
Recovery Tasks: An Automated Approach to Failure
Recovery

Brian Demsky1, Jin Zhou1, and William Montaz2

1 University of California, Irvine
2 Octo Technology

Abstract. We present a new approach for developing robust software applica-
tions that breaks dependences on the failed parts of an application’s execution
to allow the rest of the application to continue executing. When a failure occurs,
the recovery algorithm uses information from a static analysis to characterize the
intended behavior of the application had it not failed. It then uses this characteri-
zation to recover as much of the application’s execution as possible.
We have implemented this approach in the Bristlecone compiler. We have evalu-
ated our implementation on a multiplayer game, a web portal, and a MapReduce
framework. We found that in the presence of injected failures, the recovery task
version provided substantially better service than the control versions. Moreover,
the recovery task version of the game benchmark successfully recovered from
a real fault that we accidentally introduced during development, while the same
fault caused the two control versions to crash.

1 Introduction
All too often, failures are caused by the propagation of errors through critical compo-
nents of software applications. Current software development tools actually encourage
the introduction of unnecessary dependences between conceptually unrelated compo-
nents. These dependences introduce new error propagation pathways, which in turn can
introduce new vulnerabilities. For example, many programming languages encourage
developers to map otherwise independent software components onto the same thread.
If one component fails, other components mapped onto the same thread will likely fail
even though their only relationship with the original failure is artificially induced via
the mapping of components to threads.

Our previous work on Bristlecone introduced a task-based language designed to
eliminate artificial dependences that serve to propagate errors [8]. A shortcoming of
Bristlecone is that it cannot prevent the propagation of failures through legitimate de-
pendences. If a failure occurs, it can be desirable for tasks that legitimately depend on
the failed part of the computation to operate in a degraded manner. For example, if a
failure prevents rendering a web page frame, the web browser can still render the web
page by simply rendering the frame as an empty box.

This paper extends our previous work on Bristlecone to manage failure propaga-
tion through legitimate dependences. The technique is based on the observation that
although it is difficult to anticipate how applications may fail, there are often locations
in an application in which it is straightforward to break dependences on data that is
missing because of a failure. For example, developing recovery routines for all possible
failures of a web page rendering engine is likely to be impossible. However, a developer

2

might reasonably write a rendering engine that can assemble frames into a web page
even when some frames are missing because of a failure.

We extend Bristlecone with recovery tasks. Recovery tasks serve as software circuit
breakers — they break legitimate data dependences in the event of a software error to
mitigate the damage caused by that error. More precisely, a recovery task can function
even if an error in another part of the computation causes some of the recovery task’s
input parameters to be unavailable. Note that the exact task that breaks a dependence
chain is not important — the system simply needs a point in the dependence chain to
halt the propagation of a failure.

Our approach uses static analysis to characterize the intended behavior of the failed
part of a computation. We use the term intended behavior to refer to the behavior that
a failed computation would have had if the failure had not occurred. For each possi-
ble failure point, this analysis computes which tasks the computation, had it not failed,
would have executed. The analysis then identifies recovery tasks in these sets. The re-
covery algorithm then uses the recovery tasks to break data dependences on the failure
and recover that part of the computation.

A failure will cause the application to skip some tasks. The analysis next determines
which data structures these skipped task would have modified. The runtime uses these
results to mark any data structures that the skipped part of the application may have
modified as damaged. It then uses the recovery tasks to break the execution’s depen-
dence on the damaged data structures.

Our approach contains the following key components:
• Language Extensions: Developers use annotations to declare a set of recovery tasks

that can execute even if a failure causes some of their parameter objects to be un-
available. The developer guards accesses to those parameter with checks that verify
that the parameter is available before accessing it.
• Static Analysis: The compiler analyzes the application’s code and task specifications

to construct an abstract state transition graph for each class. These graphs abstract
concrete objects’ state with nodes that represent abstract states. We have developed
a static analysis that reasons about the state transition graphs to characterize the in-
tended behavior of the failed code.
• Recovery Algorithm: The runtime system uses static analysis results to reason about

the intended behavior of the failed part of the computation. While it is in general im-
possible to determine the exact intended behavior of the failed part on the objects’
states, our analysis can still generate constraints on the possible states of these ob-
jects. The recovery algorithm uses the results of the static analysis to determine which
recovery tasks should be executed.

1.1 Comparison to Manual Recovery
Many programming languages, including Java, provide exception handling mechanisms
that are designed to help applications recover from failures. Exception handling works
best when recovery can be performed at a location that syntactically encloses the fail-
ure and the recovery action allows the application to return to completely normal exe-
cution. Unfortunately, effective error recovery can require addressing a wide range of
consequences of an error, which may propagate through both the control and data de-
pendences. In particular, the natural place to recover from an error that prevents the

3

generation of a data structure can often be after several subsequent operations on the
data. Moreover, it may not be possible to completely recover from an error at a single
program point — the effects of the error may linger for some time and require that
recovery actions be woven throughout the application.

Writing exception handlers can require the developer to write code that propagates
failure recovery information to the points at which application can perform recovery.
Our approach automatically reasons about an application to characterize the effects of
error propagation through both data and control dependences. Our algorithm uses this
information to generate a set of recovery actions for the application.

1.2 Contributions
This paper makes the following contributions:
• Recovery Algorithm: It presents a new recovery algorithm that manages the propa-

gation of errors through legitimate dependences to recover applications from failures.
• Analysis: It presents a static analysis and a recovery algorithm that can reason about

the intended behavior of the failed part of a computation.
• Language Extensions: It presents language extensions that developers can use to

express high-level insight into how to modify an application’s execution to break
dependences that would otherwise serve to propagate failures.
• Experience: It presents an evaluation of the technique on several benchmarks. For

each application, we report our experience developing the application and evaluate
how robust the application is to injected failures relative to control versions.

2 Example
We present a web browser example that illustrates the recovery algorithm.

2.1 Classes
Figure 1 presents parts of the Page, Frame, and FrameDescriptor class declara-
tions. When the example web browser parses a frame, it creates a new Page object to
store the rendered web page. For each frame, the parser creates a FrameDescriptor
object that describes where to place the frame and a Frame object that contains the in-
formation needed to render the frame. The Frame object will store the rendered frame.

Class declarations contain declarations for the class’s abstract states. Bristlecone’s
abstract states support orthogonal classifications of objects: an object may simultane-
ously be in more than one abstract state. The runtime uses the abstract state of an object
to determine which tasks to invoke on the given object. When a task exits, it can change
the values of the abstract states of its parameter objects.

An abstract state is declared with the keyword flag followed by a name. The
Frame class declaration contains three abstract state declarations: the plugin state,
which indicates that rendering the frame object requires a plugin; the rendered state,
which indicates that the browser has rendered the frame; and the processed state,
which indicates that the browser has incorporated the rendered frame into the page.

2.2 Tasks
Figure 2 presents task definitions from the web browser example. A task definition
consists of the task keyword, the task’s name, the task’s parameter declarations, and

4

1 p u b l i c c l a s s Page {
2 f l a g r e n d e r e d ;
3 f l a g d i s p l a y e d ;
4 . . .
5 }
6

7 p u b l i c c l a s s Frame {
8 f l a g p l u g i n ;
9 f l a g r e n d e r e d ;

10 f l a g p r o c e s s e d ;
11 . . .
12 }
13

14 p u b l i c c l a s s F r a m e D e s c r i p t o r {
15 . . .
16 }

Fig. 1. Class Definitions

1 ta sk P a r s e P a g e (. . .) {
2 . . .
3 tag p t =new tag (p a g e t a g) ;
4 Page p=new Page () (add p t) ;
5 . . .
6 whi le (moreFrames ()) {
7 . . .
8 tag f t =new tag (f r a m e t a g) ;
9 F r a m e D e s c r i p t o r fd =new F r a m e D e s c r i p t o r () (add f t) ;

10 Frame f =new Frame () (add pt , add f t) ;
11 . . .
12 }
13 }
14

15 ta sk RenderFrame (Frame f in ! r e n d e r e d && ! p l u g i n) {
16 i f (n e e d s p l u g i n ())
17 t a s k e x i t (f : p l u g i n := t rue) ;
18 . . .
19 t a s k e x i t (f : r e n d e r e d := t rue) ;
20 }
21

22 ta sk I n v o k e P l u g i n (Frame f in p l u g i n and ! r e n d e r e d) {
23 . . .
24 t a s k e x i t (f : r e n d e r e d := t rue) ;
25 }
26

27 ta sk AddFrameToPage (Page p in ! r e n d e r e d with p a g e t a g pt , F r a m e D e s c r i p t o r fd
28 with f r a m e t a g f t , o p t i o n a l Frame f in r e n d e r e d and ! p r o c e s s e d with
29 p a g e t a g p t and f r a m e t a g f t) {
30 i f (i s a v a i l a b l e (f)) {
31 / / Add Frame t o Page
32 . . .
33 }
34 i f (l a s t f r a m e)
35 t a s k e x i t (f : p r o c e s s e d := t rue ; p : r e n d e r e d := t rue) ;
36 e l s e
37 t a s k e x i t (f : p r o c e s s e d := t rue) ;
38 }
39

40 ta sk D i s p l a y P a g e (Page p in r e n d e r e d and ! d i s p l a y e d) {
41 / / D i s p l a y Page
42 . . .
43 t a s k e x i t (p : d i s p l a y e d := t rue) ;
44 }

Fig. 2. Task Definitions

the task’s body. A parameter declaration consists of a type, a parameter variable, and a
guard expression. An object can serve as a task’s parameter if it satisfies the parameter’s

5

guard expression. The runtime invokes a task when there exist parameter objects in the
heap that satisfy all the parameter guard expressions for the task. We discuss some of
the example task definitions below:
• ParsePage Task: The ParsePage task allocates a Page object to the web page,

splits the page into individual frames, and then generates a Frame object and a
FrameDescriptor object for each frame.
Note that it is important that the Frame objects are associated with both the correct
FrameDescriptor and Page objects. Otherwise, the web browser may place
frames in the wrong pages. The ParsePage task groups these objects by using
tags. It creates a new tag instance of type pagetag and then binds this tag to the
Page and Frame objects.
• RenderFrame Task: The RenderFrame task renders a frame. Its parameter dec-

laration indicates that the runtime can invoke this task on Frame objects in the heap
and the parameter guard expression !rendered indicates that the parameter object
must not be in the rendered abstract state. When invoked, the task checks whether
rendering this frame requires a plugin, and then it either executes a taskexit state-
ment that transitions the object into the rendered abstract state to indicate that
the frame is rendered or a taskexit statement that transitions the object into the
plugin abstract state to indicate that a plugin is required to render the frame.
• AddFrameToPage Task: The AddFrameToPage task adds a rendered frame to

the web page. Even if a software fault prevents a frame from being rendered, it is
still possible to display the web page with that frame blanked. Therefore, we use the
optional keyword to specify that the task can execute even if the Frame param-
eter is unavailable due to a failure. We call tasks that contain optional parameters
recovery tasks. Recovery tasks use isavailable checks to verify that an optional
parameter is available before accessing that parameter.
Note that it is important that both the FrameDescriptor object corresponds to the
Frame object and the Frame object is a frame for this specific Page object. The tag
guard expression with pagetag pt in the first and third parameter declarations
ensures that those parameter objects are bound to the same pagetag tag instance.

2.3 Error-Free Execution
We next discuss how the runtime would execute the example in an error-free execution:
1. Parsing the Page: The browser first executes the ParsePage task. This task cre-

ates a Page object to store the page, parses the web page, and creates both a Frame
object and a FrameDescriptor object for each frame in the page.

2. Processing Frames: The browser next processes the frames by performing the fol-
lowing operations:
A. Render the Frame: The browser executes the RenderFrame task to render the

frame. If the frame requires a plugin to render, the runtime passes the frame to the
InvokePlugin task.

B. Optionally Invoke a Plugin: If a frame requires a plugin, the browser executes
the InvokePlugin task to invoke the necessary plugin.

C. Add the Frame to the Web Page: The AddFrameToPage task adds a rendered
Frame object to the Page object. Once all frames have been rendered, this task
marks the Page object as rendered.

6

3. Displaying the Page: After the Page object has been rendered, the
DisplayPage task displays the page.

2.4 Reasoning About Failures
In this example, the developer has provided a recovery task implementation of the
AddFrameToPage task that can function even if a failure affects one of its parameter
objects. If rendering a web page frame fails, this allows the runtime to break depen-
dences on missing frames at the AddFrameToPage task. Breaking these dependences
allows the web browser to recover from errors in processing and rendering web page
frames and still display the affected web page.

If a failure occurs, the recovery algorithm must characterize how the computation
would have proceeded in the absence of the failure. The recovery algorithm can then
resume execution of the failed part of the application’s execution if it can break the
data dependences on failed part of the execution. Therefore, the recovery algorithm
computes the set of recovery tasks that the computation was intended to execute.

If the example fails, an important question is whether the computation would have
invoked the AddFrameToPage recovery task in the absence of a failure. We use static
analysis of the abstract state transition graphs to determine the intended behavior of
the failed part of the computation. A separate static analysis generates the abstract state
transition graphs [8]. Figure 3 presents the abstract state transition graph for the Frame
class. For every reachable object state, there is a node in this graph with the abstract
state component of that state and an abstracted count of the tags of each type that are
bound to the object. For example, the node labeled 2. plugin, frametag(1),
pagetag(1) represents objects in the plugin abstract state and that are bound to
exactly one instance of both a frametag tag and a pagetag tag. Edges represent the
possible transitions an object’s state may make during the execution of a task. Double
boundaries indicates that new objects can be allocated with that state.

2. plugin, frametag(1), pagetag(1)

3. plugin, rendered, frametag(1), pagetag(1)

ProcessPlugin

4. processed, plugin, rendered, frametag(1), pagetag(1)

AddFrameToPage

5. rendered, frametag(1), pagetag(1)

6. processed, rendered, frametag(1), pagetag(1)

AddFrameToPage

1. frametag(1), pagetag(1)

RenderFrame RenderFrame

Fig. 3. Abstract State Transition Graph for the Frame Class

The recovery algorithm characterizes the intended behavior of the failed part of the
computation. Note that the runtime plays a role in the execution of Bristlecone appli-
cations — it non-deterministically selects a task whose parameter guards are satisfied
to invoke next. The analysis of the failed part of the execution can suppose that the
runtime would have selected whichever schedule for the failed part of the computation
that makes recovery easiest. Therefore for each reachable abstract object state, the static
analysis computes the set of recovery tasks that the scheduler could cause the applica-
tion to eventually execute with the object serving as an optional parameter. For each
recovery task, it computes the possible states of the object when the task is invoked.

