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Abstract. Automatic image annotation refers to the process of auto-
matically labeling an image with a predefined set of keywords. Image an-
notation is an important step of content-based image retrieval (CBIR),
which is relevant for many real-world applications. In this paper, a new
algorithm based on multiple grid segmentation, entropy-based informa-
tion and a Bayesian classifier, is proposed for an efficient, yet very effec-
tive, image annotation process. The proposed approach follows a two step
process. In the first step, the algorithm generates grids of different sizes
and different overlaps, and each grid is classified with a Naive Bayes clas-
sifier. In a second step, we used information based on the predicted class
probability, its entropy, and the entropy of the neighbors of each grid el-
ement at the same and different resolutions, as input to a second binary
classifier that qualifies the initial classification to select the correct seg-
ments. This significantly reduces false positives and improves the overall
performance. We performed several experiments with images from the
MSRC-9 database collection, which has manual ground truth segmen-
tation and annotation information. The results show that the proposed
approach has a very good performance compared to the initial labeling,
and it also improves other scheme based on multiple segmentations.

1 Introduction

Most recent work on image labeling and object recognition is based on a sliding
window approach [1], avoiding in this way the difficult problem of image seg-
mentation. However, the rectangular regions used in these approaches do not
provide, in general, a good spatial support of the object of interest; resulting in
object features that are not considered (outside the rectangle) or incorrectly in-
cluded (inside the rectangle). Recently, it has been shown [2] that a good spatial
support can significantly improve object recognition. In particular, they demon-
strate that by combining different image segmentation techniques, we can obtain
better results, with respect to a sliding window approach or any of the segmenta-
tion techniques by themselves. They found that for all the algorithms considered,
multiple segmentations drastically outperform the best single segmentation and
also that the different segmentation algorithms are complementary, with each



algorithm providing better spatial support for different object categories. So it
seems that by combining several segmentation algorithms, labeling and object
classification can be improved. In [2] the authors do not solve the problem of
how to combine automatically the several segmentation methods.

More recently, Pantofaru et al. [3] proposed an alternative approach to com-
bine multiple image segmentation for object recognition. Their hypotheses is
that the quality of the segmentation is highly variable depending on the image,
the algorithm and the parameters used. Their approach relies on two principles:
(i) groups of pixels which are contained in the same segmentation region in mul-
tiple segmentations should be consistently classified, and (ii) the set of regions
generated by multiple image segmentations provides robust features for classify-
ing these pixel groups. They combine three segmentation algorithms, Normalized
Cuts [4], Mean-Shift [5] and Felzenszwalb and Huttenlocher [6], with different
parameters each. The selection of correct regions is based on Intersection of
Regions, pixels which belong to the same region in every segmentation. Since
different segmentations differ in quality, they assume that the reliability of a
region’s prediction corresponds to the number of objects it overlaps with respect
to the class labels. They tested their method with the MSRC 21 [7] and Pascal
VOC2007 data sets [8], showing an improved performance with respect to any
single segmentation method.

A disadvantage of the previous work is that the segmentation algorithms
utilized are computationally very demanding, and these are executed several
times per image, resulting in a very time–consuming process, not suitable for
real time applications such as image retrieval. Additionally, simple segmentation
techniques, such as grids, have obtained similar results for region–based image
labeling than those based on more complex methods [9].

We propose an alternative method based on multiple grid segmentation for
image labeling. The idea is to take advantage of multiple segmentations to im-
prove object recognition, but at the same time to develop a very efficient image
annotation technique applicable in real–time. The method consists of two main
stages. In the first stage, an image is segmented in multiple grids at different
resolutions, and each rectangle is labeled based on color, position and texture
features using a Bayesian classifier. Based on the results of this first stage, in the
second stage another classifier qualifies each segment, to determine if the initial
classification is correct or not. This second classifier uses as attributes a set of
statistical measures from the first classifiers for the region of interest and its
neighbors, such as the predicted class probability, its entropy, and the entropy
of the neighbors of each grid element at the same and different resolutions. The
incorrect segments according to the second classifier are discarded, and the final
segmentation and labeling consists of the union of only the correct segments.

