
Formal Verification of Tokeneer Behaviours
Modelled in fUML Using CSP

Islam Abdelhalim, James Sharp, Steve Schneider, and Helen Treharne

Department of Computing, University of Surrey

Abstract. Much research work has been done on formalizing UML di-
agrams, but less has focused on using this formalization to analyze the
dynamic behaviours between formalized components. In this paper we
propose using a subset of fUML (Foundational Subset for Executable
UML) as a semi-formal language, and formalizing it to the process alge-
braic specification language CSP, to make use of FDR as a model checker.
Our formalization includes modelling the asynchronous communication
framework used within fUML. This allows different interpretations of the
communications model to be evaluated. To illustrate the approach, we
use the modelling of the Tokeneer ID Station specifications into fUML,
and formalize them in CSP to check if the model is deadlock free.

1 Introduction

The OMG (Object Management Group) has developed the fUML (Foundational
Subset for Executable UML) [1] specification with the purpose of enabling com-
pliant models to be transformed into various executable forms for verification,
integration, and deployment. The specification of the execution model incorpo-
rates a degree of genericity. This is achieved mainly by defining explicit semantic
variation points. A particular execution tool can then realize specific semantics
by providing specifications for any of those points. The semantics of inter-object
communications mechanisms is one of the semantic variation points. The choice
of the implementation of such a point may affect the execution model of the
system. We use formal model checking to evaluate an implementation of the
inter-object communications mechanism and its compatibility with an fUML
model. This, in turn, can ensure that faults are detected during the early stages
of software development lifecycle, which provide significant savings in cost com-
pared with rectifying errors after the system has been implemented.

We formalize fUML models into the process algebraic specification language CSP
[2] with the purpose of checking deadlocks in the models, which could happen
if all objects are waiting to accept signals from each other. To achieve checking
such a property, we modelled the inter-object communications mechanism into
CSP. Then we depended on FDR (Failures-Divergences Refinement) [3] to handle
the model checking and report the deadlock scenarios (if found). Potentially, we

can make use of this methodology to allow software engineers, who do not have
specialist mathematical knowledge, to formally check their semi-formal (fUML)
models.

Much research exists on translating a UML model to a formal model (see Sec-
tion 8) but many approaches have imposed restrictions on the UML diagrams
and notation used. Our previous work on transforming xUML (Executable UML)
[4] to CSP ‖ B [5] benefits from the fact that using xUML as a starting point
means that the restrictions are those imposed by the language itself. xUML al-
lows models to be executed and tools supporting xUML have meta-models [6].
In this paper we propose to examine the translation between fUML and CSP.
fUML benefits from a standardized meta-model. Moreover, the complexity of
the queuing mechanism in xUML (each object has a separate signal queue for
all the objects in the system including itself which has the highest priority) leads
to more complex CSP models, and thus more heavy processes to be analyzed by
FDR. Also the syntax of the fUML activity diagrams allowed for modelling the
internal choices, which was not possible using xUML. The fUML models yield
more abstract formal models than were possible from xUML translation.

In order to validate our approach, we modelled part of the Tokeneer ID Sta-
tion project [7] into fUML. We then developed a group of mapping rules (maps
between the fUML activity diagrams elements and CSP) to manually translate
the fUML into CSP, and checked if the formalized model is deadlock free. In
this paper we are focusing on a subset of the fUML activity diagram notation,
and this has been guided by the Tokeneer case study. Formalizing fUML class
diagrams is beyond the scope of this paper, as we want to check the dynamic
behaviour of the system. Also the runtime objects creation and deletion are not
covered in this work.

Overall the main novelty of this work is the proposed approach to model the
asynchronous communication between objects. Also to our knowledge, this is
the first attempt to analyze fUML models (by formalizing them into CSP) and
addressing the semantic variation points issue in the fUML standard.

We assume the reader of this paper has good background knowledge with the
UML 2 standard, CSP, and FDR.

The rest of this paper is organised as follows. In Section 2, we give a background
to the fUML standard and the CSP syntax used in this paper. In Section 3, we
introduce the Tokeneer case study briefly and include part of the used fUML
diagrams. In Section 4, we describe the mapping rules we developed to map be-
tween the fUML activity diagram elements and CSP. In Section 5, we describe
how we model the asynchronous communication between the fUML active ob-
jects in CSP. In Section 6, we describe the CSP model for a selected part of
Tokeneer fUML activity diagram. In Section 7, we discuss the deadlock checking
for the formalized fUML model and the generated results from FDR. Finally, we
discuss related work and conclude in Sections 8 and 9 respectively.

