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Abstract. A new method of feature extraction in the social network for within-
network classification is proposed in the paper. The method provides new 
features calculated by combination of both:  network structure information and 
class labels assigned to nodes. The influence of various features on 
classification performance has also been studied. The experiments on real-
world data have shown that features created owing to the proposed method can 
lead to significant improvement of classification accuracy.  
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1   Introduction 

Classification is one of most important concepts in Machine Learning. It is usually 
based on the data that represents relationships between a fixed set of attributes and 
one target class. These relations describe each object independently that means no 
direct correlations between objects in the classification phase are taken into account. 
An exception may be additional input features, which aggregate information about the 
entire group a given object belongs to. However, it requires any clustering process be 
launched before. There are some applications and research methods, especially related 
to social networks, which are able to produce data with dependencies between labels 
of interconnected objects, referred as relational autocorrelation [16]. Based on these 
connections additional input information should be added to the classification process. 
If the considered objects are humans and the classification is utilized on their profiles 
then the social network can be extracted from complementary data (different from 
people’s profiles) about common activities and mutual communication [9, 10, 15]. 
Overall, a social network is a set of nodes (human entities, objects) and node-node 
relationship between pairs of nodes [18]. According to [17], all network objects may 
be described by three distinct types of information that can be easily used in label 
classification: correlation between the object’s label (class) and its attributes, 
correlation between the object’s label and the observed (known) labels of other 
objects in its neighborhood and, consequently, correlation between the object’s label 
and unobserved (unknown) labels of other objects in its neighborhood.  



Basic task of within-network classification [1, 12] is to assign the correct labels to 
the unlabeled nodes from a set of the possible class labels. For example, based on the 
network of communication interactions, it could be determined whether a given 
company’s employee is either an executive or a performer. Willing to obtain the best 
possible results of classification, all three types of information should be evaluated: 
nodes attributes (profiles), node-node network relations to the known labels in the 
neighborhood (labeled neighbors) and relations to the neighboring objects with 
unknown labels. Main difficulty here is to extract the set of most discriminative 
features from the network nodes and their connections to achieve the best 
classification model. 

A new approach for network feature extraction is proposed in further sections. 
Some of these structural features have discriminative distribution, which may directly 
influence classification performance. 

Section 2 covers related work while in Section 3 appears main part of the paper, 
where a new method for network feature extraction is presented. Sections 4 and 5, 
contain descriptions of the experimental setup and the obtained results, respectively. 
The paper is concluded in Section 6. 

2   Related Work 

In recent years, there has appeared a great number of works describing models and 
techniques for classification in network data. Analogously to classical machine 
learning problems, classification in network data requires specialized solutions for 
feature extraction, high performance supervised and unsupervised learning 
algorithms, sparse data handling, etc.  

In general, network classification problems, may be solved using two main 
approaches: by within-network and across-network inference. Within-network 
classification, for which training entities are connected directly to entities, whose 
labels are to be classified, stays in contrast to across-network classification, where 
models learnt from one network are applied to another similar network [11]. Overall, 
the networked data have several unique characteristics that simultaneously complicate 
and provide leverage to learning and classification. More generally, network data 
allow the use of the features of the node’s neighbors to label them, although it must be 
performed with care to avoid increase of variance estimation [7]. 

There have been developed many algorithms and models for classification in the 
network. Among others, statistical relational learning (SRL) techniques were 
introduced, including probabilistic relational models, relational Markov networks, and 
probabilistic entity-relationship models [2, 6, 13, 16]. Two distinct types of 
classification in networks may be distinguished: based on collection of local 
conditional classifiers and based on the classification stated as one global objective 
function. The most known implementations of the first approach are iterative 
classification (ICA) and Gibbs sampling algorithm (GS), whereas example of the 
latter are loopy belief propagation (LBP) and mean-field relaxation labeling (MF) 
[17]. Generally speaking, there exist many pretty effective algorithms of collective 
classification as well as graph-based semi-supervised learning methods. It refers, 



especially logForest, a logistic model based on links, wvRN, a relational neighbor 
model, SSL Gaussian random field model, ghostEdge, combination of statistical 
relational learning and semi-supervised learning for sparse networks and theirs 
collective classification supplements [5]. 

One of the most crucial problems in the network classification is feature extraction. 
According to [4] the derived features are divided into two categories: label-dependent 
(LD) and label-independent (LI). Features LD use both structure of the network as 
well as information about labels of the neighboring nodes labels, e.g. number of 
neighbors with given class label. Features LI, in turn, are calculated using the network 
structure only, e.g. betweenness of a node. The LI like features, therefore, are 
independent from the distribution of labels in the network and might not be 
informative. However, they can be perfectly calculated regardless of the availability 
of labels. What is worth mentioning, most of the proposed network classification 
methods were usually applied to the data sets with very limited access to labels. Their 
authors assumed that their applications need to deal even with only 1% labeled nodes. 
This problem is known as classification in sparsely labeled networks [4, 5].  

It appears that the majority of network-based structural measures used as features 
in network classification may be useful and may potentially improve classification 
performance.  

Social networks, being a network representation of interactions between people is a 
subject of research in terms of classification in networks as well [4]. 

3   Features Extraction from the Social Network 

3.1   General Terms 

Let us suppose that a social network is a graph G = (V, E, X, L, Y, W), where V is a set 
of nodes (objects, social entities); E is a set of edges (connections) eij between two 
nodes vi and vj, E={eij: vi,vjV, i≠j}; X is a set of attribute vectors xi, a separate one for 
each node vi (a profile of vi), X={xi: viVxiX}; L is the set of distinct labels 
(classes) possible to be assigned to nodes; Y is a list of actual labels assignments to 
nodes, Y={<vi,yi>: viV  yiL}; W is a set of edge weights, wijW wij≥0 and wij 
indicates the strength of  edge eij. 

Having known the values of yi for a given subset of nodes VKV, classification 
may be described as the process of inferring the values of yi for the remaining set of 
nodes VU, VU = V \VK. 

The first step in the process of node classification is a translation of network data 
into a set of unified vectors, one for each node. A single vector corresponding to node 
vi contains all information from xi as well as some additional information (new 
attributes) derived by feature extraction methods based on the network profile. Next, 
the obtained set of vectors is used in classical, supervised classification. 



3.2   Features Extraction 

Feature extraction from social networks is a general term for methods of constructing 
variables from the connectivity graph, expressing the position and importance of each 
node with respect to the others. As mentioned in Section 1, the generated features 
may be label-independent or label-dependent. For clarity, while describing label-
dependent features, it is made a basic assumption in the paper that feature extraction 
is based only on correlation between the object’s label and the observed labels of 
other objects in its neighborhood see Fig. 1. 

Fig. 1. Example social network with 10% of unlabeled nodes (black circles denote labeled 
nodes). 

Three examples of basic label-independent and three label-dependent features are 
presented in the following sub-sections, as well as generalization for label-dependent 
features extraction. 

3.2.1   Label-independent Features 

Betweennes Centrality 
Betweenness centrality of node vi pinpoints to what extent vi is between other nodes. 
Nodes with high betweennes are very important in the network as other nodes are 
connected with each other mainly through them. Betweenness centrality B(G,vi) of 
node vi in graph G can be calculated according to the following equation: 
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where: 
P(G,vi,vj) - a function returning the number of shortest paths between vi and vj in 
graph G; 
P(G,vj,vk,vi) - a function that returns the number of shortest paths between vi and vj 
that pass through vi in graph G.  
Obviously, Equation 1 is calculated only for pairs vj, vk, for which there exists a path 
from vj to vk to prevent the denominator from equaling 0. 



Degree Centrality 
Degree centrality is defined as the number of connections (edges) incident upon a 
given node. It is the simplest and most intuitive measures that can be used in the 
network analysis. Nodes with the high degree centrality are recognized as a crucial 
cog that occupies a central location in the network. Degree centrality D(G,vi) of node 
vi in graph G can be computed using Equation 2: 
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where:  
n(G,vi) - a set of neighboring nodes of node vi in graph G. 

Local Clustering Coefficient 
The local clustering coefficient CC(G,vi) of a node vi in graph G quantifies how close 
vi‘s neighborhood is to a complete graph, see Equation 3.  
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where: 
R(V) - an operator returning the number of all connections between nodes from set V. 

3.2.2   Label-dependent Features 

While introducing label-dependent features two manners of their formation are 
proposed. Both of them relay on the idea of selective definition of sub-networks based 
on the labels assigned to each node. It means that a sub-network for a given label l 
consists of only those nodes that share label (class) l together with all edges 
connecting these selected nodes. For that purpose, a new selection operator O(G,l) for 
graph G and label l is defined. It returns a sub-network Gl labeled with l: Gl=(Vl, El, 
Xl, {l}, Yl, Wl) such that Vl={vi: <vi,l>Yl}, Yl={<vi,yl>: viVyl=l}, 
El={eij: vi,vjVleijE}, Xl={xl: vlVlxlX}. 

Afterwards, for each sub-network Gl (each label l), new features are computed. 
First group of label-dependent features composition is based on new custom measures 
derived from the interaction between a given node and its neighboring nodes only. 
The measures take into consideration either the number of connections or their 
strengths. 

Normalized Number of Connections to the Labeled neighbors 
The measure for the normalized number of connections to the labeled neighbors 
NCN(G,l,vi) represents the proportion of the number of connections to the 
neighboring nodes in the sub-network with label l (Gl) by the number of connections 
to the labeled neighbors in the whole primary graph G (with all labels).  
The measure NCN(G,l,vi) is defined as follows: 
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where: 
n(O(G,l),vi) - a set of the neighboring nodes for node vi in sub-network O(G,l), 
nL(G,vi) - a set of vi‘s labeled neighbors in graph G, each neighbor must be labeled 
with any label lL. 

Note that the value of card(n(O(G,l),vi)) is the same as the number of connections 
between vi and vi’s neighbors (each vi’s neighbor has one connection with vi). 
Similarly, the value of card(nL(G,vi)) equals the number of connections between vi 
and all vi’s labeled (and only labeled) neighbors. 

The measure NCN(G,l,vi) is computed separately for each label l and in general, for 
two labels lk and lm, the value of NCN(G,lk,vi) may differ from NCN(G,lm,vi). 
For the example network from Fig. 2, and the measure NCN(G,’red’,v1) calculated for 
node 1 in the sub-network with nodes labeled with the ‘red’ class, the value of 
NCN(G,’red’,v1) is 4 divided by 8 (total number of nodes in graph G). 
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Fig. 2. Feature calculation based on label dependent neighborhood. For each of label class 
{white, red} w is calculated. 

Normalized Sum of Connection Strengths to the Labeled Neighbors 
The value of the normalized sum of connection strengths to the labeled neighbors 
NCS(G,l,vi) is the proportion of node vi’s activity towards vi’s neighbors (measured by 
the aggregated connection strengths) in the sub-network with label l (Gl) normalized 
by the equivalent value of strengths to the neighbors with any label in the whole graph 
G. The value of NCS(G,l,vi) for graph G and label l is expressed in the following way: 
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Similarly to NCN(G,l,vi), the measure NCS(G,l,vi) is evaluated separately for each 
label l and differs for different labels l. 
For the network from Fig. 2, the measure NCS(G,’red’,v1) is computed for node 1 and 
label (class) ‘red’, as the sum of w13, w14, w17, and w18 normalized by sum of all eight 
connection strengths. 

3.2.3   General Method for Label-dependent Features Extraction 

In the domain of social network analysis (SNA), a number of measures characterizing 
network nodes have been introduced in the literature. Majority of them is label-
independent and it is possible to define many methods that will extract label-
dependent features based on them. A general concept of creation of any label-
dependent feature Ml(G,l,vi) for label l and node vi in the social network G applies 
label-independent feature M to the appropriate labeled sub-network Gl=O(G,l), as 
follows: 

Ml(G,l,vi)=M(Gl,vi), (6) 
where: 
Ml(Gl,vi) - denotes any structural network measure for node vi applied to sub-network 
Gl=O(G,l), e.g degree, betweennes or clustering coefficient;  
Obviously, Ml(G,l,vi) is computed separately for each label l using the appropriate 
sub-network Gl=O(G,l). In other words, Eq. 6 provides a method for construction of 
label-dependent version of certain metric. 
As an example, the label-dependent clustering coefficient (CCl) is defined in 
accordance with Equation 3 as: 
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4   Experimental Setup 

