On Modelling User Observations in the UTP

Michael J. Banks and Jeremy L. Jacob

Department of Computer Science, University of York, UK
{Michael.Banks, Jeremy.Jacob}@cs.york.ac.uk

Abstract. This paper presents an approach for modelling interactions
between users and systems in the Unifying Theories of Programming.
Working in the predicate calculus, we outline generic techniques for cal-
culating a user’s observations of a system and, in turn, for identifying the
information that a user can deduce about the system’s behaviour from
those observations. To demonstrate how this approach can be applied
in practical software development, we propose some alternative refine-
ment relations that offer greater flexibility than classical refinement by
utilising knowledge of the observational abilities of users.

Keywords: UTP, multi-user systems, co-operating and independent re-
finement, information flow, distributed testing.

1 Introduction

This paper is concerned with software systems whose purpose is to provide a
range of services to multiple end-users. This class of multi-user systems encom-
passes a large range of software products, from operating systems and database
software to telecommunications networks and cloud computing services.

A multi-user system consists of a central server that receives requests from
multiple users (clients) and delivers service in response to those requests. Nat-
urally, the system may offer different services to different users. It is usual to
provide each user with its own private interface to the system, to ensure that
the system can distinguish between its users and to ensure that users do not
interfere with each other’s interactions with the system. These interfaces impose
a structure on the system’s environment and allow the system’s designers to
model the interactions that users can perform with the system.

When working in process algebras such as CSP, it is usual to model the users
of a system as individual processes operating in parallel with a process repre-
senting the system [I]. By analysing the synchronisations between the system
and the user processes, this approach may be used to verify that a system spec-
ification delivers the functionality expected by its users. However, this approach
is suitable only for reasoning about systems expressed in the same semantic do-
main in which the user processes are formulated. This may be problematic if
the designers of a system wish to analyse its interactions with users in a more
concrete description of the system (such as a program), or a system descrip-
tion that consists of multiple components expressed in different formalisms. In

such circumstances, it may be necessary to adopt a more general approach for
reasoning about the interactions between a system and its users.

Our main contribution in this paper is a systematic approach for formally
modelling the interactions between users and systems in Hoare and He’s Unifying
Theories of Programming (UTP) [2]. This approach fits seamlessly within the
predicate semantics of the UTP; it can, therefore, be integrated with existing
UTP theories to support the analysis of multi-user systems that are specified in
languages with a UTP semantics.

This paper is structured as follows. provides an overview of the
UTP. formalises two distinct classes of observations of multi-user sys-
tems and introduces our approach for modelling the abilities of users to observe
a system’s execution. Building on this approach, presents a method for
calculating the space of observations that individual users can make of a system.
This method is extended to the UTP theory of designs in and applied
to a byte register in as a simple worked example.

To demonstrate how our approach can be advantageous in formal software
development, describes some alternative notions of refinement that
are based on the observational abilities of users. These refinement relations offer
system designers the ability to carry out refinement steps that do not compro-
mise the system’s functionality from the perspective of its users, but which are
nevertheless forbidden by classical refinement.

In we survey some areas of research addressing multi-user systems
in a formal setting and discuss the relevance of our approach to those areas.
Finally, we present our conclusions and outline some topics for future work.

2 Unifying Theories of Programming

The semantic model of the UTP is the alphabetised relational calculus. In the
UTP, specifications and programs alike are expressed as predicates over an alpha-
bet (set) of observational variables. The purpose of the observational variables
is to record all of the information about a program’s behaviour that is visible to
the program’s environment whenever an observation of the program is made.

In the UTP theory of relations, a program operation is expressed as a pred-
icate that relates initial observations of the program state to the corresponding
observations of the program state taken after (or during) the execution of the
operation. The observational variables representing intermediate observations
of a program state are decorated with a prime, to distinguish them from the
(undecorated) observational variables of the initial program state.

Central to the UTP is the refinement ordering between predicates, which is
characterised by implication: [2]

SCT=2[T= 9] (1)

where the square brackets denote universal quantification over all free variables.
Hence, S C T asserts that every observation of T is a possible observation of S.

The UTP is best known as a framework for giving a denotational semantics
to various programming paradigms and the features of programming languages.
However, the UTP also features a powerful standalone notation for reasoning
about program correctness. We adopt the UTP in this capacity as the framework
in which we cast our approach for reasoning about multi-user systems.

3 Preliminaries

3.1 System-Level and Interface-Level Observations

We model an observation of a UTP predicate S as a predicate that associates
each observational variable in S’s alphabet with a single value. For instance,
the predicate x = 42 A y = 99 records a possible observation of the predicate
x>0 Ay > z. We distinguish between two separate classes of observations:

— A system-level observation records the entirety of the information about the
behaviour of a system (expressed as a predicate) that may be acquired by
monitoring the whole of the system’s environment.

— An interface-level observation records the information that a specified user
acquires when it observes a system’s behaviour through its interface. Hence,
each interface-level observation is a projection of a system-level observation.

While a system-level observation provides all the information about a sys-
tem’s behaviour that is visible to the environment, an interface-level observation
provides only a subset of that information. Throughout this paper, we assume
that a user’s observation of a system provides the only source of information
about the execution of the system that is available to the user. Hence, a user
can neither inspect the internal state of the system directly, nor can it monitor
the aspects of the system’s behaviour that are not visible through its interface.
Unless stated otherwise, we require that users are isolated from each other and
do not share their observations of the system with other users.

Following the UTP notational conventions, we denote the list of undashed
variables si,...,s; of a system-level observation by s and the corresponding list
of dashed variables by s’. Likewise, we denote the lists u,...,u; and uf,..., uj’
of variables of an interface-level observation by u and u’ respectively. In keeping
with our assumption that system-level variables are hidden from users, we enforce
the condition that the sets of variables in s and u (and s’ and «) are disjoint.

3.2 Views

A user’s interface to a system is modelled by a predicate known as a view. A
view defines the mapping between interface-level observational variables and
system-level observational variables. Thus, a view determines which aspects of
each system-level observation are relayed to the user associated with that view.

Ezample 1. Suppose = and y are observational variables of an arbitrary system-
level predicate. Consider the following views:

AExa=cNya=y
B £ zp = max(z,y)
C Zzc=2N(2c=0<lz<yl>2c=1)

View A provides a user with complete knowledge of the values of z and y,
since they are a function of the interface-level observational variables z4 and y4.
View B provides a user with the value of the larger of z and y, but no indication
of whether z < y, z = y or x > y. View C provides the value of z, but offers
only partial information about y’s value in relation to z’s value.

When dealing with multiple views, each representing a different interface to a
system, we require that each view’s set of interface-level observational variables
is disjoint from those of the other views. (All of the views listed in
are pairwise disjoint.)

Definition 1 (Disjoint views). A pair of views Vi(s,u1) and Va(s,uz) are
said to be disjoint if and only if uy N uy = 0.

3.3 Healthiness Conditions for Views

To ensure that all views represent a viable mapping between system-level and
interface-level observations, it is necessary to impose some constraints on the
structure of views. We capture the space of viable views by defining two health-
iness conditions VH1 and VH2.

Definition 2 (VH1). A view V(s,u) is VH1-healthy if and only if, for every
system-level observation over the variables in s and s', there is a complementary
interface-level observation over the variables in u and u' that satisfies V :

VH1(V) iff Vs,s’ eJu,u’ eV (2)

The purpose of VH1 is to ensure that a view maps each system-level obser-
vation to at least one interface-level observation. It follows that predicates such
as ¢ =y, £ > 0 and false are not VH1-healthy views, because they restrict the
domain of z.

While VH1 insists that a view describes a total mapping from system-level to
interface-level observations, it does not require that mapping to be functional —
i.e. each system-level observation maps to exactly one interface-level observation
— although this will often be the case for views in practice. Moreover, VH1
does not place any restrictions on whether an interface-level observation maps
to zero, one or multiple system-level observations.

It is possible to write a “time-travelling” VH1-healthy predicate where the
values of the initial (undashed) interface-level observational variables depend

upon the values of the intermediate (dashed) system-level observational vari-
ables. Such a predicate cannot correspond to a user’s interface of a system in
reality, since an intermediate observation of a system state can only be made
once a system has started, whereas an initial observation describes the system
state before execution commences.

Another class of undesirable VH1-healthy predicates are those featuring de-
pendencies between the initial and intermediate system-level variables (such as
z' =z + 1), or the initial and intermediate interface-level variables. These pred-
icates impose functional requirements on the structure of systems and therefore
should not be considered to be views. We exclude these predicates — along with
the aforementioned “time-travelling” predicates — from the space of views by
defining a second healthiness condition VH2.

Definition 3 (VH2). A view V (s, u) is VH2-healthy if and only if it places no

dependencies between s and ', v and u’, or s’ and u:
VH2(V) iff (Bs,ue V)A@s,ue V)AETs v o V)=V (3)

We say that a view that satisfies both VH1 and VH2 is VH-healthy. All of
the views in are VH-healthy, as are all the views that we consider in
the following sections.

The following lemma states that the view obtained by taking the conjunction
of disjoint VH-healthy views is itself a VH-healthy view, which gives at least as
much information about a system’s behaviour as each view individually.

Lemma 1 (Conjunction of VH-healthy views). If Vi(s,u1) and Va(s, ug)
are disjoint VH-healthy views over the same set of system-level observational
variables s, then (Vi A Va)(s, u1 U ug) is also VH-healthy.

4 Relating Users and Systems

In this section, we define predicate transformers for calculating the aspects of
a system’s behaviour that are visible to a user through a specified view and,
given an interface-level observation of the system, the information that a user
can deduce about the system’s behaviour.

