 and 20 generate a logical expression used as guard of the module repair 
commands. The guard assumes a logical disjunction between the component 
malfunctions. 

Rule 19 |{ MName, (MfName, Rate, Annot): tail}|
 orLogic 

 

 MName._.MfName  |  |{ tail }| orLogic 

Rule 20 |{ MName, <(MfName, Rate, Annotation )> }|
 orLogic 

 MName._.MfName 

 Rules 21 and 22 create assignment commands that are part of repair command and 
are responsible for deactivate each malfunction defined for a module.  

Rule 21 |{ MName, (MfName, Rate, Annotation): tail}|
update

  

  (MName._.MfName’ = false) & |{ tail }|update 

Rule 22 |{ MName, <(MfName, Rate, Annotation )> }|
update

   

 (MName._.MfName’ = false) 

 For instance, the repair transition commands of the sensor module are generated 

applying rules 12, 19, 20, 21 and 22 that translate the sensor malfunction information in 

the following Prism code: 

|{sensor, (In1, (PS1, Out1)): tail, (sensorfailure, 1e-4, Annot): tail,  

(Self-monitored,””),5}|
repairCommands

  

     [] ( |{ sensor, (sensorfailure, 1e-4, Annot): tail }|
orLogic 

) -> (1/5):  

      |{ MName, Malfuncs }|
update 

; 

|{ sensor, (sensorfailure, 1e-4, Annot): tail }|
orLogic 

 

     sensor_sensorfailure | sensor_sensordegradation 

|{ sensor, (sensorfailure, 1e-4, Annot): tail }|update  

     (sensor_sensorfailure’ = false) & (sensor_sensordegradation’ = false) 

4.4.6 Formulas 

The final elements we address are Prism formulas. They correspond to the failure logic 

expressions annotated in Simulink diagrams. Each expression that represents the 

possible system failure conditions (deviations) is transformed into a Prism formula. As 
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these expressions, the formula is written in compositional form. That is, it is formed 

from basic formulas that are based on the local variables of each module (representing 

the malfunctions). Once again, the Rules 23 and 24 act in the same style of rules 2 and 3 

and is used to access each component deviation by your list. 

 
Rule 23 |{ MName, Ports, Deviation : tail, boolValue }| 

formulas
    

  |{ MName, Ports, Deviation }| 
formula

 

  |{ MName, Ports, tail, false}| 
formulas 

Rule 24 |{ MName, Ports, <Deviation>, boolValue }|
 formulas

   

  |{ MName, Ports, Deviation }| 
formula 

 At this point, we are able to translate the failure logic expressions. Formulas are 

labeled considering the deviation name, module name and output port id.   

 Rule 25 creates the component deviation formulas compounding a name for the 

formula based on the deviation name (DName), followed by the module name 

(MName) and the identifier of the port (PortID). The formula's body is a boolean 

expression resulting from function fExpression. 

Rule 25 |{ MName, Ports,(DName, PortID, Annot, Crit) }|
formula

  

 formula DName._.MName._.PortID = |{ Ports, Annot }|
fExpression

 

 The function |{ }|
fExpression

 takes a deviation annotation and the list of component 

ports to translate the annotation logic expression to a prism boolean expression. Next 

rules (26 and 27) are responsible for this. 
Rule 26 |{ Ports, And( Annot1 , Annot2)  }|

 fExpression
  

 ( |{ Ports, Annot1 }|
 fExpression

,) & ( |{ Ports, Annot2 }|
 fExpression

)  

Rule 27 |{ Ports, Or ( Annot 1 , Annot2) }| 
fExpression

  

 ( |{ Ports, Annot 1}|
 fExpression

) | (  |{ Ports, Annot2 }|
 fExpression

) 

 To complement the expression formation, it is necessary to identify the terminal 

terms of the logic expression. As we can see in the annotation type definition, there are 

two kinds of terminal terms. The first is the component malfunction name (Rule 28) and 

the other is the input port deviation name (Rule 29). 
Rule 28 |{ Ports, MfName }| 

fExpression
  (MfName) 

Rule 29 |{ Ports, (DName, Port_ID) }| fExpression  

 ( DName . |{ Port_ID, Ports }|
Associated

 ) 

 Finally, to express the formulas on compositional form, is need to change the input 

port deviation name to its associated port deviation. So an input deviation is replaced by 

its respective formula that describes the associated output port deviation. 
Rule 30 |{ Port_ID, (Port_ID’, AssocPort): tail }|

Associated
   

 |{ Port_ID, tail }|
Associated 
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Rule 31 |{ Port_ID,  < (Port_ID, AssocPort) > }|
Associated

   

 |{ AssocPort }|
AssociatedName 

Rule 32 |{ (MName, Port_ID) }|
AssociatedName 

 ( MName . Port_ID) 

 For instance, in order to generate the failure logic expressions about the Sensor 

deviations, we have to apply Rules 23 through 32. This translation results in the 

following Prism code: 

|{sensor, (In1, (PS1, Out1)): tail, (OmissionSignal, Out1, Annot, “”): tail,  

true}|
repairCommands

  

 formula OmissionSignal_Sensor_Out1 = sensor_sensorfailure |  

  LowPower_Monitor_Out1 | OmissionSpeed_Actuator_Out1; 

 formula CorruptedSignal_Sensor_Out1 = sensor_sensordegradation; 

 Using these translation rules, we generate a valid formal failure model retaining the 

semantics of diagrams and the system hierarchical model. 