We performed several experiments with images from the MSRC-9 database
collection, which has manual ground truth segmentation and annotation infor-
mation. The results show that the proposed approach is simple and efficient, and
at the same time it has a very good performance, in particular reducing the false
positives compared to the initial annotation. We also compared our approach for



selecting segments based on a second classifier, against the method of [3] which
uses region intersection, with favorable results.

The rest of the paper is organized as follows. Section 2 presents an overall
view of the proposed approach. Section 3 describes the segmentation process and
the feature extraction mechanism. Section 3.3 describes the first classifier used
to label the different segments in the images, while Section 4 explains the second
classifier used to remove false positives and improve the overall performance of
the system. In Section 5, the experiments and main results are given. Section 6
summarizes the main conclusions and provides future research directions.

2 Image Annotation Algorithm

The method for image annotation based on multiple grid segmentation consists
of two main phases, each with several steps (see Figures 1 and 2):

Phase 1 – Annotation:

1. Segment the image using multiple grids at different resolutions.
2. Extract global features for each segment: color, texture and position.
3. Classify each segment based on the above attributes, using a Bayesian clas-

sifier previously trained based on a set of labeled images.

Phase 2 – Qualification:

1. For each segment obtain a set of statistical measures based on the results of
the first classifier: class probability, entropy of the region, and entropy of its
neighboring regions at the same and different resolutions.

2. Based on the statistical measures, use another binary Bayesian classifier to
estimate if the original classification of each segment is correct/incorrect.

3. Discard incorrect segments (based on certain probability threshold).
4. Integrate the correct segments for the final image segmentation and labeling.

In the following sections each phase is described in more detail.

3 Phase 1: initial annotation

Before applying our classifiers for image annotation, we perform two operations
on the images: (i) segmentation and (ii) features extraction.

3.1 Image Segmentation

Carboneto [9] found that a simple and fast grid segmentation algorithm can have
better performance than a computationaly expensive algorithm like Normalized
Cuts [4]. The effectiveness of grid segmentations depends on the size of the
grid and on the nature of the images. On the other hand, combining several
segmentation algorithms tend to produce better performance, as suggested in [2]



Fig. 1. Phase 1: annotation. For each image in the database we compute multiple grid
segmentations. For each segment we extract position, color and texture features; and
use these features to classify each segment.

and shown in [3]. In this paper we propose to use several grid segmentations, label
each segment and combine the results, integrating two relevant ideas: (i) grid
segmentation has a very low computational cost with reasonable performance
so it can be efectively used in image retrieval tasks, and (ii) using grids of
different sizes can produce relevant information for different regions and images
of different nature. So rather than guessing which is the right grid size for each
image, we used a novel approach to combine the information of the different
labels assigned to each grid to improve the final segmentation and labelling
results. In this paper we used three grid segmentations of different sizes, but the
approach can be easily extended to include additional grids.

3.2 Features

There is a large number of image features that have been proposed in the liter-
ature. In this paper we extract features based on position, color and texture for
each image segment, but other features could be incorporated.

As position features, we extract for each image segment the average and
standard deviations of the coordinates, x and y, of the pixels in the rectangular
region.

Color features are the most common features used in image retrieval. In this
paper we used the average and standard deviation of the three RGB channels
for each image segment (6 features). In the CIE-LAB Color space the numeric
differences between colors agrees more consistently with human visual percep-
tions. Thus, we also include the average, standard deviation and skewness of the
three channels of the CIE-LAB space for each image segment.



Fig. 2. Phase 2: qualification. For all the classified segments, we obtain the probability
of the label, its entropy, the neighborhoods entropy and the intersection entropy; as
input to another classifier to reinforce the confidence of each label and then we finally
select the correct segments and merge segments with the same class.

The perception of textures also plays an important role in content-based
image retrieval. Texture is defined as the statistical distribution of spatial de-
pendences for the gray level properties [10]. One of the most powerful tools for
texture analysis are the Gabor filters [11], a linear filter used in image processing
for edge detection. Frequency and orientation representations of Gabor filter are
similar to those of human visual system, and it has been found to be partic-
ularly appropriate for texture representation and discrimination. Gabor filters
could be viewed as the product of a low pass (Gaussian) filter at different orien-
tations and scales. In this paper we applied Gabor filters with four orientations
θ = [0, 45, 90, 135], and two different scales, obtaining 8 filters in total.

3.3 Base Classifier

The previously described features are used as input to a Naive Bayes classifier.
This classifier assumes that the attributes are independent between each other
given the class, so using Bayes theorem the class probability given information
of the attributes (P (Ci|A1, ..., An)) is given by:

P (Ci|A1, ..., An) =
P (Ci)P (A1|Ci), ..., (An|Ci)

P (A1, ..., An)
(1)

where Ci is the i-th value of the class variable on several feature variables
A1, ..., An. For each segment we obtain the probabilities of all the classes, and
select the class value with maximum a posteriori probability; in this way we
label all the segments created by the multi-grid segmentation process.



4 Phase 2: annotation qualification

In the second phase we use a second classifier to qualify the classes given by
the first classifier and improve the performance of the system. This is a binary
classifier that decides whether the predicted label of the first classifier is correct
or not, given additional contextual information. We compute the likelihood of
the predicted class using another Naive Bayes Classifier.

As attributes for this second classifier we use:

Class Probability: The probability of the label given by the first classifier.
Entropy: The entropy of each segment is evaluated considering the probabilities

of the predicted labels by the first classifier, defined as:

H(s) = −
n∑

i=1

P (Ci) log2 P (Ci) (2)

where P (Ci) is the likelihood of prediction for class i and n is the total
number of the classes.

Neighborhood Entropy: We also extract the entropy of the segment’s neigh-
bors and add this information if they have the same class:

H(v) =
1

|vc|
∑
x∈Vc

H(x)δ(Class(x), Class(v)) (3)

where Vc are all neighbors segments, H(x) is the entropy from neighbors
segments with the same Class(v), normalized by the number of neighbors
with the same class |vc| and,

δ(x, v) =

{
1 if x = v
0 otherwise

This is illustrated in Figure 3, where the class label is illustrated with dif-
ferent colors. In this case, three neighbors have the same class as the central
grid, while one neighbor has a different class. The value of the attribute will
have the normalized sum of the entropies of three neighbors with the same
class.

Intersection Entropy: We also consider information of the cells from other
grids that have an intersection with the current segment. In this case we
used Equation 3 and applied it to the segments of the different grids. In the
case of the three grids considered in the experiments, the cells in the largest
grid size have 20 neighbors each, the middle size segments have 5 neighbors
each and the smallest segments have only two neighbors. This is illustrated
in Figure 4. Different grid segmentations and intersection schemes could be
used as well.

Combined Attributes: We also incorporated new attributes defined by a com-
bination of some of the previous attributes, namely the entropy of the seg-
ment plus the neighbor’s entropy and the entropy of the segment plus the



Fig. 3. Neighbors in the same grid. We consider the top, down, right and left neighbors
and obtain their entropy, considering only the neighbors that have the same class as
the current segment (best seen in color).

Fig. 4. Neighbors in the other grids. The image is segmented in grids of different sizes,
each segment will have a different number of intersected neighbors. For the three grids
we used in the experiments, the largest segments have 20 neighbors, the middle size
segments have 5 neighbors, and the smallest segments have only 2 neighbors (best seen
in color).

intersection’s entropy. The incorporation of additional features that repre-
sent a combination of features can sometimes produce better results. Other
features and other combinations could be used as well.

The second classifier is shown in Figure 5. This classifier is used to qualify
each segment and filter the incorrect ones (those with a low probability of being
correct are discarded).

Fig. 5. Second classifier. Graphical model for the qualification classifier, showing the
features used to decide if segments were correctly or incorrectly classified.



5 Experiments and Results

We performed several experiments using the MSRC-9 database with 9 classes:
grass, cow, sky, tree, face, airplane, car, bicycle and building. All images were
resized to 320x198 or to 198x320 depending on the original image size, and
segmented using three different grids with cell sizes of 64, 32 and 16 pixels.

The database has 232 images, 80% were randomly selected and used for
training and 20% for testing for both classifiers. Position, color and texture
features were extracted for the first classifier and the features mentioned in
Section 4 for the second classifier.

We first analyzed some of the features used in the second classifier. We found
that entropy and the intersection entropy measures work well as a discriminant
between segments that are correctly or incorrectly classified. This is shown in Fig-
ure 6, where the left graph shows the division between correctly and incorrectly
classified segments using entropy, while the right graph shows the separation
considering the intersection entropy.

Fig. 6. The figures show how a sample of segments (100) for different classes are clas-
sified, as correct (red triangles) or incorrect (blue circles), based on the segment local
entropy (left) and the intersection entropy (right). Although there is not a perfect sep-
aration, we can observe certain tendency in both graphs, which confirms that these
features could be used as indicators to distinguish correct vs. incorrect region classifi-
cation.

Then we compared the performance of the base classifier against the perfor-
mance after the segments are selected based on the qualification classifier. The
results in terms of true positives (TP) and false positives (FP), are summarized
in Figure 7. Although there is a slight reduction in true positives, there is a
great reduction in false positives; showing that our method can effectively elim-
inate incorrect segments. The reduction in TP is not a problem, as there is a
redundancy in segments by using multiple grids.

Finally, we compared our method for segment qualification based on a second
classifier against the method proposed in [3] based on intersection of regions.



Fig. 7. Comparison of the results with only the first classifier and after the second
classifier is applied. The graphs show the TP and FP generated by both classifiers.

For this we used the same data, and incorporated the intersection criteria into
our multiple grid segmentations, instead of the second classifier. The results in
terms of different performance criteria are summarized in Figures 8 and 9. In
Figure 8 we compare the number of true positives (TP) and false positives (FP)
for our approach vs. region intersection; and in Figure 9 we compared them in
terms of precision, recall and accuracy. To determine the selection of a segment
is considered that the likelihood rating was above 90% for TP and FP. We
observe that our method for region qualification outperforms the method based
on intersections in all the performance measures, with significant differences in
TP and precision. Examples of region labeling and qualification for 4 images
with two different grid sizes are shown in Figure 10.

Our current implementation in MatLab requires about 30 seconds to pro-
cess an image for the complete process (both phases) using a PC with a dual
core at 2.4 GHz and 4GB of RAM. We expect that an optimized “C/C++”
implementation can reduce this time at least an order of magnitude.

These experiments show that our novel approach using a second classifier
with contextual information based on statistical measures, produces significant
improvements over the initial labeling, and is more effective that the approach
based on intersections.

6 Conclusions and Future Work

In this paper we proposed an automatic image annotation algorithm using a
multiple grid segmentation approach. Images are segmented in a very efficient
way using a simple grid segmentation with different grid sizes. Individual fea-
tures based on position, color and texture are extracted and used for an initial



Fig. 8. Comparison of segment selection based on our approach vs. region intersection
in terms of true positives (TP) and false positives (FP).

Fig. 9. Comparison of segment selection based on our approach vs. region intersection
in terms of precision, recall and accuracy.
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Fig. 10. Sample images. Up: original image. Middle: coarse grid. Down: intermediate
grid. Correct labels are in black and incorrect in red (best seen in color).



labeling of the different grid segments. This paper introduces a novel approach
to combine information from different segments using a second classifier and
features based on entropy measures of the neighbor segments. It is shown how
the second classifier significantly improves the initial labeling process decreasing
the false negative rate; and has a better performance that a selection based on
region intersection.

As future work we plan to combine the correct regions in the different grids
to produce a final single segmentation and labeling; and to test our approach in
other image databases.
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