7

The analysis begins with the recovery tasks and then reasons backwards on the
abstract state transition graph. The analysis operates as follows on the example:
1. It first analyzes the two base cases: objects in the state 5. rendered,
frametag(1), pagetag(1) can immediately serve as parameter objects
for the optional parameter of the AddFrameToPage task. Similarly, objects
in the state 3. plugin, rendered, frametag(1), pagetag(1) can
also immediately serve as parameter objects for the optional parameter of the
AddFrameToPage task.

2. The analysis next reasons backwards and examines the state 2. plugin,
frametag(1), pagetag(1). If a FrameObject reaches this state, the run-
time can invoke the processPlugin task to place the object in the 3. plugin,
rendered, frametag(1), pagetag(1) state to which it can serve as a pa-
rameter object of the AddFrameToPage task.

3. The analysis finally examines the state 1. frametag(1), pagetag(1).
The RenderFrame task can transition objects from this state into two dif-
ferent abstract states. Because the AddFrameToPage task can be executed
from both final destination states, the runtime can cause objects in this state to
serve as parameters of the AddFrameToPage task. Since the RenderFrame
task decides the initial state transition, there remains uncertainty about the ex-
act state of the recovery task’s Frame parameter. We represent this uncertainty
using the set {3. plugin, rendered, frametag(1), pagetag(1),
5. rendered, frametag(1), pagetag(1)} that includes both states.

2.5 Recovering From Failures
We use a hypothetical failure to illustrate the operation of the recovery algorithm. Sup-
pose that the RenderFrame task dereferences a null pointer. The runtime first rolls
back the RenderFrame task to return the heap to a consistent state. Then it performs
the following steps to continue past the failure to render the web page:
1. Determine the possible destination states for the failed task: The runtime uses

the static analysis results to determine that in the absence of the failure, this task
would transition the Frame object into either the 2. plugin, frametag(1),
pagetag(1) state or the 5. rendered, frametag(1), pagetag(1)
state. Because the task failed, the runtime cannot determine which of these two states
the Frame object would have transitioned.

2. Compute the recovery tasks in the intended execution: The runtime uses
the static analysis results to determine a set of tasks for each state that the
runtime could execute regardless of the application’s behavior. The analysis re-
sults from the previous section show that the runtime could cause Frame
objects in the 2. plugin, frametag(1), pagetag(1) state to transi-
tion to the 3. plugin, rendered, frametag(1), pagetag(1) state.
In this state, they can serve as parameter objects for the optional parame-
ter of the AddFrameToPage task. Frame objects in the 5. rendered,
frametag(1), pagetag(1) state can also serve as parameter objects for the
optional parameter of the AddFrameToPage task.

3. Compute the intersection: Because the RenderFrame task failed, the run-
time cannot determine the exact intended execution. However, if a recovery task

8

appears on all paths, the runtime can still safely execute that task. The anal-
ysis computes the intersection of the recovery task results from step 2 to de-
termine that the runtime can cause the AddFrameToPage task to be exe-
cuted. Because the failure prevents the runtime from discovering the path taken
by the RenderFrame task, the runtime does not know the exact abstract
state that the Frame object would have been in when the AddFrameToPage
task executed. So the runtime represents the object’s state with the set of
possible states {3. plugin, rendered, frametag(1), pagetag(1),
5. rendered, frametag(1), pagetag(1)}.

4. Execute the recovery task: The runtime next executes the recovery task. Note that
the isavailable predicate returns false indicating that the Frame object is not
available because of a failure. The runtime marks the object as a failed object. The
object’s data is now inconsistent with its abstract state. Therefore, the data in that ob-
ject can never be accessed. This means that the object cannot serve as a non-optional
parameter object.

5. Update the abstract states: When the recovery task exits, the run-
time updates the Frame object’s set of states to {4. processed,
plugin, rendered, frametag(1), pagetag(1), 6. processed,
rendered, frametag(1), pagetag(1)}. The execution of tasks on the
Frame object is now complete. In general, the runtime would compute the intersec-
tion of the sets of recovery tasks for all of the possible states that the Frame object
may be in. The runtime would then execute one of the tasks in the intersection.

3 Static Analysis
The goal of the static analysis is to determine a failed computation’s intended behavior.

3.1 Abstract State Transition Graphs
The analysis operates on the abstract state transition graphs that we developed in previ-
ous work [8]. A abstract state node represents the abstract state and tag components of
an object’s state — each node contains the states of all the abstracted object’s abstract
states and a 1-limited count (0, 1, or at least 1) of the number of tag instances of each
type that are bound to the object. The abstract state transition graph contains abstract
state nodes for each reachable abstract state. The abstract state transition graph contains
a set of edges that abstract the actions of tasks on objects. There is an edge between
two abstract state nodes if a task can be invoked on an object in the abstract state cor-
responding to the source node and the task could transition the object into the abstract
state corresponding to the destination node.

Abstract state nodes n ∈ N abstract the reachable abstract states. The set T rep-
resents the set of tasks. The set P ⊆ T × N represents the set of combinations of
tasks and parameter indices for the invocation of a task on an object. The set of edges
E ⊆ N × P ×N represents the possible transactions of an object’s abstract state.

3.2 Analysis Abstraction
The analysis computes the recovery function r : N → 2O that maps abstract state
nodes to their corresponding recovery set. A recovery set is the set of recovery tasks
invocations for which there exist a scheduling strategy that ensures that the computation

9

will eventually invoke the task on the object abstracted by the state transition graph.
O ⊆ T ×N× 2N is the set of recovery task invocations. Each recovery task invocation
o = 〈t, i, s〉 ∈ O consists of a task t, the optional parameter index i, and the set s of
parameter object abstract states at invocation. These states represent the possible states
of the object at task invocation if the recovery task is invoked.

The dataflow lattice is the standard lattice for sets: the elements of these sets are sets
of recovery task invocations, meet is set union, and the subset relation defines the partial
order. The analysis is a fixed-point algorithm on the abstract state transition graph.

3.3 Transfer Function
We next describe the transfer function for computing the set of recovery task invoca-
tions for an abstract state node n ∈ N . There are two sources of uncertainty in the
abstract state transition graph: (1) there is uncertainty in how a task’s execution will
change an object’s state and (2) there is uncertainty in the task the runtime chooses to
invoke. The Section Results for a Single Task Invocation describes how we handle the
first type of uncertainty in detail. The Section The Runtime’s Choice of Task describes
how we handle the second type of uncertainty. We first describe the basic transfer func-
tions. We later extend the basic analysis to support tags and multiple parameter tasks in
Sections 3.4 and 3.5, respectively.
Results for a Single Task Invocation We represent a task invocation on an object
using the pair 〈t, i〉 ∈ P where t is the task and i is parameter that references the object.
For each task invocation p = 〈t, i〉 ∈ P the algorithm computes the set of recovery
task invocations that can break data dependences if the failed part of the computation
includes p. We consider the following two possible cases:

Optional Parameter Case: If parameter i of task t is optional, the set of recovery
task invocations for the invocation of the task-parameter pair p on the abstract state n is
{〈t, i, {n}〉}.

Normal Case: Otherwise, the algorithm computes the set of possible destination
abstract states Ndstn

= {ndst | 〈n, p, ndst〉 ∈ E} = {ndst1 , ..., ndstm
}. Because the

runtime does not choose the destination state of a task, the set of recovery task invoca-
tions for p can only include combinations of recovery task topt and optional parameter
iopt that appear in the recovery sets of all destination states. The set of recovery task
invocations for the task invocation p on n is therefore: {〈topt, iopt, s1 ∪ ... ∪ sm〉 |
〈topt, iopt, s1〉 ∈ r(ndst1), ..., 〈topt, iopt, sm〉 ∈ r(ndstm

)}. The recovery task invoca-
tion’s set of abstract states is equal to the union of all the component sets of abstract
states {s1, ..., sm} because the analysis cannot determine the destination state of the
task invocation p and therefore cannot determine the exact state that an object would be
in when it serves as the iopt parameter of the task topt.
The Runtime’s Choice of Task When an abstract state has more than one possible
task invocation, the runtime can choose which task to invoke. To compute the set of
recovery task invocations for the abstract state n, the analysis first computes the set of
recovery task invocations for each pair of task t and parameter i that can be invoked on
the abstract state n. The set of recovery task invocations for n is the union of these sets.

3.4 Multiple-Parameter Tasks
Tasks that operate on multiple-parameters pose extra challenges. Because the abstract
state transition graph only characterizes the application’s behavior with respect to a sin-

10

gle object, the runtime must ensure that all other parameter object guards for a multiple-
parameter task are satisfied. Moreover, a multiple-parameter task could potentially in-
troduce inconsistencies in other object’s states if the abstract states of some parameter
objects were updated and another parameter object’s abstract states were not. For exam-
ple, if the abstract states of other parameter objects were updated without actually ex-
ecuting the multiple-parameter task, it would likely introduce inconsistencies between
the other object’s data and the states of its abstract states. If the runtime declared the
other objects as failed, the recovery attempt could cause the loss of key data structures.
To avoid these issues, the analysis conservatively omits multiple-parameter tasks that
change the abstract states or tag bindings of other parameters. Note that omitting these
tasks is safe, it simply reduces how much of the computation can be recovered.

We have extended the transfer function for multiple-parameter tasks to add predi-
cates to recovery task invocations. These predicates verify that the heap contains objects
that satisfy the guard expressions for the other parameters of the task. The runtime uses
these predicates to check whether an execution path involving a multiple-parameter task
is feasible, and therefore that the corresponding recovery task can be executed.

3.5 Tag Bindings
Another complication is that a task in the failed part of the execution may bind a new
tag instance to an object. Because Bristlecone cannot determine the exact tag instance
that would have been bound, the static analysis must conservatively handle this case.
We have extended the transfer function to omit recovery task invocations if the current
task binds a tag descriptor of the same type as the tag guards that appear either in the
recovery task’s guard expressions or in any tag guard predicates in the recovery task
invocation. Note that omitting these invocations is safe, it simply reduces the set of
possible recoveries that the system can generate.