4.4.7 Generation of system verification expressions 

In this step we create the set of expressions in the CSL language to analyze the failures 

conditions of the system. The failure conditions are represented as deviations of the 

system associated with a criticality. They are selected to be evaluated based on the FHA 

analysis that also specifies their tolerable probability in the tabular structures. Thus, for 

each Failure Condition to be evaluated, the following verification expressions are 

created.  

P = ? [ true U<=T "Failure Condition" ] 

((P=? [ true U<=T " Failure Condition" ]) / T) 

(((P=? [ true U<=T " Failure Condition" ]) / T) <= Crit) 

 

where Crit is the tolerable probability of the failure condition 

 Next, we present the translation rules used to generate the above mentioned 

verification expressions. This translation strategy follows the same principle of the 

strategy for the generation of the formal Prism specification. Rule 33 declares a variable 

of type Double to be used as a time argument in the verification expression. 
Rule 33 |{ (SName ,  Subsystems) }| 

system
   const double T; 

  |{ Subsystems }| 
subsystem 

       

 Rules 34, 35 and 36 are similar to Rules 1, 2, 3 and 4 defined previously, except that 

instead of calling the function module, they call the function expressions.
 

Rule 34 |{ <S> }|
subsystem 

  |{ S }|
expressions

 

Rule 35 |{ S: tail }|
subsystem 

  |{ S }|
 expressions

 |{ tail }|
subsystem

 

Rule 36 |{ (SName, SubSys) }|
expressions

      |{ SubSys }|
subsystem 
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 Rules 37 and 38 are used to access each component deviation in the respective list. 
Rule 37 |{ (MName, Type , Ports, Deviation: tail, Mfuncs) }|

expressions 
  

 |{ MName, Deviation }|
expr

 

 |{ MName, Type , Ports, tail, Mfuncs }|
expressions

 

Rule 38 |{ (MName, Type , Ports, <Deviation>, Mfuncs) }|
expressions 

  

 |{ MName, Deviation }|
expr 

 Rule 39 calls the function responsible for the creation of the verification expression. 

A deviation is considered a failure condition if Crit ≠ empty. Firstly the rule creates the 

label that will compose the argument of the verification expressions. After, it creates 

two different temporal expressions. 
Rule 39 |{ MName, (DName, Crit, Port_ID, Annot) }|

expres
  ->  

 Label “DName._.MName._.Port_ID“ = DName._.MName._.Port_ID 
 P =? [true U <= T “ DName._.MName._.Port_ID “] 
 ((P =? [true U <= T “ DName._.MName._.Port_ID “]) / T) 
 (((P =? [true U <= T “ DName._.MName._.Port_ID “]) / T) <= Crit) 
 provided Crit ≠ empty 

4.4.8 Model Considerations 

Our solution still does not consider bidirectional data flows (such as the propagation of 

failure as short-circuit). However, such features can be added by considering new 

translation rules. Our strategy is sound with respect to the following assumptions: 

 Component failures are detected in flight only and repaired during ground 

maintenance or before the next flight (description level), but the failures and 

repairs occur at constant rates (model level). 

 The system is assumed with perfect failure coverage and can to reconfigure to a 

degradable mode within no time. 

 In terms of completeness, our rules are complete in the sense that they can translate 

any Simulink diagram annotated with failure logic in the IF-FMEA style [5]. Besides, 

this approach is not limited to just using the Simulink diagram as input. Actually, the 

necessary input data, which contains information from the qualitative model and the 

respective failure logic and propagation, is obtained from the tabular structures, which 

are user defined. Simulink diagrams work implicitly with these structures [10]. 

 Our strategy follows a systematic process that has proved viable and of little impact 

in practice, since the tabular structures are generated by traditional methods and analysis 

used by the aircraft industry during the qualitative safety assessment (FHA, FMEA, IF-

FMEA, CCA). So, adding a plug-in to some usual design tool, it is possible to automate 

our systematic approach. 

 The primary limitation of a stochastic model-checking is the size of the reachable 

state space, though recent breakthroughs allow very large (> 10
7
 reachable states) state 

spaces to be explored in reasonable time. 
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4.5 Quantitative Analysis 

In this section we analyze the generated model specified in Prism. Basically, from this 

Prism model we propose analytical expressions that allow calculating the average 

failure rate of the possible failure conditions of the system from the analysis of the 

temporal evolution of its possible states, whose behavior is defined by transition rates, 

parameterized using the mode failure rates and repair time of the model.  

 At first, our strategy focuses on identifying situations of violation of safety 

requirements of the system. Thus, it is possible to examine whether the probability of 

occurrence of certain failure conditions violates the standard safety limit (≤ 10
-9

 in 

catastrophic failure condition, for instance). 

 Considering our context, to analyze the failure behavior of these systems, we can 

use, depending on the purpose, a steady-state or transient analysis [7, 16]. Transient 

analysis represents the instantaneous failure rate over a single period T whereas the 

steady-state analysis approximates the long-term average failure rate over multiple time 

intervals T, as illustrated in Fig. 4.4. The choice over these types of analyses depends on 

how system repairs are handled. Transient analysis can be performed in either closed-

loop (models with repairs) or open-loop models (models without repairs), whereas the 

steady-state analysis can be performed only on closed-loop models. 

 

Fig 4.4. Graph plotting the common behavior of different Markov analysis. 

 Our proposed strategy creates models that consider repair transitions as if they 

occurred at constant rates. Thus they are typical closed-loop models and both analyses 

can be performed. We calculate the average rate of a failure condition applying the 

transient analysis. 
 Particularly, the transient analysis with continuous repair provides adequate accuracy on 

their results for our purposes, since (see examples in Fig. 3.5 and 3.6) most critical 

systems are modeled in such a way that they can deal with latency. In this scenario, 

several components affecting the system functionality must be monitored, maintained at 

regular intervals and repaired if they are faulty and the transient analysis with continuous 
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repair is more representative in this situation. On the other hand, the transient analysis 

without repairs it applies strictly to just a single interval T, as if this was the entire life 

of the system, whereas most critical systems have maintenance cycles, where they are 

periodically restored to the full-up condition. Hence, the more representative analysis 

for this scenario is when the period T usually represents a repetitive repair interval 

rather than a life limit [16].  

 Fig. 4.4 shows that a transient analysis on the open-loop model represents a repair 

interval as a discrete limit, because it applies strictly to just a single interval T, repeating 

the interval until the entire life of the system, if necessary. Its entire plot in the figure (a 

sawtooth function) represents a situation in which the period T usually stands for a 

repetitive repair interval rather than a life limit (performed by several transient results). 

The mean value of the sawtooth function is almost equivalent to the continuous value. 

However, calculating the mean value of this function can generate extra work. This task 

is typically adopted in the traditional aeronautical approaches that use FTA to evaluate 

the average probability of the system failure conditions [4, 24]. 

 Comparing with the steady-state analysis, the transient behavior during the first 

several hours is insignificant, requiring more care for the engineers to perform the 

analysis appropriately. But the instantaneous rate of the transient analysis generally has 

already come close the asymptotic steady-state rate in few hours and can be explored in 

a lot of instants rather than steady-state that only analyses the long-run situation. 

Moreover, a transient analysis can determine the contour of the instantaneous failure 

rate as a function of time, showing the system sensitivity. A steady-state analysis does 

not provide this information.  

 Therefore, to perform the quantitative safety analysis, we use the CSL language [8]. 

The operators P (transient) and S (steady-state) of Prism can be used to reason about the 

tolerable probabilities of all system failure conditions. For example, with the formula: 

S  10
-9

 [ ―Failure Condition‖ ] . (1) 

we can check if, in the long run, the probability that a certain ―Failure Condition‖ can 

occur is less than or equal to 10
-9

. The satisfaction of a property (―true‖ or ―false‖) is 

defined for a single state of a model. When analyzing a property, PRISM considers it 

to be true if it is satisfied in all states of the model, and false otherwise. We can also 

use the following formula to obtain this probability value in the long term: 

S = ? [ ―Failure Condition‖ ] . (2) 

 We can also check the exact probability itself by using other CSL formula: 

P = ? [ true U  T ―Failure Condition‖ ]. (3) 

 This yields the instantaneous probability of occurrence of a certain ―Failure 

Condition‖ at time instant T. We can also perform such an analysis for a range of values 

of T in order to gain insight into the likelihood of the system as time progresses. 

Therefore, Prism can support both analysis solutions (steady-state or transient analysis). 
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Moreover, as the steady-state analysis value is considered to a limit situation 

(equilibrium state), to calculate the average probability of a failure condition on the 

situation where the equilibrium state is not achieved during the lifetime of the system, 

we can applying another formula in Prism using the transient operator normalized with 

a specific time T: 

  

((P = ? [ true U  T ―Failure Condition‖ ])./T) (4) 

 

 Following this principle, we also can check if the probability that a certain ―Failure 

Condition‖ can occur is less than or equal to 10-9.using the transient operator: 

 

((P = ? [ true U  T ―Failure Condition‖ ])./T) <= 10
-9

 (5) 

 

 Whereas we reported in this section, the formulas 3, 4 and 5 are more appropriated to 

analyze our models. 
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Chapter 5  

Case Study 

In this section we illustrate our strategy using a very simple example to ease 

understanding all elements of the strategy. We demonstrate our proposed strategy using 

a feedback control system—the Elevator Control System (ECS), which is responsible 

for commanding an electro-hydraulic actuator, according to the longitudinal orientation 

desired by the pilot. This case study was already introduced in Section 2.3. It is 

presented graphically in Figure 2. Although it is a simple example, it is representative in 

the aeronautics context in the sense that it has dependent and independent failures, a 

hierarchical architecture, latency, evident, repeated and developed events [1, 2]. 

5.1 System Description 

This system acts in one type (elevator) of the several flight control surfaces, which are 

designed to allow pilots to change the forces and moments acting on the aircraft. Fig. 

5.1 shows the main components of the ECS: the reference unit (Reference) captures 

commands from the pilot and it is usually a side-stick (or yoke) providing longitudinal 

deflections in degrees, the controller (Controller) is an Actuator Control Electronics 

device (ACE) responsible to process the reference signal and the elevator position 

provided by the sensor component (Sensor) to generate the correct commands to the 

associated power control unit (PCU or Actuator). Moreover, this system is powered by 

two power sources (PowerSource) which are monitored by a monitor (Monitor). The 

further details about this system already introduced in Section 2.3.4. Next we will 

describe the maintenance strategy of this system that as related in Section 4 is necessary 

to generate the formal model. 

 The main details about the system description and its failure behavior were already 

described in Section 2.3.3, where a qualitative model of this system was generated using 

tabular structures. Now, we will explain the maintenance strategy applied for the system 

that will be useful to create the additional tabular structures also necessary to the 

strategy application. 
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Fig 5.1. Elevator Control System 

 The maintenance strategy for this system is as follows: The PowerSource 1 and 2 

have no self-monitoring, but are monitored continuously by a monitor. If some 

PowerSource fails and the monitor is working, the PowerSource is repaired before the 

next dispatch. If the monitor is not working, the PowerSources can fail latently, but it is 

checked every 10 flights (we are considering that the median time of flight is 5 hours, so 

10 flights = 50 hours) and if some has failed during one of these periodic checks, it is 

repaired at that time. If some PowerSource unit is found faulty at one of these 50-hour 

checks, with no indication of this failure from the monitor, it is assumed that the 

monitor system has also failed, so all units are repaired prior to the next flight. The 

monitor can be repaired from two ways. First, as noted above, if some PowerSource unit 

has failed at its periodic 50-hour inspection and there was no monitor indication of this 

failure, then the monitor is repaired along with the PowerSource unit prior to the next 

flight. Second, a periodic check of the monitor is performed every 100 flights (500 

hours), and if the monitor has failed, it is repaired prior to the next flight. The Reference 

is a self-monitored component, hence it is inspected and repaired if necessary before of 

every dispatch. The maintenance strategy of the remaining modules (Controller, Sensor 

and Actuator) are similar to the Reference and were omitted for conciseness. 

5.2 Applying the Strategy 

Considering the highlighted Simulink diagram in Fig. 5.1, the failure analysis of the 

system is performed following the model-based system safety assessment process 

explained in Section 2.3.3, where all tabular structures of the system resulting from this 
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process was described in Table 2.1, Table 2.2, Table 2.3 and Table 2.4. Since all 

components are analyzed, describing their failure behaviors and registering its 

information about the topology, it is now possible to apply the proposed strategy to 

generate the formal specification in Prism and perform a quantitative analysis over this 

system using the probabilistic model checking. We implement our strategy following 

the five steps defined in Section 6.  

 As described in Section 2.3.3, the extended tabular information is user defined using 

Simulink. So, when we include these maintenance strategy and inspection time defined 

for each component, the resulting tabular information about this system can be depicted 

(see Table 4.1). Subsequently, the failure model of this system is stored in matrix 

structures kept in the Simulink environment variables and these data are extracted 

accessing a text file provided by the tool. Therefore, all data is processed and organized 

following the abstract syntax defined in Section 4.3. The resulting data structure is 

shown in Fig. 4.2. We create a script program to implement this last two steps and we 

intend to incorporate this program into an automation tool for future work. 

5.2.1 Model Generation 

Considering the resulting data information about these components and including the 

appropriate repair scheduled, the system failure model is ready to be used to generate 

the formal specification. To illustrate this, we simply apply the transformation rules 

presented in Section 4.4 on the system step by step. 

 Firstly, each system component is represented by a module in the specification. If a 

component is also a system, this component is discarded and its subcomponents will be 

represented by a module. 

 

Fig 5.2. Step that demonstrate the module creation 

The next part describes the declaration instructions. For each component malfunction (failure 
modes), local boolean variables initialized with false must be defined to represent the failure 
state for each malfunction associated with the module. 
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Now we create a set of failure transition commands into each module. For each local variable in 
the module, a state transition command is created. Their guard expressions are stated as a 
conjunction of the negations of the local failure as well as the system's failure. The update 
commands of the local variable value are based on the corresponding failure rate. These 
commands represent transitions to a failure state associated with the malfunction represented by 
the local variable.  

 

Depending on the component maintenance strategy, different set of repair transition 
commands are created into each module. If the component is self-monitored (Sensor, for 
instance) or non-monitored, just one state transition command is created. This command has no 
synchronization and its guard expression is assigned with the local variables. The command 
updates all local variable value to an operational situation based on its repair rate (the used value 
is the inverse of T, where T is the inspection time

2
. For self-monitored components, T = 

MedianTimeOfFlight. 

 

In the situations where the component is externally monitored (PowerSource), instead of the 
previous command, two synchronized transition commands are created, and these commands 
are synchronized with the repair command of the stateful component. The first command occurs 
when both components fail (to represent repair of latent failure). The last occurs when the 
monitor detects that a monitored component fails. The transition rate of this last command is 
always 1 (it’s a Prism best practice used to quantify synchronized transitions: just one command 
controls the transition rate). 