4.1   Data Set 

The data set used for experiments, “Attendee Meta-Data” (AMD), was downloaded 
from UCI Network Data Repository (http://networkdata.ics.uci.edu/ 
data.php?d=amdhope). The AMD data set was an output of a project, which used 
RFID (Radio Frequency Identification) technology to help connect conference 
participants at “The Last HOPE” Conference held in July 18-20, 2008, New York 
City, USA. All attendees received an RFID badges that uniquely identified and 
tracked them across the conference space. The data set contains descriptions of 



interests of participants, their interactions via instant messages, as well as their 
location over the course of the conference. Conference attendees were asked to "tag" 
themselves based on a diverse set of interests. Thanks to location tracking, a list of 
attendances was extracted for each conference talk. Additionally, participants could 
email or send a text message to "ping" the people who had similar interests.  

In general, the data set contains information about conference participants, 
conference talks and presence on talks. Initial import contained 767 different persons, 
99 talks, 10,110 presences reported during talks. In the cleaning process, these 
contributors who did not give any information about their interests were excluded 
from further studies. As a result, 334 persons with 99 lectures and 3,141 presences 
have left after cleaning. 

Afterwards, the social network was build. Ties in the network were constructed 
based on the fact that participants were present on the same talks. Moreover, strengths 
of the connections between each pair of contributors were calculated as the proportion 
of number of talks attended by both participants by the total number of talk presences 
of the first participant. It provided 68,770 directed, weighted connections, with 
histogram presented in the Fig. 3. 

 

Fig. 3. Histogram of calculated weights in the AMD social network. 

The raw data contained 4 attributes: 3 nominal (sex, cell phone provider, country) 
and 1 numerical (age). Additionally, each participant was described by unordered set 
of interests that in our experiments was chosen as the classification target. Since each 
network node (participant) could have multiple interests assigned, it was decided to 
construct 20 separate experimental data sets that formed a binary assignment of each 
interest. Example networks are presented in Fig. 4 and 5. For the clarity of the 
experiment, the binary classification problem was established as it did not contrive a 
loss of generality of the proposed feature extraction approach. 



Fig. 4. Visualization of the social network for the activism interest data set based on the class 
‘0’ neighborhood using Force-Directed Placement Algorithm [3]. 

 

Fig. 5. Visualization of the social network for the activism interest data set based on the class 
‘1’ neighborhood using Force-Directed Placement Algorithm [3]. 



4.2   Extracted features 

According to the methodology presented in Section 3, 17 attributes were calculated in 
the experiments, see Table 1. 

Table 1.  Features used in experiments. 

No. Feature Feature Set 

1 age 

1 
2 gender 

3 county 

4 phone provider 

5 betweenness, Eq. 1 

2 6 degree, Eq. 2 

7 clustering coefficient, Eq. 3 

8 
normalized sum of connection strengths to the neighbors labeled as ‘0’, 
Eq. 5 

3 

9 
normalized sum of connection strengths to the neighbors labeled as ‘1’ 
neighbors, Eq. 5 

10 
normalized number of connections to the neighbors labeled as ‘0’ 
neighbors, Eq. 4 

11 normalized number of connections to the neighbors labeled as ‘1’, Eq. 4 

12 betweenness on neighborhood with class ‘0’  

13 betweenness on neighborhood with class ‘1’  

14 degree on neighborhood with class ‘0’  

15 degree on neighborhood with class ‘1’  

16 clustering coefficient on neighborhood with class ‘0’  

17 clustering coefficient on neighborhood with class ‘1’  

 all above (1-17) 4 

 
Extracted features were grouped in 4 sets. The first contained raw data attributes. 

In the second there were label-independent network based features. In the third group 
label-dependent features obtained from proposed method were introduced. The last, 
fourth group attach all previously introduced features. Finally, the obtained 20 data 
sets, used in the experiment, may be downloaded from 
http://www.zsi.pwr.wroc.pl/~kazienko/datasets/amd/amd.zip in the arff format.  

The outcome of performed classification (classification target) was established to 
predict an interest that a particular person has assigned. 



4.3   Classification 

Experiments were conducted for 20 data sets using 3 classification algorithms, 
AdaBoost, Multilayered Perceptron, SVM, with settings presented in Table 2, the 
same for each of four feature groups (Table 1). Classification was performed in 10% - 
90% proportion of labeled and unlabeled nodes, respectively, using 10-cross fold 
validation. 

Table 2.  Features used in experiments. 

Algorithm Setting Value 

AdaBoostM1 

weight threshold 100 

number of iterations 10 

base classifier Decision Stump 

Multilayer 
Perceptron 

learning rate 0.3 

momentum 0.2 

training time 500 

validation threshold 20 

hidden layers 5 

SVM 

complexity 1.0 

tolerance 0.0010 

epsilon 10-12 

kernel polynomial kernel 

exponent 1.0 

 

 
Fig. 6. Average accuracy for 20 data sets using 4 different feature sets.



5   Results 

The obtained results have revealed that the average accuracy of classification using 
various feature sets really differs. As presented in Fig. 6, the average accuracy is 
greater by about 23% for feature set 3 and 4 compared to set 1 and 2. Simultaneously, 
F-Measure and precision improves by usage of label-dependent feature sets (set 3 and 
4) by 33% and 35%, respectively, see Table 3. 

Irrespectively of the used feature data set, all utilized classification algorithms: 
AdaBoost, Multilayered Perceptron, SVM, provide similar results (see Fig. 7). 

As shown in Fig. 6, classification based on feature set 3 and 4 seems to be more 
stable than for feature set 1 and 2. In particular, standard deviation of accuracy for 20 
data sets in first case equals 1% and in the second 12%. 

Additionally, experiments have revealed that classification based on feature set 4 
returns in average worse accuracy than classification based on feature set 3 (see Table 
3). Let remind that feature set 4 contains all features from sets 1, 2 and 3. Worse 
classification performance might be an effect of too many relative poor input features, 
from which some weaken classification and have contrary discriminative 
distributions. It refers features from set 1 and 2 that degrade high correlation between 
output and label-dependent features from set 3. It means that the features extracted 
from the social network are so good that regular profiles of the tested cases only 
decrease classification performance and should not be even taken into account. 

Owing to the carried out experiments, it is visible that the proposed label-
dependent features used in classification undoubtedly provide the best results. 

 

Fig. 7. Average classification accuracy for 4 different feature sets and 20 data sets. 

 
 
 



Table 3.  Average results of experiments for 20 data sets. 

Algorithm Feature Set Measure 

1 2 3 4 

AdaBoost 

0.76 0.76 0.99 0.98 Accuracy 

0.62 0.63 0.99 0.99 Precision 

0.67 0.68 0.99 0.98 F-measure 

Multilayer Perceptron 

0.74 0.76 0.99 0.98 Accuracy 

0.67 0.63 0.99 0.98 Precision 

0.69 0.68 0.99 0.98 F-measure 

SVM 

0.76 0.76 0.98 0.98 Accuracy 

0.64 0.61 0.98 0.98 Precision

0.69 0.67 0.98 0.98 F-measure 

 

6   Conclusions and Future Work 

A new method for label-dependent feature extraction from the social network was 
proposed in the paper. The main principle behind the method is based the selective 
definitions of sub-graphs for which new features are defined and computed. These 
new features provide additional quantitative information about the network context of 
the case being classified. 

According to collected experimental evidences, the proposed label-dependent 
feature extraction appears to be significantly more effective and improves 
classification performance in high extent. Obtained, so good, results were even 
surprising to authors. These results have shown that the new approach to classification 
extended with features derived from the social network may return very satisfactory 
and promising outcomes.  

It may even happen that the regular features only decrease classification indicators 
and should be removed from the input feature set. This phenomenon comes probably 
from the general background of both feature sources. Human profiles are, in fact, the 
voluntarily collected data whereas social networks are created upon real people 
activities. There is a crucial difference between a statement “I am interested in 
mountains” and real information about the mountain climbing. The second is more 
reliable. 

Feature work will focus on further experimentations on the method, especially in 
terms of its validity for variety of local network measures. Additionally, the proposed 
feature extraction method will also be examined against the usage of global objective 
functions for classification. Yet another direction of future studies will be 



development of new ensemble algorithms, which would have network measures 
already incorporated, especially based on boosting concept [8]. 
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