4.1 Calculating Interface-Level Predicates

Given a system-level predicate S and a view V|, it is possible to derive a predicate
that encodes the space of all interface-level observations that can be made of S
when viewed through V. We define a predicate transformer P (for “project”) to
calculate this predicate.

Definition 4 (P predicate transformer). The interface-level predicate ob-
tained by substituting V (s, u) into a predicate S(s) is given by:

P(V,S) £3s,5eVAS (4)

The predicate P (V,S) is the image of S as viewed through V; in other
words, P (V,9) is satisfied by exactly those interface-level observations that can
be made by viewing S through V. Notice that applying P (V) to S hides the
system-level observational variables in S.

Ezample 2. Consider the system-level predicate £ £ z+y = 10, where z,y € N.
For the views listed in the projections of E are:

P(AE) = 24+ ya =10
P(B,E) = 25 >5AN 25 <10
P(C,F) = (2¢=0Azc >0Nz20<4)V(2¢ =1ANzc >5ANz0<10)

A view can be regarded as a special kind of linking predicate between two data
types, where system-level observational variables are instances of the concrete
data type, and interface-level observational variables are instances of the abstract
data type. It follows that applying P (V) to a predicate S may be interpreted
as performing data refinement on S in reverse, because concrete (system-level)
observations are replaced by abstract (interface-level) observations. This suggests
that existing techniques for reasoning about data refinement can be applied to
identify results concerning the application of P (V') to predicates. Moreover, the
application of views to translate from system-level to interface-level models of
systems is related to abstract interpretation [3)].

We now present some properties of P that we use later in the paper.

Lemma 2 (P is order-preserving). Provided that S and T are predicates
defined over the same space of system-level observational variables as V:

SCT = P((V,5)CP(V,T) ()

If a view V is divided into two parts V; and Vo, such that V = (V3 A V3) and
Vi and V; are disjoint, then the interface-level predicate P (V1,S) A P (Va, S)
that is generated by projecting S through Vi and V5 separately is satisfied by a
(potentially) larger space of observations than P (V,.S) itself. We generalise this
result to an arbitrary number of views in

Lemma 3 (Splitting V may weaken P (V)). When Vi,..., V, are pairwise
disjoint views over the same space of system-level observational variables:

P<< A vi>,s> = N\ P(Vi.9) (6)

1€1l.n i€l..n

4.2 Calculating System-Level Predicates

Given an interface-level predicate U formed by projecting a system-level predi-
cate S through view V, it is possible to recover some (if not all) knowledge of
the definition of S by substituting V back into U. We formalise this process by
defining another predicate transformer R (for “retract”).

Definition 5 (R predicate transformer). The system-level predicate obtained
by substituting V (s, u) into an interface-level predicate U(u) is given by:

R(V,U) 2Vu,u' e V=10U (7)

R (V, U) recovers the weakest system-level predicate T such that the projec-
tion of each system-level observation of T' through V matches an interface-level
observation of U, and each observation of U corresponds to an observation of
T projected through V. It follows from R’s definition that [V A T = U] [2].

The P and R predicate transformers are not inverses of each other, since
a view need not define a one-to-one correspondence between system-level and
interface-level observations. They do, however, form a Galois connection between
system-level and interface-level predicates under the refinement ordering.

Theorem 1 (P and R form a Galois connection). The P and R predicate
transformers form a Galois connection (aziality) between the spaces of system-
level and interface-level predicates linked by a given view. Thus:

UCP(V,S) ifandonlyif R(V,U)CS (8)
Corollary 1. By substituting P (V,S) in place of U m we obtain:
R(V.P(V,9)ES ()

implies that every system-level observation of S is also a system-
level observation of R (V,P (V,5)). This conforms to the intuition that applying

P (V) to a system-level predicate S may discard information about the observa-
tions permitted by S, which cannot be recovered by applying R (V') to P (V, 5).

Ezample 3. Continuing from the system-level predicates recovered
by applying R (V') to each interface-level projection of E are as follows:
R(A,P(A,E)) =z+y=10
R(B,P(B,E)) = max(z,y) >5 A max(z,y) <10
R(C,P(C,E))

Observe that R(A4,P (A, E)) = E, because view A preserves the values of 2 and
y in 24 and y4. However, both R(B,P (B, E)) and R(C,P(C, F)) are weaker
predicates than FE, because information about the exact values of x and y is
discarded when P (B) and P (C) are applied to E.

=(x>0Nz<4<dz<yl>z>5Az<10)

4.3 Observations and Deductions

Users can acquire knowledge about a system’s behaviour in two ways: by ob-
servation and by deduction. While we assume users can only observe a system’s
behaviour through an interface supplied by the system, there may be nothing to
prevent a user from possessing a priori knowledge of the design of the system

or its interface. Hence, if a user has knowledge of the system’s implementation
then, given a projection of a system-level observation through its view, the user
may apply this knowledge to rule out potential system-level observations that
are incompatible with its own observation and thereby deduce more detailed
information about the system behaviour.

When ¢ is an interface-level observation of a predicate S viewed through V,
the predicate describing all system-level observations of S that are compatible
with ¢ is given by R(V,¢) A S. Thus, a user that knows the definition of S
can deduce more (but not necessarily all) information about the system-level
observation of S than it can from R (V,¢) alone. In turn, if a user at V has
knowledge of the structure of another user’s view W, then the user can infer all
observations of S through W that are compatible with its own observation ¢ by
calculating P (W, (R(V,¢) A S)).

We note in passing that, at the level of a system’s implementation, a user’s
interface will exhibit physical and temporal characteristics (such as fluctuations
in responsiveness) that are not modelled at the abstract level of a view. By
monitoring these properties of its interface, a user may be able to deduce greater
knowledge about the internal state of the system than can be calculated from
its interface-level observation of the system alone.

5 Reasoning about Multi-User Designs

The UTP theory of designs represents the space of terminating programs with
precondition (assumption) P and postcondition (commitment) Q: [2]

PFQ 2 okANP=ok'AQ (10)

The Boolean variables ok and ok’ facilitate reasoning about termination: ok
records that the program has started and ok’ signifies that the program has
terminated. Thus, if the program is started in an initial state that satisfies P,
then the program is guaranteed to terminate in a final state satisfying Q.

We interpret a design as a system that starts in an initial state consisting of
inputs from users and terminates in a final state that yields outputs to users. It is
reasonable to expect that users can identify when a system has started and when
it has terminated. Since system-level variables are not directly visible to users
(Section 3.1)), it is necessary to extend the alphabet of a view V by introducing
new interface-level observational variables oky and okj, corresponding to ok
and ok’. We require that V guarantees that oky = ok and ok{, = ok’. This
requirement is encoded by the OK healthiness condition.

Definition 6 (OK and VHD). A view V(s,u) is OK-healthy if and only if
V = OK(V) holds:

OK(V) & V A oky = ok A ok, = ok’ (11)

We say a view is VHD-healthy if it is both VVH-healthy and OK-healthy.

Since designs are defined in terms of ok and ok’, we generalise the definition

of a design by substituting oky and ok{, in place of ok and ok’. [Definition 7
introduces a shorthand for interface-level projections of designs.

Definition 7 (Interface-level design). Provided V denotes a view:
Pl—vQéOkv/\PjOklv/\Q (12)

The P predicate transformer can be applied to a VHD-healthy view V and
a design to obtain an interface-level design that expresses the interface-level
projection of the behaviour of the design.

Lemma 4 (P and designs). Whenever V is VHD-healthy, then P (V,P I Q)
can always be written in the form of an interface-level design:

P(V,PFQ) = (Vs,s @« V=P)Fy P(V,Q) (13)

The precondition of P (V, P - Q) is the weakest condition over interface-level
observations that is sufficient to ensure that, whenever ¢ is an interface-level
observation that satisfies that precondition, then all system-level observations
compatible with ¢ satisfy P. Therefore, if a user’s initial observation of P + @
(projected through V') satisfies the precondition of P (V, P F @), then the user is
guaranteed that P is satisfied. It follows that if the precondition of P (V, P Q)
is satisfied, then @) will hold upon the termination of P - @), as will the interface-
level projection P (V, Q) of Q.

If no projection of the initial system-level observational variables through
V' provides sufficient information about the initial system-level observational
variables to guarantee that P holds, then the precondition of P (V,PF Q)
collapses to false and so nothing is guaranteed about the final observation of
P(V,PF Q).

6 Worked Example: A Byte Register

We now consider the application of the theory developed in the previous sections
to a simple multi-user system. The purpose of this example is to demonstrate how
the specification and design of multi-user systems may be guided by calculating
the interface-level observations of a system and identifying the information that
users can deduce from these observations.

Our example focuses on a register capable of storing a single byte. We model
the register’s value by an integer variable z with domain 0..255. The register
also features a Boolean variable y that indicates numeric overflow when set.

Consider an operation that doubles the value stored in z, provided that the
initial value of z lies in the range 0..127 and the overflow bit is not set. We model
this operation as a UTP design as follows:

DBL 2 2€0.127TAy=0F2" =2z Ay =0

Suppose that two users can observe the register: the first user (with view H)
can observe the values of the higher four bits of the value of z, and the second
user (with view L) can observe the lower four bits of . The overflow bit y is
visible to both users. The views of these users are given by:

x x’
H AOK<:L’H{16J/\:I:}{{MJ/\yHy/\y}iy)
L 20K(zp=2mod16Az, =2 mod16Ay,=yAy,=1y)

Effectively, the H view masks out the lower four bits of the register from the
first user’s observations, while the L view hides the higher four bits from the
second user. Both of these views are VHD-healthy.

We now investigate the projections of DBL’s behaviour through H and L.
The calculation of P (H, DBL) is simplified by applying [Lemma 4}

Vz,y,2',y e H=2€0.127TANy=0
P(H,DBL) = | Fy
Jz,y, 2’y e HAz =2z Ny =0

=z €0.7TANyg =0Fpy (z; =2z Vg =2z + 1) Ay =0

P (H, DBL) indicates that a user at H can only be certain that DBL’s pre-
condition is satisfied when zy € 0..7, since any other value of xy corresponds to
a value of z that violates the precondition of DBL.

Assuming the precondition of DBL holds, the value of the fifth most signif-
icant bit of z determines whether zj; = 2zy or z; = 2zy + 1. However, since
this bit cannot be observed by a user at H, that user can only be certain of the
value of z}; once the operation is complete.

It is instructive to consider what can be observed of DBL through L:

Va,y,2',y e L=>2€0.127TANy =0
P(L,DBL) = | Fy
Jdz,y, 2’y e LA =2z ANy =0

= false 1, z; = 27, mod 16 A 37 =0

= true

Since an observation at L provides no information regarding the upper four bits
of z, a user at L cannot determine in any circumstances whether the precondition
of DBL is satisfied. Thus, from the perspective of L, nothing can be guaranteed
about DBL’s behaviour, as is reflected by the outcome of the calculation above.

Depending on the context in which the register is used, this limitation may
be unacceptable. Hence, we relax the precondition of DBL to cover all values of
x that can be stored by the register and, when z > 128, to assign an arbitrary
value from the range 0..255 to z’ and set ¢’ to 1:

=2z ANy =0

DBI2 2 2€0.255Ay=0F | <2€0.127>
2 €0.255 Ay =1

Observe that DBL T DBL2, because the postcondition of DBL2 reduces to
the postcondition of DBL when the precondition of DBL is satisfied.
The interface-level observations of DBL2 through L are given by:

z; = (227) mod 16 A y; =0
P(L,DBL2) = 2, € 0.15 Ay, = 0 Q0.7
z; €0.15 ANy =1

After the DBL2 operation completes, the user at L can determine if the
double operation was successful by checking that y} = 0.

One may now proceed to refine DBL2 to the implementation level. Of course,
if one carries out data refinement on the variables of DBL2 (such as replacing
z with eight Boolean variables to represent the bits of the register), then the
corresponding data refinements must also be made to the H and L views.

7 Refinement of Multi-User Systems

S C T mandates that every system-level observation of T is a system-level
observation of S. This condition is sufficient to ensure that a concrete design T
satisfies all the functionality properties of its abstract predecessor S. However,
this condition is sometimes too strong for stepwise developments of multi-user
systems, since it forbids some classes of reasonable refinement steps that do not
impair functionality. This point is illustrated by the following example.

Ezample 4. Consider an operation on the aforementioned register that doubles
the lower four bits of x and the upper four bits of z in isolation:

2’ mod 16 = (2z) mod 16

' | x I
INDBL2 2 2 €0.255 Ay =0+ LfﬁJ = 2l5]) Ay =0
A Qze€0.127>
2 €0.255 Ay =1

Notice that DBL2 Z INDBL2, because when z € 0..127 A y = 0, INDBL?2
always sets the fourth most significant bit of 2z’ to 0 regardless of the value of
the fifth most significant bit of z, unlike DBL2. However, the users at H and
L cannot individually tell INDBL2 apart from DBL2, since each interface-level
observation of INDBL2 matches an interface-level observation of DBL2.

The proposed transition from DBL2 to INDBL2 indicates that, when devel-
oping a multi-user system, it may be more appropriate (in some cases) to carry
out refinement w.r.t. the interface-level observations of the system, rather than
the system-level observations of the system as a whole.

7.1 Interface-Level Refinement

This section outlines some alternative notions of refinement that are defined in
terms of the interface-level observations of systems, instead of system-level ob-
servations. These refinement relations are more flexible than the classical notion

of refinement, because they allow particular refinement steps to introduce new
behaviours into a system in a controlled manner, while preserving the correctness
of the system from the perspective of its users.

First, we introduce an notion of refinement which we call user refinement. We
say that T is a user refinement of S w.r.t. a view V if and only if every interface-
level observation of T' made through V corresponds to an observation of S made
through V. Intuitively, user refinement allows new system-level observations
to be added to a predicate, provided that no interface-level observations are
introduced to the projection of the predicate through V.

Definition 8 (User refinement). For a given view V, T is a user refinement
of S — denoted by S Ty T — if and only if:

SCy T 2P(V,S)CP(V,T) (14)

It follows from that S C T implies S Ty T. Unlike C, Ty is not
a partial order in the general case, although it is always a pre-order.

7.2 Co-operating and Independent Refinement

Jacob [4J5] proposed two notions of refinement — known as co-operating refine-
ment and independent refinement — intended for application in the development
of multi-user systems.

Co-operating refinement allows users to exchange their observations of a sys-
tem after its execution has terminated. Hence, the users may potentially
reconstruct more information about the system behaviour than they could
obtain from their individual observations alone.

Independent refinement assumes users cannot communicate with each other;
instead, the only information that each user can obtain about the behaviour
of a system is their own interface-level observation of the system.

We express co-operating and independent refinement in the UTP by extend-
ing the definition of user refinement to a set of disjoint views W (representing
multiple users) in different ways.

Definition 9 (Co-operating and independent refinement). Co-operating
and independent refinement generalise T as follows:

SCw T £ STHaw T (15)
scptrT & N Scy T (16)
vew

As with Ty, the i}, and E%d orderings are pre-orders but not partial orders
[4]. When W contains only a single view V| the Eyy and E%‘i relations reduce
to the definition of Ty, .

Theorem 2 (Ordering on refinement relations). Standard refinement is
a stronger ordering than co-operating refinement which, in turn, is a stronger
ordering than independent refinement:

SCT = SCS T (17)
SCE T = Scivt T (18)

As established by co-operating and independent refinement are
weaker than the conventional definition of refinement, because they allow non-
determinism to be added to a specification, so long as no new interface-level
observations of the specification are possible. However, these notions of refine-
ment are strong enough to preserve the functionality inherent in a system’s
specification from the perspectives of the users of the system.

FEzample 5. Returning to |Example 4} it is the case that DBL2 Ef{T}_‘Ii’L} INDBL2,
since DBL2 Cy INDBL2 an 2 C;, INDBL2 both hold. This means that
INDBIL2 can safely substitute for DBL2, provided that the users at H and L are
unable to communicate with each other. However, we do not have DBL2 EE‘}{ L}
INDBL2, because if the users at H and L combine their observations, they can

identify behaviours of INDBL2 that are not behaviours of DBL2.

Relaxing the notion of refinement to co-operating or independent refinement
provides an extra degree of flexibility when making design choices for a system.
In particular, INDBL2 allows the users at H and L to access separate registers
without needing to keep those registers synchronised, which means that an im-
plementation of INDBL2 may provide each user with their own local instance of
the register. More generally, these refinement relations offer the opportunity to
distribute a system’s workload across multiple processors, provided the refined
system produces the same results to its users.

A spectrum of refinement relations may be constructed from the C°° relation.
A set of views W may be partitioned into subsets Wi, ..., W, to represent
groups of users, whereby users associated with views in the same group may co-
operate but users associated with views in different groups are isolated from each
other. Thus, a multi-user refinement relation which accounts for the boundaries
separating these users is given by:

SCy T £SCcyy TA...ANSCyy T (19)

The notion of co-operating refinement may also be applicable in the develop-
ment of distributed systems composed of multiple interacting components. For
instance, it may be desirable to replace one component Z of the system with
another component Z’. This replacement can be carried out with the assurance
that other components of the system are not affected by the change, if it can be
shown that Z C{y, Z’ holds, where W is the set of views representing the chan-
nels through which the other components interact with Z. The replacement is
justified because these other components cannot distinguish Z’ from Z by their
interactions with Z’, even if they share information about those interactions
with each other.

7.3 Reasoning About Information Flow

An important topic in theoretical studies of computer security is to measure
the information that a low-level (unprivileged) user of a system can learn about
the activities of other high-level users by observing the system. If the high-level
interactions are associated with sensitive or intrinsically valuable data, then it is
imperative that the low-level user is unable to deduce confidential information
about this data by monitoring the system’s execution [6].

In we described how one user can deduce information about the
observations of another user. We are now able to define an ordering for comparing
systems according to the amount of information about high-level observations
that can “flow” to a low-level user.

Definition 10 (Security ordering). Let H and L denote the (disjoint) views
of a high-level user and a low-level user respectively. Then, a system T provides
no more information flow from H to L than a system S if and only if:

S<ET2SC, TAP(LAHT)CP(LAHS)AP(LT) (20

The <! relation encodes a security ordering on predicates [5I7]. The first
condition ensures that, from the perspective of a low-level user at L, every ob-
servation of T is an observation of S. The second condition requires that, for
every observation ¢ of T viewed through L, the set of H observations of S that
are compatible with ¢ is a subset of the H observations of T' compatible with
¢. These conditions together guarantee that the low-level user can deduce no
more information about the activities at H from an observation of T as it can
from the equivalent observation of S. Hence, if S <# T holds, then we say that
T provides no more information flow about activities at H to the low-level user
as does S. (Of course, this assertion applies only so far as the semantic model
of S and T, as it excludes from consideration factors such as the probability
distribution or the timing characteristics of system behaviours.)

8 Related Work

Our approach for reasoning about multi-user systems in the UTP opens up
several new avenues of investigation. We briefly review two areas of research in
which we believe our approach is particularly relevant.

Information Flow Security. A multitude of techniques for measuring and re-
stricting information flow within systems — to guarantee the secrecy of confi-
dential data — have been defined within frameworks based on trace semantics
[BURI9ITO). In these frameworks, a user’s observation is given by applying a pro-
jection function to the system trace. Our notion of a view is a generalisation of
these projection functions, because a view may cover other observational vari-
ables besides the trace variables, such as the variables recording the refusal set
associated with a trace (when working in the UTP theory of reactive designs.)

Refining a specification may introduce new paths of information flow into the
specification, thus enabling a low-level user to deduce more detailed information
about the activities of a high-level user and potentially violating security require-
ments [7]. Various techniques have been proposed to resolve this problem, such
as ensuring that the system appears deterministic from the low-level user’s view-
point [11] or strengthening the definition of refinement to preserve information
flow security properties [I2]. The refinement relation obtained by intersecting
the C and =< orderings is an example of the latter approach, but it may be too
strong a refinement relation for practical use. It is perhaps more appropriate to
employ a weaker notion of refinement (such as co-operating or independent re-
finement) together with the < ordering in the development of multi-user systems
where information security is a priority.

Distributed Testing. When testing distributed systems, it is customary to place
an isolated tester (user) at each interface of the system. For the results of test
runs to be useful, it should be possible to combine the observations of multiple
testers in order to reconstruct the exact trace of a system. However, if testers
are physically separated and no global clock is present, then it may be difficult
(or impossible) to rule out alternative behaviours of the system.

Recent work has identified conditions under which tests of distributed sys-
tems (modelled as finite state machines) can be designed and controlled to en-
sure that the exact system behaviour can always be identified, without requiring
testers to synchronise their actions externally of the system under test [T3JT4].
This problem can be stated using our terminology as follows: for every set of
interface-level observations {¢1, ..., ¢, } of a system S projected through views
Vi,... V,, there must exist a unique system-level observation @ of S such that
P(V, &)= ¢, for each i € 1..n.

9 Conclusions

We have presented an approach for studying multi-user systems in the UTP. We
have described how the observational abilities of users can be modelled as UTP
predicates (views) and have identified predicate transformers for calculating the
projection of a system’s behaviour to its users. The novelty of our approach is
that, by codifying these concepts in the UTP explicitly, we obtain a semantically
appealing method for reasoning about specifications of multi-user systems across
the spectrum of UTP theories.

We have also investigated some alternative notions of refinement that are
based on what users can deduce about the system’s behaviour from their obser-
vations. These refinement relations afford the implementer of a system greater
flexibility in making particular design decisions that would be prohibited by
classical refinement.

The emphasis of this paper is on generality. Our approach is sufficiently ab-
stract to be used in combination with a variety of UTP theories; for instance,
we have demonstrated its application within the theory of designs in

Moreover, our definitions of co-operating and independent refinement are not
tied to the semantics of particular UTP theories. Indeed, these refinement re-
lations may potentially be applied in practice to the stepwise development of
multi-user systems, wherever the observational abilities of users are known.

A drawback of our approach is that applying the P and R predicate trans-
formers can be tedious and error-prone if carried out manually, because a view
may define a complex relation between interface-level and system-level observa-
tional variables. With the emergence of tool support for the UTP, there is po-
tential for overcoming this difficulty by mechanising our approach. This would
enable some of the techniques described in this paper — such as reasoning about
information flow between users, or verifying co-operating or independent refine-
ments over systems — to be carried out with machine assistance.

The focus of our current research is to integrate our approach with the UTP
semantics of the Circus formalism [I5], in order to reason about the observa-
tional abilities of users of systems modelled in Circus. We envisage the work
presented in this paper will provide the foundations for a comprehensive plat-
form for analysing Circus systems from the perspective of their users.

Acknowledgements

Michael Banks is supported by a UK Engineering and Physical Sciences Research
Council DTA studentship.

We are grateful to Ana Cavalcanti, Frank Zeyda and the anonymous referees
for offering insightful comments on this paper, and to Chris Poskitt for proof-
reading. We also thank Jim Woodcock and the members of the Programming
Languages and Systems research group at York for their feedback on an seminar
talk on the ideas described in this paper, which helped us to clarify our ideas
and to simplify the presentation of technical details.

References

1. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1997)

2. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall Inc. (1998)

3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
"77: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
Programming Languages, New York, NY, USA, ACM (1977) 238-252

4. Jacob, J.L.: Refinement of shared systems. In McDermid, J.A., ed.: The Theory and
Practice of Refinement: Approaches to the Development of Large-Scale Software
Systems. Butterworths (1989) 27-36

5. Jacob, J.L.: Basic theorems about security. Journal of Computer Security 1(4)
(1992) 385-411

6. Denning, D.E.: Cryptography and Data Security. Addison-Wesley Longman Pub-
lishing Company, Inc., Boston, MA, USA (1982)

10.

11.

12.

13.

14.

15.

Jacob, J.L.: On the derivation of secure components. In: Proceedings of the 1989
IEEE Symposium on Security and Privacy, IEEE Computer Society (1989) 242-247
McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Proceedings of the 1994 IEEE Symposium on Security
and Privacy. (1994) 79-93

Mantel, H.: A Uniform Framework for the Formal Specification and Verification
of Information Flow Security. PhD thesis, Universitat Saarbriicken (July 2003)
Seehusen, F., Stglen, K.: Information flow security, abstraction and composition.
IET Information Security 3(1) (2009) 9-33

Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through determinism.
In: ESORICS ’94: Proceedings of the Third European Symposium on Research in
Computer Security. Volume 875 of Lecture Notes in Computer Science., Springer
Berlin / Heidelberg (1994) 33-53

Morgan, C.: The shadow knows: Refinement and security in sequential programs.
Science of Computer Programming 74(8) (June 2009) 629-653

Chen, J., Hierons, R.M., Ural, H.: Conditions for resolving observability problems
in distributed testing. In: Formal Techniques for Networked and Distributed Sys-
tems — FORTE 2004. Volume 3235 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg (2004) 229-242

Chen, J., Hierons, R.M., Ural, H.: Overcoming observability problems in dis-
tributed test architectures. Information Processing Letters 98(5) (June 2006)
177-182

Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing 21(1) (February 2009) 3-32

A Proofs

[Lemma 1]

Proof. We assume that V; and Vs are VH-healthy individually. To prove that
V1 A V5 is VH-healthy, it is sufficient to show that V; A V5 is VH1-healthy and
VH2-healthy separately.

VH1(V1) A VHL(V3)
& (definition of VH1)
(Vs,s" @ Fup,ul ¢ V1) A (Vs,s" @ Jug, ul e Va)

& (predicate calculus)
Vs,s o (Fuy,ul @ Vi) A (Jug,u) e Vo)
= (assumption: V7 and V3 are disjoint)

Vs, s ®Jup,ui,ug, uy @ Vi A Vs
= (definition of VH1)
VH1(V; A V3)

The proof that Vi A Va is VH2-healthy follows similarly. O

[Cemma 2|
SCT = P(V,S)CP(V,T)

Proof.
SCT
& (definition of C)
[Vs,s" e T = 9]
= (predicate calculus)
[Vs,s o (VAT)=(VAS)]
= (predicate calculus)
[3s,s" @ VAT)= (Vs,s e VAS)]
= (predicate calculus)

[((3s,s ¢« VAT)= (35,5 e VAS)]
& (definition of P)
[P(V,T)=P(V,9)]

& (definition of C)
P(V.S)CP(V,T) O

Lemma J

P ((/\iel..n Vi) ’S) = Nier.n P (Vi))
Proof.

P ((/\ze1n Vi) ’S)

o (definition of P)

Js,5" e (/\iel.‘n Vi) NS

= (predicate calculus)

Nier.n3s,s" @ Vin§

& (definition of P)

/\ZGInP(VHS) o

[MTheorem Tl
UCP(V,S) < R(V,U)CS
Proof.

UCP(V,S)

& (definition of C and P)
[(3s,s" @« VAS)= U]

¥

(predicate calculus)
Vs,s' e VV=8)Vv U]
('s,s" not free in U and s, s’ covered by universal closure)
VVaSV U]
(u,u not free in S and u, v’ covered by universal closure)
SV Nu,u e=VVU)]
& (predicate calculus)
S= NVu,u eV =1U)]
= (definition of C and R)
R(V,U)CS 0

[

T =

J

[

3

0

[Cemma 4|
P(V,PFQ) = (Vs,s’ eV =P)lyP(V,Q)
Proof.

P(V,PF Q)

& (definition of P and)
Js,s" ¢ VA(ok NP = ok’ A Q)

=3 (unfold implication)
Js,8 e VA(m0kV =PV (k' AQ))
& (distributivity, twice)

(s, @« VA(mo0okV-aP))V (Is,s"eok! NV A Q)

& (V is VHD-healthy)

- oky V ds,8 e VAN V (o ANds,8 e A
k ds,s' eV P ki, Ns,s" e VAQ

& (de Morgan, twice)
- (oky ANVs,s" @ = (VA=P))V(oki, NIs,s" e« V A Q)
& (predicate calculus)

(oky AN (Vs,s" V= P))= (oki, ANTs,s" e« V A Q)
& (definition of P and Fy)
(Vs,s' e« V=P)FyP(V,Q) O

[Theorem 2]

Proof. is a consequence of [Lemma 2] and [Definition 8| [Equation 18|
follows from [Lemma 3l 0