 

The last case covers the monitor type. In addition to adding the non-synchronized transition 
(because it is an non-monitored component), we have to create repair transition commands 
synchronized with all monitored components. Note that this is a complement to the previous 
item and allows us to represent the possible cases: 1) the monitor is repaired without failure 
occurred in the monitored components, 2) the monitor is repaired together with the components 

                                                 
2 A continuous transition can represent a periodic inspection/repair using a rate that gives the same mean time 

between a component failure and repair. To provide a conservative representation, the appropriate value of this time 

must be in the range from T/2 to T. 
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monitored. See also that the guard expression of no synchronized transitions is assigned with the 
negation of input deviation logic of the monitor failure mode (that is this kind of repair only 
occurs if no fails was detected from the monitored components). 

 

 The last part of the generation creates a set of formulas. Each failure logic expression that 

can compose the failure conditions of the system is transformed into a PRISM formula. Like the 

expressions, the formulas are also written in compositional form. That is, they are formed from 

formulas already established, which are based on the local variables of each component 

representing their malfunctions. The complete system failure state is transformed into a single 

PRISM formula too. This formula is composed by an AND logic with its failure conditions. The 

negation of this formula is put into all guard expression of the modules using a AND operator. 

 

After applying the translation rules, we obtain the formal specification of the ECS which is 

depicted in Appendix A. 

5.2.2 Quantitative Analysis 

The next step we use the Prism model-checker to check whether any critical failure 

condition probability violates the permitted limit. To accomplish this, we execute the 

Prism model checker using the expressions in the CSL language (see Fig. 5.3) obtained 

after applying the rules defined in Section 4.4: 
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Fig 5.3. Generated expressions in CSL 

Considering the tabular information of the ECS (see Table 2.3), our strategy creates 

probabilistic temporal formulas to check the following failure conditions: 

Omission of speed at Actuator output port shall be less than 3.10
-3 

per flight; 

Commission of speed at Actuator output port shall be less than 5.10
-3 

per flight; 

Wrong position signal at Actuator output port shall be less than 3.10
-3

 per flight. 

 Following ARP 4761, only catastrophic, hazardous, and major failures are analyzed 

quantitatively. In principle, considering only the tolerable values of these failure 

conditions we could mistakenly conclude that none of them need a quantitative analysis. 

However, as we describe in Section 2, the safety assessment process is hierarchical and 

based on levels, where the high-level safety requirements are decomposed into smaller. 

Consequently the tolerable rates of some potential hazard are also decomposed to the 

extent that the aircraft systems are broken down into other subsystems. The task 

responsible for check the tolerable probabilities of each subsystem and evaluate if the 

high-level safety requirements are really preserved in the entire hierarchy is called 

integration of cross-checking [2]. Therefore, knowing that the ECS is a subsystem 

which composes a high-level system of an aircraft [42], the proposed values for these 

system failure conditions are consistent with the context. We verify if some failure 

condition violates theses safety requirements using the formula shown in (4): 

((P=? [ true U<=T "OmissionSpeed_Actuator_Out1" ])/T) 

((P=? [ true U<=T "ComissionSpeed_Actuator_Out1" ])/T) 

((P=? [ true U<=T "WrongPosition_Actuator_Out1" ])/T) 

 By asking the model checker, we obtain the results shown in Fig. 5.4. 
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Fig 5.4. Results of expression verification (numerical value) 

5.3 Quantitative Results 

After checking these formulas, the model checker shows that only the first formula was 

not satisfied. Because the exact value of the average probability obtained via transient 

analysis for this situation was 3.04e
-3

. So the Prism result indicated that this failure 

condition was violated. Furthermore, we can check using the formula shown in (4): 

 

(((P=? [ true U<=T "OmissionSpeed_Actuator_Out1" ])/T)<=0.003) 

(((P=? [ true U<=T "OmissionSpeed_Actuator_Out1" ])/T)<=0.005) 

(((P=? [ true U<=T "OmissionSpeed_Actuator_Out1" ])/T)<=0.003) 

 

if some failure condition satisfies these safety requirements considering all states of the 

model. Figure 5.5 shown that the Prism result was false, indicating that all failure 

condition is not satisfied for, at least, one state of the model. 
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Fig 5.5. Results of expression verification (satisfaction of a property) 

 As we have said previously, this strategy can be performed in a hidden way by 

instructing the Prism model-checker to check each formula automatically; in such a way 

that only when a formula is violated this result can be sent back to engineers using 

Simulink plug-ins, for example. Thus the complete quantitative safety analysis can be 

hidden from the engineers. 

 So, from such reports, control engineers must adjust the system design by inserting 

more fault-tolerance features to avoid such failure violations. When all safety 

requirements are satisfied, the current system design (including its failure and repair 

rates) is acceptable. To show this analysis to certification authorities, the Markov model 

can be extracted from Prism by using certified tools like SHARPE or HARP [20].  

 Furthermore, one can also investigate scenarios of different phases and maintenance 

strategies using graphs of the instantaneous probabilities during a certain time interval. 

For instance, Fig. 5.5 is the result of evaluating the following formulas defined in (3), 

setting the T parameter from 0 to 100 hours. 

P=? [ true U<=T ("OmissionSpeed_Actuator_Out1") ] 

P=? [ true U<=T ("CommissionSpeed_Actuator_Out1") ] 

P =? [true U<=T ("WrongPosition_Actuator_Out1")] 
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Fig 5.6. Instantaneous probability during a period of time 

 With respect to this quantitative analysis, the main advantage is that the Prism 

models basically use booleans and thus they are not so complex. To give an idea of the 

probabilistic model checking complexity, the effort to analyze the ECS design required 

262,144 states and 3,858,432 transitions. But only a few seconds were necessary to 

analyze them using Prism 3.3 beta 1 in an Intel Core 2 Duo of 1.8 GHz, 2GB RAM, HD 

160GB, Windows 7 Professional. It is worth noting that Prism supports models of more 

than 10
7
 reachable states. 
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Chapter 6  

Conclusion 

The new generation of aircraft systems brings more advanced control systems to the 

context where size and complexity challenges the current verification and validation 

approaches. On the positive side, the recent adoption of model-based development 

tools, such as Simulink, by the aerospace industry, is making it feasible to use formal 

methods as verification solutions. 

 In the same way Simulink interacts with Matlab to provide the desired solution, 

Simulink can also interact with several different formal method solutions to tackle a 

wide variety of problems that the control system engineers have to confront in practice. 

Furthermore, the current tendency is to hide these formal method solutions completely 

in terms of Simulink interactions to ease the use by engineers to avoid any decrease in 

development productivity. For instance, Airbus [64] reports that formal methods were 

used and, with an equivalent effort of a usual test campaign, were able of finding 

problems (bugs) not detected by testing. 

 In this work we propose a systematic strategy to perform quantitative safety 

assessment of critical systems. Our approach generates a Prism specification from a 

Simulink diagram, annotated with failure logic. The strategy also creates CSL formulas 

that allow us to mechanically check whether all safety requirements are satisfied. 

 There are several potential benefits associated with the systematic approach we 

propose: an alternative to represent and analyze probabilistic models, understanding the 

context of the system, and the validation of required properties are a few examples.  

 Another potential benefit emerges from the safety assessment process. In the 

traditional fault-tree technique, several fault-trees are explicitly built even if all safety 

requirements are met. However, if a problem is detected in one of such fault-trees, the 

system architecture may be changed and several fault-trees (in some cases a 

considerable sub fault-trees which corresponds to low level systems) associated to that 

problem must be rebuilt. With our Prism based approach, no fault-tree is built. It only 

reports a safety violation, if one exists, indicating the failure mode [2, 10]. With Markov 

chains, for instance those created via Prism, it is possible to represent all failure 

conditions of a system with a single model. Also, checking the CSL formulas can be 

more efficient than creating several fault-trees. We consider this as a distinguishing 

feature of our approach when contrasted with the traditional fault-tree analysis 

technique. 

 Prism specifications are also interesting because they allow the creation and analysis 

of Markov chains in a more user-friendly and condensed way. They also ease the 

exploration of aspects such as latent and evident failure, monitoring and repair 
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scheduling, which are essential to aeronautical systems. Furthermore, engineers can use 

the Prism specification (Markov chains) to investigate dynamic aspects of a system: 

experiments to check existing failure scenarios can be performed by simply changing 

the values of local variables of the model. Maintenance scheduling experiments can be 

created to determine the Minimum Equipment List, and Phased Mission and 

reconfiguration triggers based on synchronization with failure events [2, 8]. 

 However, the current version of the Prism tool also has some limitations. 

Particularly, the tool has no facility to generate counter-examples when some property 

is violated. Fortunately, recent researches are already identifying counter-examples of 

stationary models, allowing a better traceability of the basic failures and facilitating the 

cycle of checking and validating the system design [21]. Unfortunately, this solution is 

not available in Prism yet. On the other hand, our research group proposes a work based 

on this dissertation, which explores quantitative analysis using CSP [63], and is able to 

generate traces and hierarchical fault-trees. 

 Nowadays, the low incidence of tools and methods that provide the development of 

trusted systems within the goals of dispatchability, safety requirements and costs is still 

a major challenge [6, 10]. Therefore, we think that the development of a model-based 

strategy for analyzing the safety and reliability of aircraft systems using a formal 

language is of great value. 

6.1 Future Work 

As future work we intend to mechanize the translation strategy and incorporate it as a 

plug-in in the Matlab/Simulink software. This allows immediate use of our work. From 

this, we will collect some metrics, check how much the strategy scales, and identify 

practical advantages/disadvantages of the strategy.  

 An obvious improvement to the current work is to capture the behavior of the 

components through its defined state machine, which can also be obtained from the 

Simulink tool. Also, considering the system reconfiguration and failure covering aspects 

will provide a more detailed fault tolerant modeling, which can capture the dynamic 

information in the same way as the static information. 

 Another concern we intend to tackle in the future is the size and complexity of the 

Markov chains generated by Prism. This can make it difficult for our proposal to scale 

in practice. Therefore we plan to investigate the use of abstraction strategies to reduce 

the Markov chains, such as State Aggregation and Model Truncation, as well as 

compositional verification. 

