Skip to main content

Unifying Theories in Isabelle/HOL

  • Conference paper
Unifying Theories of Programming (UTP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6445))

Included in the following conference series:

Abstract

In this paper, we present various extensions of Isabelle/HOL by theories that are essential for several formal methods. First, we explain how we have developed an Isabelle/HOL theory for a part of the Unifying Theories of Programming (UTP). It contains the theories of alphabetized relations and designs. Then we explain how we have encoded first the theory of reactive processes and then the UTP theory for CSP. Our work takes advantage of the rich existing logical core of HOL.

Our extension contains the proofs for most of the lemmas and theorems presented in the UTP book. Our goal is to propose a framework that will allow us to deal with formal methods that are semantically based, partly or totally, on UTP, for instance CSP and Circus . The theories presented here will allow us to make proofs about such specifications and to apply verified transformations on them, with the objective of assisting refinement and test generation.

This work was partially supported by the Digiteo Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth through Proof, 2nd edn. (2002)

    Google Scholar 

  2. Arthan, R.: The ProofPower homepage (2009), http://www.lemma-one.com/ProofPower/index/

  3. Brucker, A.D., Rittinger, F., Wolff, B.: Hol-z 2.0: A proof environment for z-specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)

    Google Scholar 

  4. Brucker, A.D., Wolff, B.: Symbolic test case generation for primitive recursive functions. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 16–32. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Brucker, A.D., Wolff, B.: Test-sequence generation with hol-testgen with an application to firewall testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 149–168. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in hol with an application to imp++. Journal of Automated Reasoning (JAR) 41(3-4), 219–249 (2008); Autexier, S., Mantel, H., Merz, S., Nipkow, T. (eds)

    Article  MATH  Google Scholar 

  7. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction to CSP in Unifying Theories of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004. LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Cavalcanti, A., Gaudel, M.C.: A note on traces refinement and the \({\it conf}\) relation in the Unifying Theories of Programming. In: Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 42–61. Springer, Heidelberg (2008)

    Google Scholar 

  9. Church, A.: A formulation of the simple theory of types, vol. 5(2), pp. 56–68 (June 1940)

    Google Scholar 

  10. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice Hall International Series in Computer Science (1998)

    Google Scholar 

  11. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  12. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: Unifying theories in ProofPower-Z. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 123–140. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Oliveira, M., Cavalcanti, A., Woodcock, J.: A denotational semantics for Circus. Electron. Notes Theor. Comput. Sci. 187, 107–123 (2007)

    Article  Google Scholar 

  14. Zeyda, F., Cavalcanti, A.: Encoding Circus programs in ProofPowerZ. In: Butterfield, A. (ed.) UTP 2008. LNCS, vol. 5713, pp. 218–237. Springer, Heidelberg (2009), http://www.cs.york.ac.uk/circus/publications/docs/zc09b.pdf

    Google Scholar 

  15. Zeyda, F., Cavalcanti, A.: Mechanical reasoning about families of UTP theories. Science of Computer Programming (2010) (in Press) (Corrected Proof, Available online March 17, 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feliachi, A., Gaudel, MC., Wolff, B. (2010). Unifying Theories in Isabelle/HOL. In: Qin, S. (eds) Unifying Theories of Programming. UTP 2010. Lecture Notes in Computer Science, vol 6445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16690-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16690-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16689-1

  • Online ISBN: 978-3-642-16690-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics