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Semi-Supervised Fingerprinting of Protocol
Messages

Jérôme François, Humberto Abdelnur, Radu State, Olivier Festor

Abstract This paper addresses the fingerprinting of network devices using semi-
supervised clustering. Semi-supervised clustering is a new technique that uses
known and labeled data in order to assist a clustering process. We propose two dif-
ferent fingerprinting approaches. The first one is using behavioral features that are
induced from a protocol state machine. The second one is relying on the underlying
parse trees of messages. Both approaches are passive. We provide a performance
analysis on the SIP protocol. Important application domains of our work consist in
network intrusion detection and security assessment.

1 Introduction

Assuming a protocol, fingerprinting a device aims to retrieve the names and versions
of software or hardware equipment (also named the device type). From a security
point of view, knowing the device type may help to design a powerful attack but
the network administrator is also able to evaluate precisely the risks in order to ap-
ply necessary. Device fingerprinting may help to identify attack tools or to enforce
the host identity verification. Whereas a device often announces its type thanks to
a specific field in the messages (the user-agent field), it can be easily faked. Pre-
vious fingerprinting approaches show that remote identification is possible due to
deviations in the implementation of a given protocol but most of them are limited to
manually constructed signature. Therefore, our main motivation is to automatically
observe protocol deviations in order to establish signatures without human and net-
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work interactions (passive fingerprinting) for any protocol (generic approach). The
only assumption is to capture and label few traffic from each device type to finger-
print. We propose first a fingerprinting scheme that can learndistinctive patterns in
the state machine of a particular implementation. We consider also a second fin-
gerprinting approach, where syntactic information from parse trees is leveraged to
identify a given device or protocol stack. Thus, this paper highlights the benefit of
using recent classification techniques for security purposes.

Our paper is structured as follows: section 2 describes the semi-supervised clus-
tering approach. We continue in section 3 with the state machine fingerprinting.
Section 4 addresses the syntactic one. Section 5 describes relevant prior work and
section 6 concludes the paper and highlights future works.

2 Semi-Supervised Clustering

2.1 Overview

Semi-supervised learning approaches focus on data sets with only a small amount
of labeled data and a lot of unlabeled data samples. Semi-supervised clustering was
introduced in [19]. The main idea in semi-structured clustering also known asla-
bel propagation algorithm is to construct a fully connected graph with some nodes
with labels (class name of the node). The edges between two nodes have weights
associated depending on the distances between nodes. Iteratively, all the labels are
propagated to unlabeled regions in the fully connected graph. Nodes that are not
labeled, will iteratively estimate the probabilitiesf belonging to each class. At the
end of the iterations, an unlabeled node will be allocated tothe most probable class.

2.2 Formal Definition

We have a set composed of labeled data(x1,y1),...,(xl,yl) and unlabeled data
(xl+1,yl+1),...,(xl+u,yl+u) with l ≪ u, whereYL = {y1, ...,yl} are the class labels
of the labeled data andYU = {yl +1, ...yl +u} unobserved yet. It is assumed that the
number of classesC is known and that all classes are in the labeled data samples
[19]. Let X={x1, ...,xl+u} be the different data itemsxi. We want to estimate the
class labels of the unlabeled samplesYU from the data itemsX and their class labels
YL. This is done using a distance function. If two cluster tuples (xi,yi) and(x j ,y j)
have to be compared (yi respectivelyy j represent the class labels), the distancedi j

measures the difference between the two data itemsxi andx j. The performance of
the semi-clustering algorithm is dependent on this distance function which is de-
fined in next sections. The labeled and unlabeled data samples are represented in
a fully connected graph, where the edge between nodei, j is weighted. The edge



Semi-Supervised Fingerprinting of Protocol Messages 3

weightwi j is given by the following expression:

wi j = e
−

d2
i j

σ2 (1)

As in [19] we define a(l + u) × (l + u) transition matrixT , whereTi j gives the
probability to jump from nodei to j.

Ti j = P(i→ j) =
wi j

∑l+u
k=1 w jk

(2)

We define a(l+u)×C label matrixY , where a row reflects the label probability
distribution of a node. The elementYic is the probability that elementYi belongs
to the class c. Initially this probabilities are initialized with 1/C for the unlabeled
items. The label propagation algorithm by [19] has three different steps:

1. PropagateY t+1← T ∗Y t : all nodes propagate their labels,Y t+1 denotes the ma-
trix Y at the iterationt +1

2. Row normalization ofY t+1: this maintains a probability distribution.
3. Clamping of labeled data:Yic=1 if item Yi had an initial label of c. This step

assures that initial labels are maintained.

The previous steps are repeated fromstep 1 to 3, untilY converges which is always
the case as proved in [19]. In a multi-class prediction problem withC classes, [5], a
C×C contingency or confusion matrixZ = zi j is used.zi j is the number of times a
sample belonging to classi, is put in classj. The overall evaluation parameter is the
qualityQtotal , which is the value of all correct predictions made:

Qtotal =
∑i zii

N
where N = ∑

i j
zi j

3 Fingerprinting Protocol State Machines

3.1 Behavioral Tree

Since the theoretical details of protocol state machine fingerprinting are given in
[11], this section gives a general overview. Each device type is represented by mul-
tiple behavioral trees as for instance in figure 1(a). The nodes correspond to the
emitted (prefixed by!) or received (prefixed by?) messages and are only symbol-
ized by their types. Thus, each path of the tree is an observedsequence of messages
(a session) for the current device with average delays put asedge labels.

For comparing such trees, a kernel function considers similar paths (sim paths)
(same sequence of nodes from the root) and computes a time based difference:

K(ti, t j) = ∑
p∈sim paths

∑
edge∈p

e−α |delay(edge,t1)−delay(edge,t2)| (3)
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(a) Twinkle 1.10 (soft-phone) (b) Cisco 7940 (hardphone)

Fig. 1: Sessions tree examples. Two shared paths are grey colored

3.2 Performance Evaluation and Experimental Datasets

For validating our approach, SIP [15] was chosen due to its popularity for VoIP
applications and to many related security problems as for example [3].

The first dataset denoted astestbed dataset was generated using both
softphones likeTwinkle and hardphones from different brands (Cisco, Linksys,
Snom or Thomson) connected on a local testbed. Theoperator dataset
refers to network traces provided by a real VoIP operator. 160MB of data were ran-
domly extracted for our evaluation. The main difference with testbed dataset
is that devices are connected through Internet entailing greater noise and longer de-
lays as highlighted in table 1. Major characteristics are summarized in Table 1. IN-
VITE messages correspond to call initiations. Whereas theoperator dataset
contains more messages, few INVITE messages are present. Itreflects a realistic op-
erator traffic where users have to periodically send REGISTER messages for main-
taining the matching between the global user identifiers (SIP AOR) and the IP ad-
dresses. This type of sessions contain few messages which implies a small number
of messages per session. These facts contribute to test our systems with different
configurations.

#devices#messages#INVITE #sessionsAvg #msgs/sessionAvg delay (sec)
Testbed 26 18066 3183 2686 6.73 1.53
Operator40 96033 1861 30006 3.20 7.32

Table 1: Experimental datasets statistics

We use thetestbed dataset for assessing the accuracy of our system with
differentσ parameter values in order to tune it before applying the fingerprinting
technique on theoperator dataset . All experiments are run multiple times
and the accuracy is measured as the average ofQtotal . The corresponding standard
deviation is displayed as an error bar on graphs.

Small values ofσ will tend to bring together clusters that lie far apart. Large
values will move apart clusters that lie close. We have extensively tested a range of
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Fig. 2: State machine fingerprinting

potential values. While many choices of theσ parameter provide very good results
(around 80%), one range shows very poor results as shown in figure 2(a). We have
investigated this case and concluded that many clusters were colluded for this range.

Obviously, the overall quality measure is steadily increasing with respect to the
proportion of the labeled data as shown in figure 2(b). For instance, when only
30% of the data is labeled, the overall quality is more than 70%. In order to obtain
90% , the system requires around 80% of labeled data. Considering theoperator
dataset , 82% of devices were identified thanks to 40% of labeled data.

4 Fingerprinting With Syntactic Information

4.1 Syntactic Trees

The syntactic fingerprinting was introduced in [10]. The keyidea is that device/stack
specific features can be revealed due to the programming choices taken by the soft-
ware developers. In fact, a protocol is generally defined by an Augmented Backus-
Naur Form (ABNF) [7] grammar. Then, each message can be represented as suc-
cessive derivations of rules. A toy example is illustrated in figures 3 and 4.

For applying the semi supervised algorithm, a distance metric is necessary for
comparing two trees. Because computing usual distance is time consuming, new
distances with polynomial complexity were introduced in [17]. For comparing two
syntactic trees, the similarity between isomorphic subtrees is computed by calcu-
lating the similarity between each node thanks to table 2 andby assuming a zero
similarity if the ancestor nodes are different [10]. Assuming max sim, the maxi-
mum similarity among all isomorphisms, and|T |, the number of nodes in the tree
T , the distance between two trees,T1 andT2, is:

d(T1,T2) = max(|T1|, |T2|)−max sim (4)
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Message =  Request  SP *Header SP 0*1Body 

Request = Invite / Notify / Cancel

Invite = "INVITE"

Cancel = "CANCEL"

Notify = "NOTIFY"

Header = Accept / Date / Call-id / User-Agent

Body = *Alpha

Alpha = %x41-5A / %x61-7A         ; A-Z / a-z

HCOLON =  *SP ":" *SP

SP =  %x20                     ; space

Accept = "Accept" HCOLON *Alpha "." 

Date = "Date" HCOLON *Alpha "."

Call-Id = "Call-Id" HCOLON *Alpha "."

User-Agent = "user-Agent" HCOLON *Alpha "."

Fig. 3: Grammar

Message

*

Message 1: “INVITE Accept: */*.Call-id:456ZE852.“

'INVITE'

'INVITE'

SP

%x20 Header

body

' ' Accept

Header

...
“Hello“

SP

%x20

Call-Id

Invite

...
“Accept : */*.“

...
“Call-Id:456ZE852.“

Terminal valeur du terminal

Filled shape = choice option set

' '

Non-terminalTerminal value

Sequence

Repetition

Request

Fig. 4: Syntactic tree

non-
terminal

repetition sequenceothers

non-
terminal

1 0 0 0

repetition 0 1 1 0
sequence 0 1 1 0
others 0 0 0 0

Table 2: Syntactic node similarity

Device Name #mesg
height #nodes

Max Min Avg Max Min Avg
Asteriskv1.4.21 1081 28 23 25 2517 883 1284
Cisco-7940v8.9 168 25 23 24 2784 812 1352
Thomson2030v1.59 164 28 23 24 2576 793 1391
Twinkle v1.1 195 25 23 23 2457 805 1299
Linksys v5.1.8 195 28 23 25 2783 852 1248
SJPhonev1.65 288 30 23 24 2330 951 1133

Table 3: Testbed dataset – Tree statistics

4.2 Evaluation

Table 3 summarizes the characteristics of syntactic trees of the most represented de-
vice types in thetestbed dataset . The trees are generally huge with a height
around 30 and often contain more than 800 nodes due to the SIP grammar (more
than 500 lines). Although, the behavioral fingerprinting results vary well due to
σ as shown in figure 2(a), figure 5(a) highlights clearly a maximal value and so
an easy distinguishable best configuration. Figure 5(b) illustrates the impact of the
proportion of the labeled data. We observe that even a very small percentage of
labeled data can be used to obtain good results. For instance, when the known la-
beled data is about ten percent of the whole data quantity, wecan expect the quality
value to be in the 81s percents. With 40%, the overall qualityis 0.92. Assuming the
operator dataset , this value reaches 68%. This limited result is due to the
creation of groups including several devices which are not distinguishable. In fact,
some devices use probably the same or close protocol stacks (same series, same
brands) which does not entail enough differences in syntactic structure.
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Fig. 5: Syntactic fingerprinting

5 Related Work

Network and service fingerprinting is a common task in security and network as-
sessment. The key assumption is that subtle differences dueto development diver-
gences can be traced [9]. Passive fingerprinting monitors traffic without any inter-
action as for example [2] which uses a set of signatures to identify the operating
systems. In contrast, active fingerprinting generates specific requests directed to a
device and monitors the responses as for instance [14] (operating system and service
versioning). A related work is [6], which describes a mechanism to automatically
explore and select the right requests to send. The authors in[13] give an overview
of techniques used for determining the different classes oftraffic (Web, P2P, Chat..)
whereas [12] focus on the identification on the flow types. Ourwork is different and
complementary since its goal is to determine precisely the implementation. This
kind of methods was explored in [1] for determining the web server version by ob-
serving the value or the order of some headers. Determining the version of a SIP
equipment could be based on the bad randomness value of the Call-id field [16].
As argued in the introduction, changing these fields is very easy in order to counter
fingerprinting. SIP fingerprinting is also addressed in [18]with other fields protocol
and an active probing technique. Furthermore, such techniques are only able to iden-
tify devices for which signatures were manually constructed and keeping a signature
database up-to-date is difficult to the huge variety and upgrade of devices. A related
work is presented in [4] which needs a grid of 10 computers during several days for
an equivalent dataset as thetestbed dataset . We have used the constructs in-
troduced in our previous works[10, 11] and argued to use a semi supervised learning
which uses a small quantity of labeled data. Hence, the accuracy results are similar
once the percentage of messages used for training is sufficient but semi supervised
fingerprinting is clearly better for small volume of training messages (10%). Es-
pecially, it provides better results (around 8%) whit theoperator dataset .
Hence, semi-supervised fingerprinting is robust even the variety of devices is very
high. Whereas our previous based on Support Vector Machines[8] require various
parameters to define,σ is the only one to tune for the semi supervised learning.
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6 Conclusion

In this paper, we have addressed the problem of fingerprinting devices and/or im-
plementation stacks. Our approach is based on semi-supervised clustering of time
enhanced state machine induced features. We have also looked at the syntactic in-
formation that is contained in messages. We have obtained results that are promis-
ing taking into account the small quantity of labeled data. While most supervised
fingerprinting algorithms use about four fifths of the data totrain the system and
only twenty percent for testing, our approach achieves goodresults when only few
labeled data items are available. We will look at other protocols — for instance
wireless protocols — and assess the operational applicability in this scenario.
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