 When any system requirement is not satisfied then the current system design must be 

revised and improved to reduce the likelihood of a hazard occurring, and ensure the 

correct execution of its functions. Thus another direction is to study refinement relations 

that allow obtaining an improved design from a previous version while preserving the 

original characteristics concerning functionality. We see that fault-tolerance patterns 

and analysis of model evolution as feasible alternatives to achieve this goal. The initial 

steps to realize this was also reported in [43], where we propose a methodology to 

assess the entire process. 
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 Moreover, we also intend to study the stochastic behavior of a system, considering an 

open-loop model to represent a specific aircraft mission, to evaluate the defined 

maintenance strategy using a more detailed transient analysis supported by CSL 

formulas. In some scenarios, a transient analysis of the open-loop model (without 

repairs) is useful. For instance, when determining the minimum acceptable system 

configuration for a dispatch and the length of time allowed for such a dispatch, we 

could know the worst case of instantaneous failure rate as a function of time, for a given 

configuration. We could also know the sensitivity of the worst-case instantaneous 

failure rate to variations in the dispatchability interval, to account for in-service waivers, 

and so on. Using this analysis we can determine the ―kind‖ of the instantaneous failure 

rate as a function of time, enabling us to assess its sensitivity. 

 Finally, we intend to improve the model to allow other types of analysis can be 

performed such as Fussell-Vesely, that investigates about how much influence a 

component on a failure condition; analysis of uncertainty propagation to evaluate the 

propagation of uncertainty about the availability of the system and assess, for instance, 

the uncertainty distribution of MTTF or MTBF; traceability of failure: Markov is not 

causal and loses traceability. Thus, we will investigate the use of Bayesian Networks as 

a superset of Markov. 
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Appendix A 

Elevator Control System.sm 

ctmc 
 
module PowerSource1 
  
 powersource1_lowpower : bool init false; 
      
   [] (!(powersource1_lowpower)) -> (5E-4) :  (powersource1_lowpower' = true);            
 
   [Monitor_In1_Dependent_Repair] (powersource1_lowpower)  
 -> (1/5) : (powersource1_lowpower' = false);   
        
   [Monitor_In1_Repair] (powersource1_lowpower) -> (1) : 
 (powersource1_lowpower' = false);     
 
endmodule  
 
formula LowPower_PowerSource1_Out1 = powersource1_lowpower; 
 
module PowerSource2 
 
 powersource2_lowpower : bool init false; 
        
   [] (!(powersource2_lowpower)) -> (5E-4) :  (powersource2_lowpower' = true); 
        
   [Monitor_In2_Dependent_Repair] (powersource2_lowpower)  
 -> (1/5) : (powersource2_lowpower' = false);   
 
   [Monitor_In2_Repair] (powersource2_lowpower) -> (1): 
 (powersource2_lowpower' = false);     
 
endmodule 
 
formula LowPower_PowerSource2_Out1 = powersource2_lowpower; 
 
module Monitor 
 
 monitor_switchFailure : bool init false; 
      
 [] (!(monitor_switchFailure)) -> (1E-4) :  (monitor_switchFailure' = true); 
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 [] (monitor_switchFailure) -> (2/50) : (monitor_switchFailure' = false); 
 
 [Monitor_In1_Repair] (!monitor_switchFailure)  
 -> (2/5) : (monitor_switchFailure' = monitor_switchFailure); 
 
 [Monitor_In2_Repair] (!monitor_switchFailure)  
 -> (2/5) : (monitor_switchFailure' = monitor_switchFailure); 
 
 [Monitor_In1_Dependent_Repair] (monitor_switchFailure) -> (1) : 
 (monitor_switchFailure' = false); 
 
 [Monitor_In2_Dependent_Repair] (monitor_switchFailure)-> (1) : 
 (monitor_switchFailure' = false); 
 
endmodule 
 
formula LowPower_Monitor_Out1 = (monitor_switchFailure &  
   (LowPower_PowerSource1_Out1 | LowPower_PowerSource2_Out1))  
   | (LowPower_PowerSource1_Out1 & LowPower_PowerSource2_Out1);
  
module Reference 
 
 reference_devicefailure : bool init false; 
   reference_devicedegradation : bool init false; 
 
 [](!reference_devicefailure) -> 2E-4 : (reference_devicefailure' = true); 
  
 [](!reference_devicedegradation) -> (2E-4) : 
 (reference_devicedegradation' = true);   
 
 [] ((reference_devicefailure | reference_devicedegradation) & 
 !(SystemFailure) ) -> (1/5) : (reference_devicefailure' = false) & 
 (reference_devicedegradation' = false);        
 
endmodule 
 
formula OmissionSignal_Reference_Out1 = reference_devicefailure |  
        LowPower_Monitor_Out1; 
formula CorruptedSignal_Reference_Out1 = reference_devicedegradation; 
 
module Sensor 
 
 sensor_sensorfailure : bool init false; 
   sensor_sensordegradation : bool init false; 
 
 [](!sensor_sensorfailure ) -> (5E-4): (sensor_sensorfailure' = true); 
         
 [](!sensor_sensordegradation) -> 5e-4: (sensor_sensordegradation' = true); 
 
 [] ((sensor_sensorfailure | sensor_sensordegradation))  -> (1/5) : 
(sensor_sensorfailure' = false)  
 & (sensor_sensordegradation' = false);        
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endmodule 
 
formula OmissionSignal_Sensor_Out1 = sensor_sensorfailure |   
    LowPower_Monitor_Out1 | OmissionSpeed_Actuator_Out1; 
 
formula CorruptedSignal_Sensor_Out1 = sensor_sensordegradation; 
 
module Component1 
 
   component1_lossofcomponent1 : bool init false; 
   component1_component1degradation : bool init false; 
 
 [](!component1_lossofcomponent1) -> (9E-5) : 
 (component1_lossofcomponent1' = true); 
        
 [](!component1_component1degradation) -> (9e-5) : 
 (component1_component1degradation' = true); 
 
 [] ((component1_lossofcomponent1 | component1_component1degradation)) -> 
(1/5) : (component1_lossofcomponent1' = false) & 
 (component1_component1degradation' = false);        
  
endmodule 
 
formula OmissionSignal_Component1_Out1 = component1_lossofcomponent1 | 
    LowPower_Monitor_Out1 | OmissionSignal_Reference_Out1; 
formula CorruptedSignal_Component1_Out1 = component1_component1degradation | 
     CorruptedSignal_Reference_Out1; 
 
module Component2 
 
 component2_lossofcomponent2 : bool init false; 
   component2_component2degradation : bool init false; 
 
 [](!component2_lossofcomponent2) -> (1E-4) : 
 (component2_lossofcomponent2' = true); 
        
 [](!component2_component2degradation) -> (1E-4) : 
 (component2_component2degradation' = true); 
 
 [] ((component2_lossofcomponent2 | component2_component2degradation)) -> 
(1/5) : (component2_lossofcomponent2' = false) & 
 (component2_component2degradation' = false);        
 
endmodule 
 
formula OmissionSignal_Component2_Out1 = component2_lossofcomponent2 | 
         LowPower_Monitor_Out1 ; 
formula CorruptedSignal_Component2_Out1 = component2_component2degradation | 
          CorruptedSignal_Sensor_Out1; 
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module Component3 
 
 component3_lossofcomponent3 : bool init false; 
 component3_component3degradation : bool init false; 
 
 [](!component3_lossofcomponent3) -> (6E-5) : 
 (component3_lossofcomponent3' = true); 
    
 [](!component3_component3degradation) -> (6e-5) : 
 (component3_component3degradation' = true); 
 
 [] ((component3_lossofcomponent3 | component3_component3degradation)) -> 
(1/5) : (component3_lossofcomponent3' = false) & 
 (component3_component3degradation' = false);        
 
endmodule 
 
formula OmissionSignal_Component3_Out1 = component3_lossofcomponent3 | 
    LowPower_Monitor_Out1 | OmissionSignal_Component1_Out1 | 
    OmissionSignal_Component2_Out1; 
formula CorruptedSignal_Component3_Out1 = component3_component3degradation | 
     CorruptedSignal_Component1_Out1 | CorruptedSignal_Component2_Out1; 
 
formula CommissionSignal_Component3_Out1 = component3_component3degradation; 
 
module Actuator 
 
 actuator_lossofdriver : bool init false; 
 actuator_lossofmotor : bool init false; 
 actuator_mechanismjamming : bool init false; 
 actuator_mechanismdegradation : bool init false; 
 actuator_driverdegradation : bool init false; 
 
 [](!actuator_lossofdriver) -> (1E-4) : (actuator_lossofdriver' = true); 
 
   [](!actuator_lossofmotor) -> (1E-3) : (actuator_lossofmotor' = true); 
  
 [](!actuator_mechanismjamming) -> (1E-3) : 
 (actuator_mechanismjamming' = true); 
  
 [](!actuator_mechanismdegradation) -> (1E-3) : 
 (actuator_mechanismdegradation' = true); 
  
 [](!actuator_driverdegradation) -> (1E-5) : 
 (actuator_driverdegradation' = true);  
 
 [] ((actuator_lossofdriver | actuator_lossofmotor |   
 actuator_mechanismjamming | actuator_mechanismdegradation | 
 actuator_driverdegradation)) -> (1/5): 
 (actuator_lossofdriver' = false) & (actuator_lossofmotor' = false) & 
 (actuator_mechanismjamming' = false) & (actuator_mechanismdegradation' = 
 false) & (actuator_driverdegradation' = false); 
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endmodule 
 
formula OmissionSpeed_Actuator_Out1 = actuator_lossofdriver | 
actuator_lossofmotor | actuator_mechanismjamming | LowPower_Monitor_Out1 | 
OmissionSignal_Component3_Out1; 
 
formula WrongPosition_Actuator_Out1 = actuator_mechanismdegradation | 
actuator_driverdegradation | CorruptedSignal_Component3_Out1; 
 
formula CommissionSpeed_Actuator_Out1 =  actuator_driverdegradation |  
      CommissionSignal_Component3_Out1; 
 
formula SystemFailure = OmissionSpeed_Actuator_Out1 &    
   WrongPosition_Actuator_Out1 & CommissionSpeed_Actuator_Out1; 


