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Semi-Supervised Fingerprinting of Protocol
M essages

Jéerdme Francgois, Humberto Abdelnur, Radu State, QIgsstor

Abstract This paper addresses the fingerprinting of network devisgsyusemi-
supervised clustering. Semi-supervised clustering is & teehnique that uses
known and labeled data in order to assist a clustering psot¥s propose two dif-
ferent fingerprinting approaches. The first one is using Wehal features that are
induced from a protocol state machine. The second one imgebn the underlying
parse trees of messages. Both approaches are passive. Wiiepagerformance
analysis on the SIP protocol. Important application domaifhour work consist in
network intrusion detection and security assessment.

1 Introduction

Assuming a protocol, fingerprinting a device aims to retithe names and versions
of software or hardware equipment (also named the devicg) tffsom a security
point of view, knowing the device type may help to design a @dul attack but
the network administrator is also able to evaluate pregib risks in order to ap-
ply necessary. Device fingerprinting may help to identityael tools or to enforce
the host identity verification. Whereas a device often ances its type thanks to
a specific field in the messages (the user-agent field), it eamabily faked. Pre-
vious fingerprinting approaches show that remote identifinais possible due to
deviations in the implementation of a given protocol but hadshem are limited to
manually constructed signature. Therefore, our main ratitim is to automatically
observe protocol deviations in order to establish sigrstwithout human and net-
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work interactions (passive fingerprinting) for any proto@eneric approach). The
only assumption is to capture and label few traffic from easViak type to finger-
print. We propose first a fingerprinting scheme that can ldatinctive patterns in
the state machine of a particular implementation. We cemsaso a second fin-
gerprinting approach, where syntactic information fromsparees is leveraged to
identify a given device or protocol stack. Thus, this papghlights the benefit of
using recent classification techniques for security puepos

Our paper is structured as follows: section 2 describesah®-supervised clus-
tering approach. We continue in section 3 with the state macfingerprinting.
Section 4 addresses the syntactic one. Section 5 desceilesamt prior work and
section 6 concludes the paper and highlights future works.

2 Semi-Supervised Clustering
2.1 Overview

Semi-supervised learning approaches focus on data sétonlif a small amount
of labeled data and a lot of unlabeled data samples. Serergigpd clustering was
introduced in [19]. The main idea in semi-structured clistgalso known asa-
bel propagation algorithm is to construct a fully connected graph with sorodes
with labels (class name of the node). The edges between tdesnuave weights
associated depending on the distances between nodetsvéigrall the labels are
propagated to unlabeled regions in the fully connectedtgrijedes that are not
labeled, will iteratively estimate the probabiliti€belonging to each class. At the
end of the iterations, an unlabeled node will be allocatdtiéanost probable class.

2.2 Formal Definition

We have a set composed of labeled détayi),...,(x,y1) and unlabeled data
(X1, Yi41)se-Xipus Yivu) With | < u, whereY, = {yi,....y;} are the class labels
of the labeled data and, = {y; +1,...y; + u} unobserved yet. It is assumed that the
number of classe€ is known and that all classes are in the labeled data samples
[19]. Let X={x1,...,x+y} be the different data itemsg. We want to estimate the
class labels of the unlabeled samplgsrom the data itemX and their class labels
YL. This is done using a distance function. If two cluster tegbe,yi) and(x;,y;)
have to be comparedy( respectivelyy; represent the class labels), the distatige
measures the difference between the two data iteraadx;. The performance of
the semi-clustering algorithm is dependent on this diggnoaction which is de-
fined in next sections. The labeled and unlabeled data samapéerepresented in
a fully connected graph, where the edge between moflés weighted. The edge
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weightw;; is given by the following expression:

Wij =e o? Q)
As in [19] we define &1 +u) x (I 4+ u) transition matrixT, whereTi; gives the
probability to jump from nodéto j.
Wij
31 Wik
We define g1 4 u) x C label matrixY, where a row reflects the label probability
distribution of a node. The elemelit is the probability that elemenf belongs

to the class c. Initially this probabilities are initialttevith 1/C for the unlabeled
items. The label propagation algorithm by [19] has threfediit steps:

T =P(i— )= (2)

1. Propagat¥'*1 <« T «Y!: all nodes propagate their labe¥; ! denotes the ma-
trix Y at the iterationt + 1

2. Row normalization o¥'**: this maintains a probability distribution.

3. Clamping of labeled dat&:=1 if item Y; had an initial label of c. This step
assures that initial labels are maintained.

The previous steps are repeated fraigp 1 to 3, untilY converges which is always
the case as proved in [19]. In a multi-class prediction problithC classes, [5], a
C x C contingency or confusion matrix = zj is usedz; is the number of times a
sample belonging to classis put in clasg. The overall evaluation parameter is the
quality Q¢gtal , Which is the value of all correct predictions made:

YiZi
_ 2140 yhereN =Yz
Qiotal N here %Zu

3 Fingerprinting Protocol State Machines

3.1 Behavioral Tree

Since the theoretical details of protocol state machineefipgnting are given in
[11], this section gives a general overview. Each device tgpepresented by mul-
tiple behavioral trees as for instance in figure 1(a). Theesotbrrespond to the
emitted (prefixed by) or received (prefixed b¥) messages and are only symbol-
ized by their types. Thus, each path of the tree is an obseeraakence of messages
(a session) for the current device with average delays pedgs labels.

For comparing such trees, a kernel function considers airpéths $im_paths)
(same sequence of nodes from the root) and computes a tirad Béference:

K(t,tj) = @~ 0|delay(edget; ) —delay(edgety)| (3)

pesim_pathsedgec p
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(a) Twinkle 1.10 (soft-phone) (b) Cisco 7940 (hardphone)

Fig. 1: Sessions tree examples. Two shared paths are gagdol

3.2 Performance Evaluation and Experimental Datasets

For validating our approach, SIP [15] was chosen due to itsulawity for VolP
applications and to many related security problems as famgte [3].

The first dataset denoted &estbed dataset was generated using both
softphones likeTwinkle and hardphones from different brands (Cisco, Linksys,
Snom or Thomson) connected on a local testbed. dperator dataset
refers to network traces provided by a real VolP operatddMBB of data were ran-
domly extracted for our evaluation. The main differencéwaistbed dataset
is that devices are connected through Internet entailingtgr noise and longer de-
lays as highlighted in table 1. Major characteristics ararsarized in Table 1. IN-
VITE messages correspond to call initiations. Whereasffezator dataset
contains more messages, few INVITE messages are presefiietts a realistic op-
erator traffic where users have to periodically send REGESiessages for main-
taining the matching between the global user identifier® (8DR) and the IP ad-
dresses. This type of sessions contain few messages whidiesna small number
of messages per session. These facts contribute to tesystens with different
configurations.

#devicest#messagd#INVITE |#sessionsAvg #msgs/sessidivg delay (sec
Testbed |26 18066 3183 2686 6.73 1.53
Operatof40 96033 1861 30006 |3.20 7.32

Table 1: Experimental datasets statistics

We use theestbed dataset for assessing the accuracy of our system with
different o parameter values in order to tune it before applying the fimgating
technique on the@perator dataset . All experiments are run multiple times
and the accuracy is measured as the avera@®.ef. The corresponding standard
deviation is displayed as an error bar on graphs.

Small values ofo will tend to bring together clusters that lie far apart. Learg
values will move apart clusters that lie close. We have esttety tested a range of
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Fig. 2: State machine fingerprinting

potential values. While many choices of tbigparameter provide very good results
(around 80%), one range shows very poor results as showruireffa). We have
investigated this case and concluded that many clusteesaeduded for this range.
Obviously, the overall quality measure is steadily inciregisvith respect to the
proportion of the labeled data as shown in figure 2(b). Foraimse, when only
30% of the data is labeled, the overall quality is more tha¥ .7l order to obtain
90% , the system requires around 80% of labeled data. Cairgidbeoperator
dataset , 82% of devices were identified thanks to 40% of labeled data.

4 Fingerprinting With Syntactic I nformation

4.1 Syntactic Trees

The syntactic fingerprinting was introduced in [10]. The ldga is that device/stack
specific features can be revealed due to the programmingehtiken by the soft-
ware developers. In fact, a protocol is generally definedrbjnagmented Backus-
Naur Form (ABNF) [7] grammar. Then, each message can begepied as suc-
cessive derivations of rules. A toy example is illustrateéigures 3 and 4.

For applying the semi supervised algorithm, a distanceimistmecessary for
comparing two trees. Because computing usual distancenss ¢bnsuming, new
distances with polynomial complexity were introduced ii][IFor comparing two
syntactic trees, the similarity between isomorphic swéstrie computed by calcu-
lating the similarity between each node thanks to table 2landssuming a zero
similarity if the ancestor nodes are different [10]. Assngimax_sim, the maxi-
mum similarity among all isomorphisms, afifl|, the number of nodes in the tree
T, the distance between two treds,andTy, is:

d(T1, T2) = max(|Ta|,|T2|) — max.sim 4)
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Message 1: “INVITE Accept: */*.Call-id:456ZE852.“

= 2%

‘Accept : -, “CallickAS6ZE852.

Message = Request SP *Header SP 0*1Body
Request = Invite / Notify / Cancel

Invite = "INVITE"

Cancel = "CANCEL"

Notify = "NOTIFY"

Header = Accept / Date / Call-id / User-Agent
Body = *Alpha

Alpha = %x41-5A / %x61-7A i A-Z ] a-z
HCOLON = *SP ":" *SP

SP = %x20 , space

Accept = "Accept" HCOLON *Alpha "."

Date = "Date” HCOLON *Alpha "."

Call-Id = "Call-Id" HCOLON *Alpha "." [ Non-terminal Repetition
User-Agent = "user-Agent" HCOLON *Alpha "." Filled shape = choice option set

Fig. 3: Grammar Fig. 4: Syntactic tree

Peorrr]r;inal repetition sequencpotherd |Device Name #mesq Maxh:/:?nht G Max#rl:/I(:gei\vg

- T 5 ) ) Asteriskv1.4.21 1081 | 28 | 23 | 25 |2517883|1284]
Fec:-l;linm Cisco-7940v8.9 168 | 25 | 23 | 24 (2784 812|1352
repetition| 0 T 1 0 Tho_:)msonZOSD/l.S 164 | 28 | 23| 24 |2576| 793|1391)
sequence 0 1 1 0 Tyvmkle.vl.l 195 | 25 | 23| 23 (24578051299
others 0 0 0 0 Linksysv5.1.8 195 | 28 | 23 | 25 (2783 852(1248
SJPhoner1.65 288 | 30 | 23| 24 |2330/951]|1133}

Table 2: Syntactic node similarity Table 3: Testbed dataset — Tree statistics

4.2 Evaluation

Table 3 summarizes the characteristics of syntactic tretheanost represented de-
vice types in thaestbed dataset . The trees are generally huge with a height
around 30 and often contain more than 800 nodes due to ther&htar (more
than 500 lines). Although, the behavioral fingerprintingulés vary well due to

o as shown in figure 2(a), figure 5(a) highlights clearly a matinalue and so
an easy distinguishable best configuration. Figure 5(3titates the impact of the
proportion of the labeled data. We observe that even a vesll garcentage of
labeled data can be used to obtain good results. For insteunem the known la-
beled data is about ten percent of the whole data quantitganexpect the quality
value to be in the 81s percents. With 40%, the overall quadi®/92. Assuming the
operator dataset , this value reaches 68%. This limited result is due to the
creation of groups including several devices which are istirgdyuishable. In fact,
some devices use probably the same or close protocol steaakee(series, same
brands) which does not entail enough differences in syistatricture.



Semi-Supervised Fingerprinting of Protocol Messages 7

0.95
0.9
0.85
0.8

F
0.75 T
H N
+
/

e

Qtotal
o
@
o

thlal

0.65
0.6
0.55

0.5 0.76
2 4 6 8 10 0 0.2 0.4 0.6 0.8 1

sigma Proportion of labelled data
(a) Impact of theo (sigma) parameter (b) Impact of the proportion of labeled data

o

Fig. 5: Syntactic fingerprinting

5 Related Work

Network and service fingerprinting is a common task in ségw@nd network as-
sessment. The key assumption is that subtle differencetodimvelopment diver-
gences can be traced [9]. Passive fingerprinting monitaf§dmwithout any inter-
action as for example [2] which uses a set of signatures tatifgethe operating
systems. In contrast, active fingerprinting generatesifipeequests directed to a
device and monitors the responses as for instance [14]4dtpgisystem and service
versioning). A related work is [6], which describes a medbianto automatically
explore and select the right requests to send. The auth$t8jmgive an overview
of techniques used for determining the different classésafffc (Web, P2P, Chat..)
whereas [12] focus on the identification on the flow types. @ark is different and
complementary since its goal is to determine precisely tglémentation. This
kind of methods was explored in [1] for determining the wetvseversion by ob-
serving the value or the order of some headers. Determihiayé¢rsion of a SIP
equipment could be based on the bad randomness value of thiel @ald [16].
As argued in the introduction, changing these fields is vasyén order to counter
fingerprinting. SIP fingerprinting is also addressed in [@&h other fields protocol
and an active probing technique. Furthermore, such teabsigre only able to iden-
tify devices for which signatures were manually constrdeted keeping a signature
database up-to-date is difficult to the huge variety and aggof devices. A related
work is presented in [4] which needs a grid of 10 computergdwseveral days for
an equivalent dataset as ttestbed dataset . We have used the constructs in
troduced in our previous works[10, 11] and argued to use asgpervised learning
which uses a small quantity of labeled data. Hence, the acguesults are similar
once the percentage of messages used for training is soffimig semi supervised
fingerprinting is clearly better for small volume of traigimessages (10%). Es-
pecially, it provides better results (around 8%) whit therator dataset
Hence, semi-supervised fingerprinting is robust even thietyeof devices is very
high. Whereas our previous based on Support Vector Macli@esquire various
parameters to defing, is the only one to tune for the semi supervised learning.
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6 Conclusion

In this paper, we have addressed the problem of fingerpgmtévices and/or im-
plementation stacks. Our approach is based on semi-sgpdrulustering of time
enhanced state machine induced features. We have alsallabkiee syntactic in-
formation that is contained in messages. We have obtairsedtse¢hat are promis-
ing taking into account the small quantity of labeled datdilé/most supervised
fingerprinting algorithms use about four fifths of the datdrtin the system and
only twenty percent for testing, our approach achieves gesdlts when only few
labeled data items are available. We will look at other prol® — for instance
wireless protocols — and assess the operational appligabithis scenario.
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