4 Recovery Algorithm
The runtime should only invoke a recovery task on a failed object when the intended
execution would have executed that task. Because the failure prevented part of the com-
putation from executing, the analysis may not be able to determine the exact abstract
state of the failed object, but only that the object’s abstract state satisfies the recovery
task’s guard. There are two sources of uncertainty in the abstract state of a failed object:
• Uncertainty from Failed Tasks: A task can have multiple exits and therefore po-

tentially transition its parameter objects into different abstract states. Because the
runtime cannot determine which exit a failed task would have taken had it not failed,
the runtime must conservatively assume that the task could take any of the exits.
The recovery algorithm represents this uncertainty using a possible abstract state set
SF = {n1, ..., nj} ⊆ 2N that contains all possible abstract states that the tasks could
have transitioned the parameter objects into. A recovery task can only be invoked on
a possible abstract state set if it can be invoked on all of its component abstract states.
• Uncertainty from the Runtime: If the runtime would have had a choice between

multiple tasks to invoke on an object in a failure-free execution, the runtime can
use the same freedom to make recovery easier. Because the choice of which failed
task the runtime executes does not have an immediate side-effect, the runtime can

11

delay this choice. This delay gives the runtime extra flexibility in recovery and pro-
vides a beneficial source of uncertainty in an object’s state. The recovery algorithm
represents this uncertainty source with a choice set C = {SF1 , ..., SFm

} ⊆ 22N

of
choices between many possible abstract state sets. A recovery task can be invoked on
a choice set if it could be invoked on at least one of the component possible abstract
state sets. When a recovery task is invoked, its guards constrain the abstract states of
the parameter objects and may force the runtime to commit to a specific choice of
task scheduling for the failed part of the computation.

4.1 Task Invocation
Task invocation during normal execution is conceptually straightforward — the runtime
maintains the current state of the objects and invokes tasks on these objects when the ob-
jects satisfy the task’s guards. Our previous work describes efficient runtime techniques
for task invocation. In this section, we extend this work to support recovery tasks by
tracking the states of failed objects. We first describe how the runtime uses static analy-
sis to compute the set of recovery tasks that can be executed on a failed task’s parameter
objects. We then describe how, after a recovery task completes execution on a failed ob-
ject, the runtime uses the static analysis results to compute the set of recovery tasks it
can execute next on the failed object.

Failed Tasks This section describes the actions taken by the runtime when task
t fails with its ith parameter object o in the state given by the choice set C =
{{n11, ..., n1k1}, ..., {nj1, ..., njkj

}}.3 The runtime first computes which recovery tasks
could have been executed had task t not failed. It also characterizes the possible states
of the object o at the time these recovery tasks would have been invoked.

The runtime computes the function R ⊆ T × N → 22N

that characterizes the set
of possible recovery task invocations. We define the function O = T (t, i, n) to return
the set of recovery task invocations O for a failure of task t on the ith parameter object
in state n. The runtime uses the procedure described in Section 3.3 to compute T from
the static analysis results.

The operator � models the effects of the uncertainty of the failed task’s execution
by conservatively combining the sets of recovery task invocations – a recovery task
is in the combination only if it appears in both sets. Formally, we define O1 � O2 =
{〈t′, i′, S〉 | 〈t′, i′, S1〉 ∈ O1 ∧ 〈t′, i′, S2〉 ∈ O2, S = S1 ∪ S2}. We use the � operator
to compute the set of possible recovery task invocations for an object in the possible
abstract state SF = {n1, ..., nj} ⊆ 2N that served as parameter i during a failure of task
t as T (t, i, n1)�...�T (t, i, nj). We use the set union operator to extend this computation
to choice sets — the algorithm computes the set of possible recovery task invocations
C =

(
T (t, i, n11) � ... � T (t, i, n1k1)

)
∪ ... ∪

(
T (t, i, nj1) � ... � T (t, i, njkj)

)
. We

define R(t, i) = {S | 〈t, i, S〉 ∈ C}. The function R gives for each possible recovery
task invocation 〈t, i〉 that can be enqueued, the choice set that characterizes the failed
object’s state. Note that the object remains enqueued in any previous task queues.

3 A non-trivial choice set can appear after a failure of a recovery task invocation during the
process of recovery. The recovery algorithm continues to try to break other data dependences
at future recovery tasks that access the object. Note that the parameter objects of a normal
failed task will be in a trivial choice set C = {{n11}}.

12

Recovery Tasks on Failed Objects This section describes the actions the runtime
takes to execute a recovery task on a failed parameter object. The runtime starts the
task’s execution with the object in the state computed in the previous section for
the task invocation. When the task exits, the runtime updates each of the object’s
possible states with the abstract states and tag changes from the taskexit state-
ment. The runtime then removes the parameter objects from all task queues. If the
parameter object is in a non-failed state, the runtime enqueues the object in the task
queues. Otherwise, for a failed parameter object in the state given by the choice set
C = {{n11, ..., n1k1}, ..., {nj1, ..., njkj}} the algorithm uses the recovery function r
to compute C =

(
r(n11) � ... � r(n1k1)

)
∪ ... ∪

(
r(nj1) � ... � r(njkj)

)
. We define

R(t, i) = {S | 〈t, i, S〉 ∈ C}. The algorithm then uses R to determine, for each possi-
ble recovery task invocation 〈t, i〉 that can be enqueued, the corresponding choice set.

5 Experience
We next discuss our experiences using recovery tasks to develop three robust software
applications: a multiplayer game, a web portal, and a simplified MapReduce framework.
We have implemented the enhanced recovery algorithm with support for recovery tasks
in the Bristlecone compiler and runtime. The source code for the compiler, runtime, and
benchmarks is available at http://demsky.eecs.uci.edu/software.php.

For each benchmark, we developed three versions: a recovery task version, a stan-
dard Bristlecone version without recovery tasks, and a Java version.

We used randomized failure injection to simulate the effects of software faults. The
compiler inserts failure injection code after every instruction in the generated code. We
inject exactly one failure into each execution at a random instruction. The failures we
injected simulate the entire class of software faults that cause failures in the same task
that contains the fault. This fault class includes illegal memory accesses, failed asser-
tions, failed data structure consistency checks, library errors, and arithmetic exceptions.

We developed this randomized failure injection strategy to avoid biases that hand-
selected faults may introduce. Note that our randomized failure injection strategy likely
represents an unrealistically harsh metric — it may inject faults that are extremely dif-
ficult to recover from, but are unlikely to occur in practice. For example, it sometimes
injects failures into simple, completely deterministic startup code. While such injected
failures cause the Bristlecone versions to fail to recover because the entire application
depends on the startup code, they are unlikely to occur in practice as they would have
been caught the first time the application was executed.

5.1 Multiplayer Game
The multiplayer game benchmark is a simplified version of larger scale multiplayer on-
line games. Software bugs have been a recurring problem for many of these games. Our
game consists of a world with both humans and monsters. Humans try to escape through
exits while monsters try to capture the humans. The game contains AI components that
use search algorithms to plan the moves for both monsters and humans. The recovery
task version uses a recovery task to collect the players’ moves and update the map.

In the process of developing the AI code, which is shared across all versions, we
made an unintentional coding mistake that could cause an out-of-bounds array access

13

under certain circumstances. The recovery task version recovered from this bug while
the other two versions crashed. While this experience is only a single anecdote, we
found it to be an encouraging validation of the approach.

Our workload was running the game with all players controlled by the AI. We per-
formed 100 trials of the experiment on each of the three versions. We found that using
recovery tasks enabled the recovery task version of the game to survive the injected
failure in all 100 trials. We found that in the presence of errors, the standard Bristlecone
and Java versions were unable to continue the game.

5.2 Web Portal
The web portal models a category of applications that perform independent compu-
tations, combine the results, and then display some aggregation to the user. When a
web browser requests the portal page, the web portal generates requests for the current
weather conditions, stock prices, and the Google home page. Finally, the web portal
combines the results from the individual responses into a single page and serves this
page to the browser. The recovery task version enhances the data combination phase to
enable recovery from failures that make parts of the information unavailable.

Our workload consisted of using a web browser to view the portal web page. We
performed 20 trials of the experiment on each of the three versions. We found that
using recovery tasks enabled the web portal to serve the unaffected parts of the web
portal page in 17 of the 20 trials. We found that in the presence of errors, the standard
Bristlecone and Java versions were unable to serve the portal web page. However, all
three versions were able to isolate errors to a single request — all versions of the web
portal were able to serve future page requests after a failure.

5.3 MapReduce Framework
MapReduce provides an abstract programming model for parallel computations on large
data sets [7]. Users specify the computation in terms of a map function and a reduce
function and MapReduce automatically parallelizes the computation across machines.

We implemented a simplified MapReduce framework. The implementation parti-
tions the input, invokes the map function, aggregates intermediate results, invokes the
reduce function, and aggregates the final results. The recovery task version uses recov-
ery tasks for aggregating the map and reduce results.

Our workload counts the occurrences of each word in a text file. We performed 100
trials on each of the three versions. For each trial, we recorded whether the final output
was generated. Without failure injection, all of the versions generated the final output.
With the injected failures, the recovery task version produced the final output in 93 trials
while the other two versions failed in all trials. When the recovery task version failed,
it warned the user that the word counts could potentially be low. We expect that users
will often find the output useful as it represents a lower bound on word counts.

We divide the injected failures into three categories: (1) failures that affect map
workers, (2) failures that affect reduce workers, and (3) failures that affect the tasks that
coordinate the computation. We observed 86 executions in the first category. The effect
of these errors was to cause word counts to be low or missing — in these executions the
counts were low by an average of 5%. We observed 7 executions in the second category.
The effect of these errors was to cause word counts for some words to be missing. We

14

observed that 86 words out of 6,213 total words were missing on average from these
executions. The 7 failed executions fall in the third category.

5.4 Discussion
We measured the execution time of both the recovery task version and the Java version
of the multiplayer game and MapReduce benchmarks. We omit a performance evalu-
ation for the web portal because of the difficulty of measuring its performance given
that the portal accesses remote web servers. The Bristlecone version of the MapReduce
benchmark running on a RAM disk took 0.63 seconds to execute while the Java version
took 0.58 seconds. The recovery task version of the multiplayer game benchmark took
0.94 seconds to execute while the Java version took only 0.63 seconds.

In general, we have found writing Bristlecone applications to be straightforward
— most of the code was shared with the Java version. The Bristlecone versions of the
benchmarks were comparable in length to the Java versions. The recovery task version
of MapReduce framework contains 20% fewer lines of code than the Java version, the
recovery task version of multiplayer game contains 5% more lines of code, and the
recovery task version of web portal contains 6% more lines of code of which about one
third were simply abstract state declarations.

6 Related Work
Recovery blocks [1] and N-version programming [3] are two classic approaches to fault
tolerance. These approaches add significant software development costs. Bristlecone is
designed to provide fault tolerance for applications that cannot afford the development
costs associated with these classic techniques.

Backward recovery uses a combination of checkpointing and acceptance tests to
prevent a software system from entering an incorrect state [5]. Forward recovery uses
multiple copies of a computation to recover from transient errors [11]. Unfortunately,
it can be difficult to handle deterministic failures with these methods as the same error
will likely cause the software system to repeatedly fail.

The Recovery-Oriented Computing project has explored systems out of a set of
individually rebootable components [4]. Researchers have used retry with reconfigura-
tion to address configuration issues [13]. Contract-based data structure repair [15] is an
alternative approach to tolerating failed components.

A key component of Bristlecone is decoupling unrelated conceptual operations and
tracking data dependences between these operations. Dataflow computations also keep
track of data dependences between operations so that the operations can be paral-
lelized [12]. Errors in a dataflow computation could easily cause key data structures
to be lost. Bristlecone’s abstract state and tag constructs allow data structures to pas-
sively persist across failures.

Tuple-space languages, such as Linda [9], decouple computations to enable paral-
lelization. The threads of execution communicate through primitives that manipulate
a global tuple space. However, these language were not designed to address software
errors — software errors can permanently halt threads of execution in these languages
causing the system to eventually fail.

Orc [6] and Oz [14] are other examples of task-based languages. This work is largely
orthogonal as they are not designed for fault tolerance. Actors are a concurrent program-
ming paradigm in which applications are architected as several actors that communicate

15

through messages [10]. Actors are note designed for fault tolerance and failures may
cause actors to drop messages and corrupt or lose their state.

Erlang has been used to implement robust systems using a software architecture
containing a set of supervisors and a hierarchy of increasingly simple implementations
of the same functionality [2]. Bristlecone is complementary to the supervisor approach
— while the supervisor approach gives the developer complete control over recovery,
it requires the developer to manually develop multiple implementations of the same
functionality. Bristlecone requires only minimal additional development effort.

7 Conclusion
We have presented an analysis that reasons about the effects of potential failures and a
recovery algorithm that uses the analysis results to determine how to recover the appli-
cation from the failure. Our experience shows that the new technique recovers signifi-
cantly better from failures for our benchmarks. Moreover, we found it straightforward to
use this technique to develop applications, and that it did not significantly affect either
the complexity or length of the benchmarks.
Acknowledgments. This research was supported by the National Science Foundation
under grants CCF-0846195 and CCF-0725350. We would like to thank the anonymous
reviewers for their helpful comments.

References

1. T. Anderson and R. Kerr. Recovery blocks in action: A system supporting high reliability. In
ICSE, 1976.

2. J. Armstrong. Making Reliable Distributed Systems in the Presence of Software Errors. PhD
thesis, Swedish Institute of Computer Science, November 2003.

3. A. Avizienis. The methodology of N-version programming, 1995.
4. G. Candea and A. Fox. Recursive restartability: Turning the reboot sledgehammer into a

scalpel. In HotOS-VIII, 2001.
5. K. M. Chandy and C. Ramamoorthy. Rollback and recovery strategies. IEEE Transactions

on Computers, C-21(2):137–146, 1972.
6. W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in Orc. In Coordination, 2006.
7. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In

OSDI, 2004.
8. B. Demsky and S. Sundaramurthy. Bristlecone: Language support for robust software appli-

cations. To Appear in TSE, 2010.
9. D. Gelernter. Generative communication in Linda. TOPLAS, 7(1):80–112, 1985.

10. C. Hewitt and H. G. Baker. Actors and continuous functionals. Technical report, Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1978.

11. K. Huang, J. Wu, and E. B. Fernandez. A generalized forward recovery checkpointing
scheme. In FTPDS, April 1998.

12. W. M. Johnston, J. R. P. Hanna, and R. J. Millar. Advances in dataflow programming lan-
guages. ACM Computing Surveys, 36(1), 2004.

13. F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as allergies—a safe method
to survive software failures. In SOSP, 2005.

14. G. Smolka. The Oz programming model. In JELIA, page 251, 1996.
15. R. N. Zaeem and S. Khurshid. Contract-based data structure repair using alloy. In ECOOP,

2010.

