Skip to main content

Optics Based Motion Measurement for a Catheter Navigation System: A Novel and Low Cost Approach

  • Conference paper
Book cover Intelligent Robotics and Applications (ICIRA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6425))

Included in the following conference series:

Abstract

Robot-assisted therapy has been investigated to protect physicians from the radiation exposure during fluoroscopic x-ray image guided catheter intervention. This paper introduces an optics based approach to measure catheter motion input to build a catheter navigation system. The principle of measurement, which forms foundation of catheter sensor system, is presented in terms of geometry relationship and approximation. Then calibrated motion measurement is achieved, for both translational and rotational components. A common optical mouse device is used to cheaply implement such a sensor system prototype with other necessary mechanical stages. A computer running corresponding software acquires and processes motion sense via a USB port. Partial experimental results on motion measurement are analyzed, to show proposed approach has impressive motion sense resolution. Finally, comparison between optical mouse sensor and traditional optical encoder are demonstrated and discussions on this technology and catheter manipulator system are also made for future research and work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marescaux, J., Leroy, J., Gagner, M., Rubino, F., et al.: Transatlantic robot-assisted telesurgery. Nature 413(6854), 379–380 (2001)

    Article  Google Scholar 

  2. Tendick, F., Shankar Sastry, S., et al.: Application of micromechantronics in minimally invasive surgery. IEEE/ASME Transactions on Mechatronics 3(1), 34–42 (1998)

    Article  Google Scholar 

  3. Ross, A.M., Segal, J., Borenstein, D., Jenkins, E., et al.: Prevalence of spinal disc disease among interventional cardiologists. American Journal of Cardiology 79(1), 68–70 (1997)

    Article  Google Scholar 

  4. Gomes P.: Surgical robotics: Reviewing the past, analyzing the present, imaging the future. Robot Comput. Integr. Manuf. (2010), doi:10.1016/j.rcim.2010.06.009

    Google Scholar 

  5. Negoro, M., Tanimoto, M., Arai, F., Fukuda, T., et al.: An intelligent catheter system robotic controlled catheter system. Interventional Neuroradiology 7(supp1. 1), 111–113 (2001)

    Article  Google Scholar 

  6. Carpi, F., Pappone, C.: Stereotaxis Niobe magnetic navigation system for endocardial catheter ablation and gastrointestinal capsule endoscopy. Expert Review of Medical Devices 6(5), 487–498 (2009)

    Article  Google Scholar 

  7. Beyar, R., Wenderow, T., Lindner, D., et al.: Concept, design and pre-clinical studies for remote control percutaneous coronary intervention. EuroIntervention 1(3), 340–345 (2005)

    Google Scholar 

  8. Schiemann, M., Killmann, R., Kleen, M., et al.: Vascular guide wire navigation with a magnetic guidance system: experimental results in a phantom. Radiology 23(2), 475–481 (2004)

    Article  Google Scholar 

  9. Thakur, Y., Cakiroglu, J.H., et al.: A device for real-time measurement of catheter-motion and input to a catheter navigation system. Progress in biomedical optics and imaging - Proceedings of SPIE 6509 (PART 1), article. no. 65090G (2007)

    Google Scholar 

  10. Wang, J., Guo, S., Kondo, H., et al.: A novel catheter operating system with force feedback for medical applications. International of Information Acquisition 5(1), 83–92 (2008)

    Article  Google Scholar 

  11. Marcelli, E., Cercenelli, L., Plicchi, G.: A novel telerobotic system to remotely navigate standard electrophysiology catheters. Computers in Cardiology 35(1), 137–140 (2008)

    Google Scholar 

  12. Kim, C.-W., et al.: Development of 3-dimension controllable catheter to show the immediate response using both the thermoelectric module and the shape memory alloy. Modern Physics Letters 22(11), 1099–1104 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, Y., Chen, D., Yin, H. (2010). Optics Based Motion Measurement for a Catheter Navigation System: A Novel and Low Cost Approach. In: Liu, H., Ding, H., Xiong, Z., Zhu, X. (eds) Intelligent Robotics and Applications. ICIRA 2010. Lecture Notes in Computer Science(), vol 6425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16587-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16587-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16586-3

  • Online ISBN: 978-3-642-16587-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics