Skip to main content

An Adaptive RBF Neural Network Control Strategy for Lower Limb Rehabilitation Robot

  • Conference paper
Book cover Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

This paper proposed an adaptive control strategy based on RBF (radial basis function) neural network and PD Computed-Torque algorithm for precise tracking of a predefined trajectory. This control strategy can not only give a small tracking error, but also have a good robustness to the modeling errors of the robot dynamics equation and also to the system friction. With this control algorithm, the robot can work in assist-as-needed mode by detecting the human active joint torque. At last, a simulation result using matlab simulink is given to illustrate the effectiveness of our control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elcited by voluntary. Brain 126, 866–872 (2003)

    Article  Google Scholar 

  2. Schoone, M., van Os, P., Campagne, A.: Robot-mediated Active Rehabilitation (ACRE) A user trial. In: IEEE 10th international confercence on rehabilitation robotics, pp. 477–481 (2007)

    Google Scholar 

  3. Pohl, M., Werner, C., Holzgraefe, M., Kroczek, G., Mehrholz, J., Wingendorf, I., Holig, G., Koch, R., Hesse, S.: Repetitive locomotor training and physiotheraphy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentretrial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation 21, 17–27 (2007)

    Article  Google Scholar 

  4. Hasan, M.K., Park, S.-H., Seo, S.-J., Sohn, D.-H., Hwang, S.-H., Khang, G.: A Gait Rehabilitation and Training System based on Task Specific Repetitive Approach. In: IEEE 3rd international conference on bioinformatics and biomedical engineering, pp. 1–4 (2009)

    Google Scholar 

  5. Yang, Q., Siemionow, V., Yao, W., Sahgal, V., Yue, G.H.: Single-trial EEG-EMG coherence analysis reveals muscle fatigue-related progressive alterations in corticomuscular coupling. IEEE transactions on neural systems and rehabilitation engineering 18(2), 97–106 (2010)

    Article  Google Scholar 

  6. Hincapie, J.G., Kirsch, R.F.: Feasibility of EMG based neural network chontroller for an upper extremity neuroprosthesis. IEEE transactions on neural systems and rehabilitation engineering 17(1), 80–90 (2009)

    Article  Google Scholar 

  7. Lunenburger, L., Colombo, G., Riener, R., Dietz, V.: Biofeedback in gait training with the robotic orthosis locomat. In: The 26th Annual International conference of the IEEE EMBS, vol. 7, pp. 4888–4891 (2004)

    Google Scholar 

  8. Den, A., Moughamir, S., Afilal, L., Zaytoon, J.: Control system design of a 3-dof upper limbs rehabilitation. Computer methods and programs in biomedicine 89, 202–214 (2007)

    Google Scholar 

  9. Jezernik, S., Scharer, R., Colombo, G., Morari, M.: Adaptive robotic rehabilitation of locomation: a clinical study in spinally injured individuals. Spinal cord 41, 657–666 (2003)

    Article  Google Scholar 

  10. Morita, Y., Hirose, A., Uno, T., Uchida, M., Ukai, H., Matsui, N.: Development of rehabilitation training support system using 3D force display robot. Springer, Heidelberg (2007)

    Book  Google Scholar 

  11. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot manipulator control theory and practice. Marcel Dekker, Inc., New York (2004)

    Google Scholar 

  12. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3, 246–257 (1991)

    Article  Google Scholar 

  13. Mark, D.L., Hylton, B.M., Victor, S.F., Stephen, R.L.: Walking speed, cadence and step length are selected to optimize the stability of head and pelvis accelerations. Experimental Brain Research 184(2), 201–209 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, F. et al. (2010). An Adaptive RBF Neural Network Control Strategy for Lower Limb Rehabilitation Robot. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics