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Abstract. OFDMA systems are considered as the promising multiple
access scheme of next generation multi-cellular wireless systems. In order
to ensure the optimum usage of radio resources, OFDMA radio resource
management algorithms have to maximize the allocated power and rate
of the different subchannels to the users taking also into account the gen-
erated co-channel interference between neighboring cells, which affects
the received Quality of Service. This paper discusses various schemes for
power distribution schemes in multiple co-channel cells. These schemes
include centralized and distributed solutions, which may involve various
degrees of complexity and related overhead and may employ procedures
such as linear programming. Finally, the paper introduces a new solu-
tion that uses a network flow model to solve the maximization of the
multi-cell system sum rate. The application of spatial beamforming at
each cell is suggested in order to better cope with interference.

1 Introduction

Most of the existing literature on resource allocation focuses on the single cell
scenario, where all users are assigned to a different portion of the available spec-
trum. However, mobile communication systems are better described as multi-
cellular systems where either coordinated or uncoordinated cells transmit on the
same bandwidth and are therefore the capacity is increased, but not unaffected
by Multiple Access Interference (MAI). MAI in particular deteriorates the per-
formance of users near cell boundaries. Thus, any resource allocation problem in
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a multi-cell environment has to take into account the impact of the MAI on the
system. A frequency reuse factor larger than one guarantees a large reduction of
the interference at the cost of a reduction of the efficiency in the usage of spec-
tral resources. For this reason in recent literature several works have focused on
Orthogonal Frequency Division Multiple Access (OFDMA) allocation in multi-
carrier cellular systems with a frequency reuse factor equal to one. Due to the
strong impact of MAI in this scenario, it is important to take full advantage of
frequency and multi-user diversity of the system. The authors from [1] set the
initial point to start the current research, in which is addressed this manuscript.

In the past years, several approaches relying on the concept of inter-cell co-
ordination have emerged, which can be distinguished in two categories: packet-
based coordination and resource-allocation based coordination. In the first one,
data packets destined to the users are replicated at several base stations, be-
fore jointly precoding/beamforming, and transmitting from all the Base Station
antennas (BS) [2], [3], [4]. The drawback of this approach is a large overhead
in inter-cell signaling, packet routing, and feedback for exchanging the channel
state information required to compute the precoders. In the second approach,
the interference is tackled by means of coordinated resource control (power,
scheduling, etc.) between the cells [5], [6] which make lower complexity and dis-
tributed coordination techniques are possible. Power control and smart soft reuse
partitioning are possible strategies that can be applied [7], [8], [9].

Dynamic multi-cell power control targeted at maximizing the sum of user
rates in the network is a very difficult task and does not lend itself easily to a
distributed (across the cells) implementation, except for some particular cases
with a large number of users [10]. The reason is as follows: dynamic power control
affects the Signal to Interference plus Noise Ratio (SINR) of all users in all cells
in a fully coupled manner making interference unpredictable.

OFDMA resource allocation is a viable solution to exploit channel and multi-
user diversity in wireless communication systems. In a multi-user scenario, with
an OFDMA multiple access scheme, each user is assigned a subset of orthogonal
subcarriers. If the transmitter has full knowledge of the Channel State Infor-
mation (CSI), subcarriers can be assigned with the goal of maximizing some
optimality criterion. Since the radio propagation channels are statistically inde-
pendent among the users, what is a bad channel for one user may be a good
one for another and thus, thanks to the effect of multi-user diversity, dynamic
resource allocation largely increases the system spectral efficiency.

Resource Allocation schemes in a multi-cell scenario can be divided into
centralized and distributed algorithms. Centralized schemes perform allocation
through a central unit like the Radio Network Controller (RNC) that collects
CSI and interference level for each user in the system. Ideally, the RNC de-
cides which subchannels (or subcarriers) to assign to each single user with the
suitable format and power level. On the other hand, in a distributed algorithm
resource allocation is performed autonomously by each single BS in its cell. The
main problem for centralized schemes is the large amount of signaling needed
for exchanging CSI and allocation feedback. Moreover, the allocation complexity
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grows exponentially with the number of users in the network, since resource as-
signment is realized by a single unit, which has to process large amounts of data.
Thus, centralized algorithms are often studied to provide an ideal bound for the
performance of others schemes. Distributed algorithms require lower complexity
and signaling, since they perform allocation locally at each BS and therefore
require only the information about the users in the cell. However, such solutions
very often lead to iterative algorithms, which may have convergence problems.
Sometimes the differences between distributed and centralized schemes blur away
since distributed schemes may require a limited amount of centralized informa-
tion to improve their performance.

Recently, the spatial diversity has been introduced to reach an acceptable
performance. Many solutions of the current State of Art (SoA) propose Multiple
Input Multiple Output (MIMO) techniques, widely extended for the single cell
scenarios. Nevertheless, these schemes treat inter-cell interference as noise, where
the performance is limited, specially for edge-cell users. The authors in [11], [12]
and [13] deal with this kind of problem. Unfortunately, computational power
and complexity raise up with the number of cells. Thus, distribution forms of
cooperation among the user terminals and BS appear with great interest. One
alternative is cooperative MIMO to minimize total power with QoS constraints
[14]. This scheme implies that BS are going to change their peak power and may
be not suitable in several scenarios. This manuscript present a second alternative
of cooperative MIMO to maximize a cost function of rate. If the cost function is
the sum rate function, the problem becomes NP-hard [15]. However, other cost
functions are possible to decrease its complexity [16].

This document aims to organize the SoA according to the requirements of
the system, if the interference management is relevant or not. Moreover, two
algorithms to distribute users in the several cells and power allocation are also
presented. Thereby, section 2 introduces the different techniques used in the
OFDMA power distribution in multi-cell scenarios. Section 3 presents a scheme
to distribute users in the several cells, with centralized or distributed complex-
ity, based on the Linear Programming (LP). Furthermore, section 4 describes a
framework to perform the power allocation and user selection from the approach
of a single-cell multi-antenna scenario. Finally, this document is ended by the
conclusions.

2 Power distribution for OFDMA multi-cell systems

Power has an important role in multi-cell systems not only for the rate optimiza-
tion, but for the interference management. Networks where interference is not a
big problem (such as those where there is frequency planning and adjacent cells
use different OFDMA subcarriers) may strive to optimize the throughput. On
the contrary, in networks where interference plays an important aspect, power
strategy may be oriented to limit this interference. The following algorithms
cover both categories.
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2.1 Layered and distributed dynamic resource allocation algorithm

A downlink communication system in a cellular network, where all cells adopt a
frequency reuse factor equal to one, is considered. Each user CSI and the level
of interference on each subcarrier are assumed to be perfectly known by each
BS. Since in each cell a subchannel is allocated to at most one user, the effects
of MAI depend on the users (and specifically on their location and power/rate
allocation) that are allocated the same channel in adjacent cells. The MAI on
channel m affecting user k in cell q is:

Ik,m,q =

Q∑
j=1,j 6=q

pm,qGk,m,j (1)

where pm,q indicates the power transmitted by cell q on subcarrier m and
Gk,m,j = |hk,m,q|2 is the channel gain between user k and cell q on subchan-
nel m. Thus, the power required for achieving a certain target SINR is:

pk,m,q = SINR
BN0 + Ik,m,q

Gk,m,q
(2)

where B stands for the bandwidth of the signal and N0 is the noise power in
W/Hz.

A layered architecture that integrates in each cell a Packet Scheduler (PS)
with an adaptive resource allocator (RA) is considered. First, the RA allocates
the resources with the goal of minimizing the transmitted power in each cell
subject to user’s rate constraints to keep low the MAI. To exploit multi-user
diversity, the RA tends to assign most of the resources to the users that have
good channel condition.

Second, the PS enforces long-term fairness in order to compensate the short
term displacement of resources due to the RA. Moreover, a load control mech-
anism is introduced to force the convergence of the allocation. To reduce the
complexity of the allocation phase, all users adopt only one transmission format
with spectral efficiency η0 for all the subcarriers so that rate constraints are
translated into a number of resources, i.e., Rk,q = Bη0mk,q, where mk,q stands
for the number of channels allocated to user k at cell q. The cost of a resource
for a given user is the power required for achieving spectral efficiency η0.

Whenever a cell modifies its allocation, it changes also the interference ex-
perienced by users in neighboring cells, which in turn change their allocation.
Thus, the allocation phase is iterated until a stable allocation is reached in all
cells. To help convergence, if the system is not able to reach a stable allocation,
the load is progressively reduced in all cells.

After a stable allocation is reached, the PS updates the maximum rate re-
quirements mk,q for each user in each cell with the goal of achieving long-term
fairness. The convergence is not always guaranteed but the combined actions of
load control and packet scheduling push towards convergence and fairness at the
same time. An additional action to ensure convergence is provided by a mecha-
nism where the most power consuming users can be progressively switched off.
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This approach tends to be unfair because users near the cell boundary risk to
be too penalized in terms of the reduction of the available bandwidth. If not
carefully designed, the main drawback of this scheme is the number of iterations
required for achieving a stable allocation.

Minimum feedback layered and distributed dynamic resource alloca-
tion algorithm A minimum feedback scheduling technique extends the con-
cepts of distributed allocation that was outlined in the previous Section. It is
assumed that each user measures the interference of each subcarrier and sends
to the BS only the interference values that correspond to the “best” subcarriers.
The number of those “best” subcarriers, i.e. those which experience the lowest
MAI, is a parameter to be determined by the system operator. For the other
subcarriers, the RA algorithm assumes the worst case scenario and assigns to
them a fixed high value of interference. With this approach the required feed-
back is reduced while the RA algorithm has still the necessary inputs in order
to be able to provide results. Of course, in this case the allocations will not be
the optimal since the algorithm is forced to work without the actual interference
values for all the subcarriers. However, it can be argued that it may provide
similar throughput results as the previous algorithm with much less overhead
and complexity [17].

Random subcarrier allocation algorithm Another possible way to allocate
resources to the users consists of a random resource allocation to the users in
each cell, without any kind of optimization criteria. In this case the PS sets again
the maximum number of subcarriers which can be assigned to the users, and then
the allocator assigns randomly the subcarriers with respect to the constraints
set by the PS. In this case, after random allocation, only power control takes
place and after that the subcarriers which have not achieved their SINR target
are switched off.

Additionally, users in the outer region of a cell will use a portion of the
bandwidth which is different from that one utilized by the users in the outer
region of the adjacent cells.

2.2 Power planning

The objective is to achieve a fully distributed implementation of resource allo-
cation over a multi-cell OFDMA network, whose aim is minimizing the network
outage capacity. To reach this goal, the selection of the user to be scheduled and
of the resources (here defined as the couple subcarrier/transmit power level) to
be assigned to him, should be performed taking into account the channel gain
and the received interference power. If a fully distributed approach is pursued,
each BS can only rely on local information provided via a feedback channel
by its own set of users. So, in this work some structuring inside the system is
introduced, in order to make interference level inside the network predictable.

Though in principle power levels can continuously vary inside a predefined
range, only a certain set of possible power levels are assumed, and these are
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distributed among cells and subcarriers according to a predefined pattern. This
concept will be denoted from now on as “power planning”.

In particular, the network is organized in groups of Q adjacent cells according
to a regular pattern as done for frequency planning in 2G systems and, for
analogy, this group of cells is denoted as “cluster”. Then, the M equally spaced
OFDMA subcarriers assigned to each cell are arranged in Q groups of M/Q
adjacent subcarriers, from now on denoted also as “sub-bands”. It is clear that
the larger the value of Q , the smaller the frequency diversity if correlation
between subcarriers is taken into account.

A power vector P = [p1 . . . pQ] is introduced, which is composed of the Q
power levels, also denoted as elements of the “power profile”. Hence, in the allo-
cation process only these Q power values are usable. From now on, this vector
will be denoted as “multi-cell transmit power vector”. Thus, the terms “power
profile” and “multi-cell transmit power vector” are considered to represent iden-
tical things.

In each cell, every sub-band is assigned with one of the values belonging to
power vector P, and over all sub-bands inside a cell all values of P are exploited.
Nevertheless, looking at a specific sub-band, the set of cells belonging to the
same cluster use all power levels available in P.

So, each cell in the network is assigned with a tag j ranging from 1 to Q
denoting the cell type. Then, since each tag is assigned with a specific power
vector (i.e., with a specific order of the possible Q power levels in vector P),
cells with the same tag will be assigned with the same power vector, whereas
cells belonging to the same cluster are assigned with permutations of the original
power vector.

3 Multi-cell user assignment

Previous section was addressed to manage the power budget and choose which
strategy can result more effective. However, this aspect also separates the power
variable from the others. One of the advantages of decoupling the power variable
depending on scenario requirements is the fact that users can be scheduled a pos-
teriori following the same requirements. Even though the power can be used to
schedule users, i.e. power equal to zero implies no user is scheduled, LP methods
has been considered to be an efficient tool to solve this kind of problems. On
the contrary, since power and user scheduling is performed in separated steps,
solution becomes suboptimal.

Authors in [18] present a resource allocator for the uplink of multi-cell
OFDMA systems. That concept is also applicable for the downlink channel. Pre-
vious section has defined the power strategy and power is solved in this point.
Hence, user scheduling can be performed through LP. Even though authors in
[18] minimize the power, the maximization of sum rate can also be pursued.
Moreover, LP offers the chance to introduce more variables to the problem to
make it as so general as it is desired
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Consider a downlink OFDMA system with Q cells with one BS each, K users
distributed over all cells and M carriers available in each BS. Since power is
defined in the previous sections, all rates of users are pre-defined in the following
manner. The rate of kth user at mth carrier and qth cell is:

rk,m,q = log

(
1 +

Gk,m,qpm,q∑Q
q′ 6=q Gk,m,q′pm,q′ +BN0

)
(3)

where pm,q is the power served by qth cell at carrier m, defined previously.
This scheme can be easily combined with beamforming to decrease the effect

of the interference. Thus, the BS may use a beam to increase the SINR and the
overall sum rate.

3.1 Centralized algorithm

A centralized approach could be done by modeling the multi-cell system as a
single network with one central control unit which computes the access parame-
ters for all users in all cells and the way with which users are scheduled over the
network. In order to assign users to cells and carriers, LP algorithms are used
and they prove to be a good way to exploit this kind of scenarios.

The problem can be stated as:

b = arg max
b

Q∑
q=1

K∑
k=1

M∑
m=1

bk,m,qrk,m,q

s.t.

K∑
k=1

bk,m,q ≤ 1, q = 1, . . . , Q, m = 1, . . . ,M

Q∑
q=1

bk,m,q ≤ 1, k = 1, . . . ,K, m = 1, . . . ,M

(4)

where bk,m,q = 1 if user k is scheduled at mth carrier and in the qth cell and
0 otherwise. The first constraint implies that only one user can be scheduled in
each carrier and cell. The second constraint, implies that only one cell can be
assigned to one user at same carrier. This problem can be solved by LP easily.
However, it requires centralized schemes and feedback corresponding to all hk,m,q
that must be known at the transmitters. Although complexity is proportional to
each variable that is introduced, results are near optimal.

3.2 Distributed algorithm

The centralized algorithm is optimal compared to the distributed algorithm since
it has more information about the channels of all users in all cells. On the other
hand, having a centralized algorithm requires a huge amount of feedback infor-
mation processing complexity and introduces large amounts of overhead in the
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calculations. The idea is to distribute the complexity in each cell, i.e. removing
q index. Hence, each BS should execute the following algorithm separately.

A distributed algorithm could be derived from the above as:

b = arg max
b

K∑
k=1

M∑
m=1

bk,m,qrk,m,q

s.t.

K∑
k=1

bk,m,q ≤ 1, m = 1, . . . ,M.

(5)

Note that the second constraint is removed since it requires a centralized way of
controlling all users scheduled in all cells. Thereby, one user can be scheduled in
different cells at the same carrier.

This simplification distributes complexity over the network and does not
require any centralized processing. Additionally, the amount of feedback can be
reduced if interference is assumed to be equal to all users in all cells. That is
equivalent to approximate the rate of kth user at mth carrier and qth cell as:

rk,m,q = log

(
1 +

Gk,m,qpm,q
Im,q +BN0

)
. (6)

It is easy to show that the qth cell only requires channel gains Gk,m,q of its K
users at each carrier.

4 From spatial to multi-cell scheduling

In [19] the authors present a spatial scheduler for multicarrier systems in a single-
cell scenario. The basis is a network flow formulation for maximization of the
system sum rate. To sumarize it, the spatial diversity is solved using Multiuser
Opportunistic Beamforming and choosing the user permutation, and its corre-
sponding beam set, that achieve the best sum rate; then, the power allocation
is performed from this spatial allocation. This section proposes a modification
of the algorithm in [19] and distributes the spatial dimension, separating the
antennas one from each others and distributing one per BS. For this reason,
instead of beam-user selection, cell-user selection has to be carried out. The
work in [19] considers ergodic sum rate maximization for continuous rates. The
ergodic framework also allows the optimization in the time domain. In fact, if
[1, . . . , N ] is the time interval of the optimization, for any generic system or user
metric, R[n], under ergodic assumption for random processes in the system, the
approximation (1/N)

∑
nR[n] ≈ E {R[n]} = E {R} = R holds, where R does

not depend on time n. Hence, optimizing R means optimizing R[n] over time
interval [1, . . . , N ].

The discrete variable or index um,q ∈ K0 = {0, 1, . . . ,K} indicates the user
(i.e. 0 means no user) that is scheduled to use cell q on subcarrier m. Note that
only one user or none can be scheduled for each carrier and each cell. The whole
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set of these variables is the matrix U ∈ KM×Q0 , whereas the whole set of powers
is the matrix P ∈ R+,M×Q ∪ {0}. It is implicitly assumed that if um,q = 0 then
pm,q = 02.

The aim of resource allocation is to dynamically assign radio interface re-
sources to the different users, i.e. to determine optimal values of U and P. The
problem can be formulated as

max
U,P

K∑
k=1

Rk(U,P)

s.t. Pq(U,P) ≤ P̄, ∀q

Rk(U,P) ≥ φk
K∑
s=1

Rs(U,P), ∀k

(7)

where Rk(U,P) = E {Rk(U,P)} =
∑M
m=1

∑Q
q=1 E

{
δ
um,q

k rk,m,q
}

is the rate

provided to user k from (3), Pq(U,P) =
∑M
m=1 E {pm,q} is the total average

power spent by cell q to serve the allocated users and δuk is the Kronecker’s
delta3. The first constraint refers to the total power used which must be less
than a maximum amount P̄. The second constraint implies that users ought to
obtain the proportional φk part of the sum rate, which determines the share of
throughput finally achieved by each user. Therefore, φ must satisfy the condition∑K
k=1 φk = 1.
It is important to underline that in this problem rate and power constraints

are referred to as average values. In this way, the instantaneous constraints are
relaxed leading to a reduction in the complexity of the resulting optimization
algorithm.

4.1 Dual optimization framework and adaptive algorithms

The optimization problem is non convex and Lagrangian duality [20] is used to
solve the problem. It enables each user to adapt their resources locally with the
aid of limited information exchange. An interesting point of the Lagrangian is
the dual decomposition into individual user and cell terms. This fact motivates
decentralized algorithms as in [20] and allows to distribute the complexity over
the network. However, to obtain a distributed algorithm as seen later, it is nec-
essary to decouple user assignment from power assignment. The dual objective
of problem (7) is defined as

min
λ>0,µ≥0

g(λ,µ) = min
λ>0,µ≥0

{
max
U,P
L(U,P,λ,µ)

}
= min

λ>0,µ≥0
L(U∗,P∗,λ,µ)

(8)

2 This also means that P has an implicit dependence on U and vice versa as shown
afterwards.

3 δuk = 1 if u = k and 0 otherwise.
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where L(U,P,λ,µ) is the Lagrangian function of the problem (7) and λ,µ are
the Lagrangian multipliers.

It is important to remark that while the primal problem is a non-concave
maximization, the dual problem becomes a convex optimization. However, the
dual problem is not differentiable and an iterative subgradient method is used
to update the K + Q solutions of the dual problem at each discrete time in-
stant. Starting from initial solutions λ0 and µ0, the update equations at the ith
iteration derive from subgradient expressions and are:

λi+1 =
[
λi − δλ

(
P̄q − Pq(U∗i,P∗i)

)]+
ε

µi+1 =

[
µi − δµ

(
Rk(U∗i,P∗i)− φk

K∑
s=1

Rs(U∗i,P∗i)

)]+
(9)

where [x]+ε = max(ε, x), 0 < ε� 1 and δλ, δµ are positive step-size parameters.
U∗i,P∗i indicate the optimal solutions of the Lagrangian at the ith iteration,
i.e. those which maximize L(U,P,λi,µi).

4.2 Solutions for the allocation problem

The optimal power and user solutions are difficult in that case due to the cross
dependence of user and power allocation. Therefore, the dual objective can be
rewritten as follows:

g(λ,µ) = max
U,P
L (U,P,λ,µ) =

Q∑
q=1

λqP̄ +ME
{

max
um

[
max
pm≥0

M(um,pm)

]}
(10)

with

M(um,pm) =

Q∑
q=1,um,q 6=0

[
(µum,q

− µTφ) log2(1 + rum,q,m,q(pm))− λqpm,q
]
.

(11)

The optimal solution, given λ,µ, becomes, for each frequency m,

u∗m = arg max
um

M∗(um) (12)

with
M∗(um) = max

pm≥0
M(um,pm). (13)

This shows that user selection (12) and power allocation (13) are decoupled from
the dual optimization and both them can be computed separately. In fact, user
selection is computed before the power solution is found.

Concerning spatial allocation, the main issue is to reduce the search space.
This issue can be faced by using suboptimal greedy selection procedures. The
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simplest among them is the opportunistic selection. Thereby, each user selects the
best cell by assuming that all base stations are transmitting with a preassigned
power and feeds back the selected cell with its SINR, while each cell allocates its
resources to the best user selected among those competing for that cell. This can
be done helped by spatial beamforming at each base station. Next sub-section
comments further on that.

4.3 Discussion on Centralized and Distributed solutions

The optimal solution requires a centralized controller that runs all or parts of the
algorithms. Even though the power allocation algorithm based on the update of
λi can be distributed on each base station, user allocation algorithm requires a
centralized solution, i.e. a controller which knows all channel gains determines,
for all subcarriers, the vector um and send it to base stations through signaling.

A decentralized implementation can be set up by using the opportunistic
suboptimal solution of power allocation. In this case user allocation algorithm
has two steps (for each subcarrier):

– Each user selects the best cell by assuming that all base stations are trans-
mitting with a preassigned power and feeds back the selected cell with its
SINR.

– Each base station allocates its resources to the best user selected among those
competing for that cell. When user allocation is decentralized, two points need
to be remarked.

The first one is related to the update of µi .This can be performed at the
base stations, if users are served by only one base station, or it can be performed
by the users after that the information on the resource allocation is sent to them.
The second one is related to the evaluation of the user rates. This can be done
based on the SINR evaluated by the user, which does not take into account
the powers actually allocated to interfering users, because they are not known.
Therefore, the allocated rate is not the actual rate supported by the transmission
leading to possible outages. This can be avoided only by evaluating the SINR
by using the worst-case values of interfering power in the vector Vm, which can
be further constrained to be less than a maximum value Pmax on each resource
unit.

To counteract the losses that opportunistic schemes present when the number
of users is moderate or low4, while still preserving a decentralized implementa-
tion, the “power planning” concept (as [21] for time-division multiple access
systems) can be introduced to preassign suitable power values to vector Vm

with the additional constraint pm,q ≤ vm,q.
4 When the number of users is not very large, sum rate is maximized by allocating a

number of users on each subcarrier and slot usually smaller than Q.
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5 Conclusions

Multi-cell scenarios are present in a very large number of standards and systems.
The trends of technology and the increased requirements in bandwidth usage ef-
ficiency dictate the tight re-use of the frequency bands in neighboring cells. To
do that, effective interference management schemes are required to regulate opti-
mally the transmitted power in each subcarrier in all cells. In this context, power
planning was presented as a suitable tool to extract effective network parameters
and requirements. Additionally, layered and distributed dynamic resource allo-
cation algorithms were introduced in those scenarios that have predefined rate
requirements and power may be adjusted to guarantee the provided QoS. Fi-
nally, cross-laying for multi-cell user scheduling is focused by Lagrangian duality
to solve the same problem and ensure the QoS constraints.
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