2 Background

2.1 fUML

fUML (Foundational Subset for Executable UML) [1] is an OMG standard act-
ing as an intermediary between “surface subsets” of UML models and platform
executable languages. The OMG defines the fUML subset by specifying the mod-
ifications to the original abstract syntax (of UML 2) of the class and activity
diagrams, which allows fUML models to be transformed to various executable
forms. These modifications are specified in clause 7 of the standard by merg-
ing/excluding some packages in the UML 2 specification [8], as well as adding
new constraints. As defined in the fUML standard, we are listing below some
modifications to UML 2 that are relevant to our Tokeneer fUML model; all of
them are related to the fUML activity diagrams since our goal is to capture the
behaviours of our model:

– Central buffer nodes are excluded from fUML because they were judged to
be unnecessary for the computational completeness of fUML.

– Variables are excluded from fUML because the passing of data between ac-
tions can be achieved using object flows.

– Exception handlers are not included in fUML because exceptions are not
included in fUML.

– Opaque actions are excluded from fUML since, being opaque, they cannot
be executed.

– Value pins are excluded from fUML because they are redundant with using
value specifications to specify values.

The operational semantics of fUML is an executable model with methods written
in Java, with a mapping to UML activity diagrams. The declarative semantics
of fUML is specified in first order logic and based on PSL (Process Specification
Language).

Inter-object Communication Mechanism in fUML
This part gives an overview of the semantics of the inter-object communica-
tion in fUML as defined by clause 8 in the standard [1]. Such communication
is conducted between active objects only. Active objects in fUML communicate
asynchronously via signals (kind of classifier). This is achieved by associating an
object activation with each object which handles the dispatching of asynchronous
communications received by its active object. Figure 1 shows the structure re-
lated to the object activation.

Active Object

Object Activation
Event Pool

Waiting Event
Accepters

Fig. 1: Object Activation Structure

The object activation maintains two main lists: the first list (event pool) holds
the incoming signal instances waiting to be dispatched, and the second list (wait-
ing event accepters) holds the event accepters that have been registered by the
executing classifier behaviour. Event accepters are allowable signals with respect
to the current state of the active object. The fUML standard permits the specifier
(tool implementer) to define a suitable dispatching mechanism for signals within
the event pool (semantic variation point). The default dispatching behaviour
dispatches events on a FIFO (first-in first-out) basis.

2.2 CSP

CSP (Communication Sequential Processes) is a modelling language that allows
the description of systems of interacting processes using a few language primi-
tives. Processes execute and interact by means of performing events drawn from
a universal set Σ. Some events are of the form c.v , where c represents a channel
and v represents a value being passed along that channel.

The CSP process a → P initially allows event a to occur and then behave
subsequently as P . The input process c?x → P(x) will accept a value x along
channel c and then behave subsequently as P(x). The output process c!v → P
will output v along channel c and then behave as P . Channels can have any
number of message fields, combination of input and output values. The choice
P 2 Q offers an external choice between processes P and Q whereby the choice
is made by the environment. The choice P u Q offers an internal choice between
processes P and Q whereby the choice is made by the process. The parallel
combination P ‖

A B

Q executes P and Q in parallel. P can perform only events

in A, Q can perform only events in B , and they must simultaneously engage
in events in the intersection of A and B . P \ A operation describes the case
where all participants of all events in A are described in P . All these events are
removed from the interface of the process, since no other processes are required
to engage in them. P ; Q initially executes P . When P successfully terminates,
then control passes to Q . This composition can be replicated over a sequence of
expressions using the form ; x : s@P .

3 Tokeneer: Case Study Introduction

Tokeneer [7] was a successful research project carried out by Altran Praxis and
funded by the National Security Agency (NSA) to develop part of an exist-
ing secure system (the Tokeneer System) to investigate SPARK’s capabilities
to develop high quality and low defect software. The project specifications are
available in the formal language Z, and the open source implementation and
proofs are available in SPARK Ada.

The entire Tokeneer system is a larger system that provides protection to secure
information held on a network of workstations situated in a physically secure
enclave. However, the project and this paper focuses on one part of the system,
Tokeneer ID Station (TIS) subsystem. Based on the available project specifica-
tions [7], we have chosen to model a subset of components of the TIS project
into fUML. The selected components include the main dynamic behaviours of
the system (our work scope), while other (un-modelled) components act as a
data repository. Each component is modelled as a class, and the following class
diagram in Figure 2 shows the relationships between those classes. We do not
formalize the class diagram, and its inclusion is just to illustrate the relationship
between the system’s components.

isOpen : boolean
isLocked : boolean

Door

User
User Panel

Door Controller

isAlarming : boolean

Alarm

controls

1

controlled by

1

provides input to

1receives input from

1..*

can activate

1

activated by 1
accesses controller1

accesses panel1

uses 1

used by 1..*

Fig. 2: TIS Class Diagram

Door : This is the physical enclave’s door that the user opens to access the secure
enclave. It has no intelligent behaviour as it is entirely controlled by the door
controller component. The two main attributes of this component are: isOpen
attribute which indicates the status of the door (opened or closed), and the
isLocked attribute which indicates the status of the door’s latch (locked or un-
locked).
Door Controller : This component controls the door’s latch status (isLocked)
by setting its value based on the incoming signals from the User Panel. It also
manages two timers: the first timer watches if the door is kept closed and un-
locked, and the second timer watches if the door is kept opened and locked.
User : This component models the user behaviours toward the system. He is
responsible for requesting the enclave entry, and opening the door in case it was
successfully unlocked by the User Panel. He is also responsible for closing the
door after accessing the enclave. The system may serve more than one user at
the same time. However, the results in this paper focus on a single user only.
User Panel : This component models the behaviour of the panel with which
the user interfaces to gain access to the enclave. It is responsible for deciding
whether the user is allowed to access the enclave or not.

Alarm : This component holds the status of the alarm (alarming or silent), based
on the setting/resetting by the Door Controller component to the isAlarming
attribute.

In the Tokeneer fUML model all objects (of the above classes) which have in-
teresting behaviour have associated activity diagrams. The Alarm object is a
simple data holder and thus no activity diagram is associated with it. Due to
the space constraints, we just focus on a segment of the Door Controller activity
(depicted in Figure 3), which includes all the described elements in Section 4.

(alarmObj : Alarm, doorObj : Door, selfObj : DoorController, attachedUsers : User [1..*]) DoorControllerActivity

attachedUsers : User

alarmObj : Alarm

selfObj :
DoorController

alarmObj : Alarm

doorObj : Door

doorObj : Door

Accept (doorIsClosed,
timeOutSignal,

unlockLatchSignal)

<<iterative>>

Send
(entryAuthorizedSignal)

«addStructuralFeatureValue»

isAlarming := FALSE

«addStructuralFeatureValue»

isLocked := FALSE

«addStructuralFeatureValue»

isLocked := TRUE

«addStructuralFeatureValue»

isAlarming := FALSE

Send
(timeOutSignal)

«valueSpecification»

Value(FALSE)

«valueSpecification»

Value(FALSE)

«valueSpecification»

Value(TRUE)

«valueSpecification»

Value(FALSE)

Connected to the
rest of the
diagram

Connected to the
rest of the
diagram

latchTimeoutNotExceeded

 [timeOutSignal]

 [doorIsClosed] [unlockLatchSignal]

latchTimeoutExceeded

Fig. 3: Segment of the Door Controller Activity

Initially, the Door Controller sets the isAlarming variable to FALSE, and is-
Locked to TRUE. At this point the Door’s isOpen attribute is TRUE, which
means the door is open and its latch is locked. For that reason the Door Con-
troller starts a timer to watch this suspicious situation. The activity then repre-
sents the two possible scenarios for this timer (timeOutExceeded, or timeOutNo-
tExceeded). If the timer timeouts the Door Controller sends the timeOutSignal
to itself to fire the alarm, otherwise it continues with the normal flow. In both
cases, the activity waits for one of the following signals to arrive: closeDoorSig-
nal, timeOutSignal, or unlockLatchSignal. If the unlockLatchSignal arrives from
the User Panel, the Door Controller sets isLocked to FALSE, and then sends the
entryAuthorizedSignal to all Users’ objects in the system.

4 Modelling fUML Activity Diagrams into CSP

In this section we outline the used mapping rules to formalize Tokeneer fUML
activity diagrams into CSP. Table 1 shows the fUML activity diagram’s elements
and the corresponding CSP representation that reflects the semantic behaviour
for each element. As the automatic transformation (from fUML to CSP) is out of
this paper’s scope, we describe the mapping informally (mapping rules) instead
of formally defining transformation rules.

In the above mapping rules, aIH and bIH represent the instance handler of the
sender and receiver objects respectively. rp1 and rp2 represent the points where
the object (bIH) is waiting to accept the signal instances sig1 and sig1, sig2, or
sig3 respectively.

Mapping between UML activity diagrams and CSP has been addressed several
times in the literature [9, 10]. The novel points of our mapping are as follows:

Rule(1) maps the fUML activity as a parent CSP process that can accept differ-
ent parameters (param1, param2, ..). Within this process we define sub-processes,
each act as a different fUML element within this activity. The within statement
defines the action (sub-process) connected to the initial node (AC1). Rule(2)
and (3) maps the SendSignalAction and AcceptEventAction to the CSP param-
eterized events send and accept respectively. The registerSignals event is used
to let the object activation fills the waiting event accepters list with the allowed
signals to be accepted at this point (registration point). Section 5 describes how
those events synchronize with the object’s buffer process (BUF SYS) to allow
the asynchronous communication between processes (active objects).

The fUML standard supports that the AcceptEventAction handles more than
one signal at a time. When the control flow of the activity reaches this action,
the object waits for any of the defined signals (sig1, sig2, or sig3) to be received.
If any of those signals arrive, the object execution proceeds and the incoming
signal instance is passed to the AcceptEventAction output pin. For that reason,
in Rule(4), we connect the decision node to the action’s output pin to branch the
flow based on the incoming signal. We use the same concept of Rule(3) followed
by an external choice to represent the branching semantic. Rules like (2),(3), and
(4) are not presented in [9, 10] because their focus is not on interaction between
activity diagrams.

Rule(5) maps the combination of the actions: valueSpecificationAction and add-
StructuralFeatureValueAction to two events to allow (for example) the aIH in-
stance handler’s attribute isOpen to be set to FALSE. We represent the decision
node as an internal choice (as in Rule(6)) when the incoming edge to the de-
cision node is a control flow. But we represent it as an external choice (as in
Rule(4)) when the incoming edge is an object flow. Having the decision nodes in
fUML standard allowed for modelling internal decisions which was not possible
using xUML. Rule(7) maps the iterative ExpansionRegion as a CSP sequential

fUML Element CSP Representation

Rule(1): Activity

(param1, param2) P_ACTIVITY

param1

param2

P ACTIVITY (param1, param2) =
let

Activity/Process Body
within AC1

Rule(2): Send Signal Action

Send (sig1)
bIH

bIH

AC1 = send !aIH !bIH !sig1 → ...

Rule(3): Accept Signal Action

Accept(sig1)

AC1 = registerSignals!bIH !rp1 →
accept !bIH !sig1 → ...

Rule(4): Accept Signal Action (*)

Accept(sig1, sig2, sig3)

...

......
 [sig3] [sig1]

 [sig2]

AC1 = registerSignals!bIH !rp2 → (
accept !bIH !sig1 → ...
2

accept !bIH !sig2 → ...
2

accept !bIH !sig3 → ...)

Rule(5): Add Structural Feature
Value Action

«addStructuralFeatureValue»

isOpen := FALSE
aIH

«valueSpecification»

Value(FALSE)

AC1 =
valueSpec!aIH ?value : {FALSE} →
addStFeatureValue!aIH !isOpen!value

→ ...

Rule(6): Decision/Merge Nodes

Action2Action1

 [decision2] [decision1]

DS1 = decision1 → AC1
u
decision2 → AC2

AC1 = ... → MR1
AC2 = ... → MR1
MR1 = ...

Rule(7): Expansion Region

<<iterative>>

Action1

AC1 = ER IT1(< e1, e2, e3 >)
ER IT1(<>) = AC2
ER IT1(seq) =; s : seq@Action1!s →

ER IT1(tail(seq))
AC2 = ...

Table 1: fUML to CSP Mapping Rules

composition which repeats the action(s) inside the region (Action1) with the
number of elements inside the sequence seq.

Our CSP representation does not include all the properties of the fUML activity
diagram elements, as we just focus on the properties in the Tokeneer fUML
model. For example, the formalization of the addStructuralFeatureValueAction
considers the assignment of unordered boolean structural features only.

5 Modelling the fUML Communication Mechanism in
CSP

In Section 2.1 we described how active objects in fUML communicate with each
others asynchronously. In this section we describe the formalization of this com-
munication mechanism by modelling its semantics into CSP. The model avoids
depending on the sequence data structure or Haskell functions, as they lead to a
significant decay in FDR performance during the compilation process. For that
reason, this implementation uses the CSP primitives only (parallel composition,
prefix, etc.). The idea of this implementation came from Michael Goldsmith [11].

B0

B1

B

B2

B

B2

B

B2
…send

acceptA

drop

testA testB testC

rejectA

acceptB

rejectB

acceptC

rejectC

acceptX

rejectX

c1 c2 c3 cN

testX

Fig. 4: The Event Pool as a Controlled Buffer

As shown in Figure 4, the idea is built on representing the event pool as a buffer
with N consecutive nodes. When an object sends a signal to another object
(perform the send event), the signal is placed in the receiver object’s buffer
(event pool) by placing it in the first node (B0), then the signal will move down
automatically until reaching the rightmost node in the buffer. The same will be
repeated for any other incoming signal filling the buffer from right to left. When
the buffer becomes full, the oldest signal in the buffer (placed in the rightmost
node) will be dropped out (drop event) and all the signals will be shifted right
by one node. Signals are moved down as a parameters to the c1, c2, . . . , cN
events. We represent each of those nodes as a CSP process with a simple logic
illustrated in Figure 5 for the first node (B0) and the general node (B).

x dc

e h

g

f

x dc

e h

g

B0(c, d , e, f , g , h) = c?x → B1(x , c, d , e, f , g , h)
B1(x , c, d , e, f , g , h) = d !x → B0(c, d , e, f , g , h)

2 g !x → (e!x → B0(c, d , e, f , g , h)

2 h → B0(c, d , f , e, g , h))

2 c?y → f ?z → d !x → B1(y , c, d , e, f , g , h)

B(c, d , e, g , h) = c?x → B2(x , c, d , e, g , h)
B2(x , c, d , e, g , h) = d !x → B(c, d , e, g , h)

2 g !x → (e!x → B(c, d , e, g , h)

2 h → B2(x , c, d , e, g , h))

Fig. 5: Buffer’s First Node

Figure 6 shows the parallel combination of three nodes forming the event pool
of the Door Controller instance (dIH0) which can hold three signal instances at
a time.

BUF dcIH = ((B0(send , c1, acceptA, drop, testA, rejectA)

‖
{|c1|}

B(c1, c2, acceptB , testB , rejectB))

‖
{|c2,drop|}

B(c2, drop, acceptC , testC , rejectC)) \ {| c1, c2, drop |}

Fig. 6: Three Nodes Controlled Buffer
In previous attempts, we have used the default signals dispatching strategy
(FIFO) for modelling the inter-object communication. However, this revealed
a serious problem when an object receives an unexpected signal (not matched
to one of the waiting event accepters): the object dismisses it directly because
it was removed from its event pool for matching and the fUML standard does
not allow signals to be returned back to the event pool. In many cases the object
will need to accept this dismissed signal after some further actions, resulting in
a fast invalid deadlock. As the fUML standard allows for overriding the default
dispatching strategy, we implemented it by not removing any signal from the
event pool unless it is registered in its waiting event accepters list, to avoid sig-
nals dropping. At the same time, signals are dispatched in chronological order
(i.e. remove the oldest signal from the event pool first) to maintain dispatching
signals in the same order they were sent. To meet this logic, we developed a
controller process (BUF CTRL) that checks nodes one by one from the oldest
(rightmost) to the newest (leftmost) before removing the signal from the event
pool, and if the signal exists in the waiting event accepters list, the process allows
for its acceptance (accept event) otherwise the signal is rejected (reject event)

and the next node is checked. Figure 7 shows our representation of the buffer
controller process (BUF CTRL dIH) for the Door Controller instance (dIH).
The getRegisteredSignals is a mapping function that returns the allowed signal(s)
at a certain registration point (rp). Note that registerSignals event will synchro-
nize with the corresponding event in the translation of the diagram (Rule(3) and
(4)).

BUF CTRL dcIH ({}) = registerSignals!dcIH ?rp →
BUF CTRL dcIH (getRegisteredSignals(dcIH , rp))

BUF CTRL dcIH (EA) = testC?x → if (member(x ,EA)) then
(acceptC !x → BUF CTRL dcIH ({}))
else rejectC →

testB?x → if (member(x ,EA)) then
(acceptB !x → BUF CTRL dcIH ({}))
else rejectB →

testA?x → if (member(x ,EA)) then
(acceptA!x → BUF CTRL dcIH ({}))
else rejectA → BUF CTRL dcIH (EA)

Fig. 7: The Buffer Controller Process of the Door Controller Instance

We depend on the chase compression function to complete the definition. The
main functionality of chase is that it forces FDR to follow the tau’s only during
the transition system analysis (i.e. if there is more than possible branch and tau
is one of them, chase will force FDR to follow the tau branch and neglect the
other branches). If there is more than one tau branch available, chase will make
FDR chooses any one of them arbitrarily. The chase function is not semantics-
preserving, in fact it produces a refinement of the original process. However, here
it produces exactly what is required.

Figure 8 shows how we made use of the chase function by applying it on the
parallel combination between the buffer (BUF dcIH) and the buffer controller
(BUF CTRL dcIH) of the Door Controller instance after hiding the buffer in-
ternal events (test, reject, c, and drop) for all nodes (grouped in aHiddenEvents).
Having those events hidden (tau’s), FDR will follow them causing signals to be
propagated along the nodes whenever a send event happens. The set aSynchEvents
contains the synchronization events: test, reject, and accept for all nodes.

BUF SYS dcIH = chase((BUF dcIH ‖
aSynchEvents

BUF CTRL dcIH ({})) \ aHiddenEvents)

Fig. 8: Buffer System Process of the Door Controller Instance

The described implementation in this section came after several attempts to
model the fUML inter-object communication (semantic variation point). The
previous attempts were suffering from various problems like: quick incorrect
dropping of signals (which leads to an invalid deadlock), heavy CSP scripts that
could not be compiled by FDR, and not maintaining the signals sending order.
Having the Tokeneer fUML model formalized in CSP allowed for evaluating those
attempts before the actual implementation of the system.

6 Corresponding CSP for Tokeneer fUML Model

Applying the mapping rules of Section 4 to the activity diagram shown in Fig-
ure 3 yields the following CSP process in Figure 9.

DOOR CTRL(alarmObj , doorObj , selfObj , attachedUsers) =
let
AC1 = valueSpec!selfObj?value : {FALSE} →

addStFeatureValue!alarmObj !isAlarming !value → AC2
AC2 = valueSpec!selfObj?value : {TRUE} →

addStFeatureValue!doorObj !isLocked !value → DS1

DS1 = latchTimeoutExceeded → AC3 u latchTimeoutNotExceeded → MR1

AC3 = send !selfObj !selfObj !timeOutSignal → MR1
MR1 = registerSignals!selfObj !rp1 → (accept !selfObj !doorIsClosedSignal → ...

2
accept !selfObj !timeOutSignal → ...

2
accept !selfObj !unlockLatchSignal → AC7)

AC7 = valueSpec!selfObj?value : {FALSE} →
addStFeatureValue!alarmObj !isAlarming !value → AC8

AC8 = valueSpec!selfObj?value : {FALSE} →
addStFeatureValue!doorObj !isLocked !value → ER IT1(attachedUsers)

ER IT1(<>) = ...
ER IT1(users) = ; u : users@send !selfObj !u!entryAuthorisedSignal →

ER IT1(tail(users))
within AC1

DOOR CTRL BUF = DOOR CTRL(aIH , dIH , dcIH , uIHS) ‖
aAdcIH aBdcIH

BUF SYS dcIH

Fig. 9: The Corresponding CSP Process for the Door Controller Activity Segment

The processes AC1, AC2, DS1, AC7, and AC8 are direct implementation to the
mapping rules described in Section 4 and they are not involved in the asyn-
chronous communication between the active objects.

The process DOOR CTRL BUF represents the parallel combination between
the DOOR CTRL process (represents the Door Controller active object) and its
object activation represented formally by the BUF SYS dcIH process. When
the send event happens at AC3 it synchronizes with the send event in the
BUF dcIH to push the timeOutSignal inside the Door Controller event pool
(controlled buffer). After that, the registerSignals at MR1 happens which syn-
chronizes with the registerSignals event in the BUF CTRL dcIH process, which
in turns fills the waiting event accepters set (EA) with the allowed signals
at this point (doorIsOpenSignal, timeOutSignal, and unLockLatchSignal). At
this point, the accept event in MR1 synchronizes with the accept event in the
BUF CTRL dcIH process which will happen only if the accepted signal is mem-
ber of EA. The set aAdcIH includes all the alphabets of the Door Controller pro-
cess (DOOR CTRL). The set aBdcIH includes the accept and registerSignals
events for all signals the Door Controller accepts, plus the send events for any
other object sends a signal to the Door Controller process.

7 Deadlock Checking

After formalizing the Tokeneer fUML model into CSP, it becomes a direct pro-
cess to check the behaviour of the model using FDR. In this paper we focus
on checking the deadlock which can happen if all the objects in the system are
waiting to accept signals from each others. FDR has the capability of checking
such property by determining whether the process (SYSTEM) can reach a state
in which no further actions are possible, and if a deadlock is found, FDR gen-
erates the traces (counter example) that led to this deadlock. Figure 10 shows
the main process (SYSTEM) which represents the whole system as a parallel
combination between all components (for the space we are including here the
Door Controller and the User Panel components only).

SYSTEM = USER PANEL BUF ‖
∪(aAupIH ,aBupIH) ∪(aAdcIH ,aBdcIH)

DOOR CTRL BUF

Fig. 10: The SYSTEM Process

Tokeneer Deadlock Checking
We managed to check for deadlock in the Tokeneer model for the SYSTEM pro-
cess using FDR. The system includes four interacting processes (Door, Door
Controller, User, and User Panel), and each process has its own event pool
(BUF SYS) with 10 slots. FDR managed to compile the CSP script (more
than 600 lines) in less than a second, and the model checking reported several
deadlock scenarios (counter examples). Figure 11 shows part of one of those sce-

narios represented visually as a sequence diagram to simplify understanding the
problem.

 : Door Controller

Waiting for unlockLatchSignal
from the User Panel (i.e.

doorIsOpen will be kept in the
event pool forever)

Door Controller starts a
timer to watch if the door

 kept closed and
unlocked

Timer expired

 : User Panel

User Panel completed its
 job and waiting for new
user to request entry

 : User

Waiting for
entryAuthorized signal

 from the Door
Controller

 : Door

The Door is now Open and
waiting for closeDoor
signal from the User

unlockingDoorComplete 1:

lockLatch4:

doorUnlocked2:

reset3:

openDoor5:

doorIsOpen6:

Fig. 11: Sample Scenario Caused a Deadlock
It is obvious that eventually all the objects are waiting for each others caus-
ing deadlock. This happens because the user takes a long time (more than the
timer period) to open the door after getting the permission to enter from the
User Panel. This deadlock was only revealed once we had implemented the asyn-
chronous communication mechanism of Section 5. During experiments with more
primitive communication mechanisms, artificial deadlocks arose because of the
inability to process signals. We could not execute the model sufficiently in order
to reach the state of Figure 11 because signals were being dropped incorrectly.

8 Related Work
There is a significant body of work relating transforming UML diagrams into
formal methods. Among these attempts, some of them, e.g. [12–15], focus on for-
malizing the standard UML diagrams into: Z, Promela, B, or CSP (Constraint
Satisfaction Problem). The authors in [12, 13] focus on checking consistency be-
tween UML diagrams, whereas the authors in [14, 16] check refinement between
UML models. Translation of UML to CSP has been included in [17, 18] which
describe how to check the model dynamic behaviours and visualize the formal
language into a graphical notation. Our work is more closely compared to [9,
10] and [19] which consider the formalization of activity diagrams into CSP, and
Petri nets respectively. The authors in [19] focus on checking deadlocks in the
UML models, which is aligned to our work. However, none of them addressed
modelling the asynchronous communication between objects formally.

Formally representing the asynchronous communication between objects has
been discussed in a limited way in [20, 21, 5] where part of the xUML [4] was
formalized, which specify a way of communication different from fUML. On the

other hand, [22] simulated the asynchronous message passing by synchronous
communication between processes modelling objects and their message queues.

To our knowledge, our work is the first attempt to formalize the fUML standard,
and formally represents the asynchronous communication between its active ob-
jects. This formal representation provided a formal way to evaluate different
implementations (interpretations) of the signals dispatching mechanism (one of
the semantic variation points in the fUML standard).

9 Conclusion and Future Work

An approach to model check fUML activity diagrams by representing them in
CSP has been presented in this paper. The approach allowed for modelling the
inter-object communication (fUML standard semantic variation point) in dif-
ferent ways until reaching a successful implementation. The approach has suc-
cessfully demonstrated that deadlocks can be detected automatically. Using this
approach, the analysis of Tokeneer fUML model CSP representation using FDR,
has detected several deadlock scenarios. This means that the model contains
some errors, which need to be resolved in the view of the asynchronous commu-
nication between objects.

Using the implementation of the communication mechanism described in Sec-
tion 5, FDR succeeded in compiling the CSP script in less than a second for a
10 slots event pool for each object. Also FDR did not report any dropping of
signals using this implementation. However, we do expect signals dropping if the
model gets more complicated (more events), which means identifying the right
event pool size is very critical to keep the system alive. Currently we do not have
a particular methodology to identify the correct object’s event pool size.

fUML syntax allowed to model all aspects we were interested within Tokeneer.
However, we recommend that the value pin be included in the fUML subset, as
its exclusion led to a complicated model full of the valueSpecification action.

Currently the transformation from fUML to CSP is done manually based on the
mapping rules. In the future, we are intending to automate this process using
one of the MDA approaches and making use of the available fUML and CSP
meta-models. When we tried to check one of Tokeneer safety specifications we
faced a state explosion problem, because FDR generates exponential increasing
states when it does the verification. For that reason we may need to represent
the fUML model into another formal language and use theorem provers to check
such properties.

Acknowledgments Thanks to Michael Goldsmith and Philip Armstrong for
discussion about implementing the buffer in CSP. Thanks also to Ian Wilkie for
his helpful information about fUML.

References

1. OMG: Semantics of a foundational subset for executable UML models (fUML) -
(Beta 2), http://www.omg.org/spec/fuml/1.0 (November 2009)

2. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley
(1999)

3. Formal Systems Oxford: FDR 2.83 manual (2007)
4. Mellor, S.J., Balcer, M.J.: Executable UML, A Foundation for Model-Driven Ar-

chitecture. Addison-Wesley (2002)
5. Turner, E., Treharne, H., Schneider, S., Evans, N.: Automatic generation of CSP‖B

skeletons from xUML models. In: Proceedings of the 5th international colloquium
on Theoretical Aspects of Computing, Berlin, Springer-Verlag (2008) 364–379

6. Wilkie, I., King, A., Clarke, M., Weaver, C., Raistrick, C., Francis, P.: UML ASL
Reference Guide (ASL language level 2.5). Kennedy Carter Ltd. (2003)

7. Cooper, D., Barnes, J.: Tokeneer ID station: System requirements specification.
Technical Report S.P1229.41.1, Praxis High Integrity Systems (August 2008)

8. OMG: Unified modeling language (UML) superstructure (version 2.2) (2009)
9. Xu, D., Philbert, N., Liu, Z., Liu, W.: Towards formalizing UML activity diagrams

in CSP. In: ISCSCT ’08: Proceedings of the 2008 International Symposium on
Computer Science and Computational Technology, Washington, DC, USA, IEEE
Computer Society (2008) 450–453

10. Xu, D., Miao, H., Philbert, N.: Model checking UML activity diagrams in FDR.
In: ICIS ’09: Proceedings of the 2009 Eigth IEEE/ACIS International Conference
on Computer and Information Science, Washington, DC, USA, IEEE Computer
Society (2009) 1035–1040

11. Goldsmith, M., Armstrong, P.: Personal communication (February 2010)
12. Amalio, N., Stepney, S., Polack, F.: Formal proof from UML models. In: ICFEM

2004, volume 3308 of LNCS, Springer (2004) 418–433
13. Zhao, X., Long, Q., Qiu, Z.: Model checking dynamic UML consistency. In: ICFEM.

(2006) 440–459
14. Ammar, B.B., Bhiri, M.T., Souquières, J.: Incremental development of UML spec-

ifications using operation refinements. ISSE 4(3) (2008) 259–266
15. Cabot, J., Clarisó, R., Riera, D.: Verifying UML/OCL operation contracts. In:

IFM ’09: Proceedings of the 7th International Conference on Integrated Formal
Methods, Berlin, Heidelberg, Springer-Verlag (2009) 40–55

16. Pons, C.: Heuristics on the definition of UML refinement patterns. In: 32nd Int.
Conf. on Current Trends in Theory and Practice of Computer Science. SOFSEM.
Czech Republic, Springer (2006) 461–470

17. Ng, M.Y., Butler, M.J.: Tool support for visualizing CSP in UML. In: ICFEM ’02:
Proceedings of the 4th International Conference on Formal Engineering Methods,
London, UK, Springer-Verlag (2002) 287–298

18. Ng, M.Y., Butler, M.: Towards formalizing UML state diagrams in CSP. In Cerone,
A., Lindsay, P., eds.: 1st IEEE International Conference on Software Engineering
and Formal Methods, IEEE Computer Society (2003) 138–147

19. Thierry-Mieg, Y., Hillah, L.M.: UML behavioral consistency checking using in-
stantiable Petri nets. ISSE 4(3) (2008) 293–300

20. Hansen, H.H., Ketema, J., Luttik, B., Mousavi, M., van de Pol, J.: Towards model
checking Executable UML specifications in mCRL2. ISSE (2010) 83–90

21. Graw, G., Herrmann, P.: Transformation and verification of Executable UML
models. Electron. Notes Theor. Comput. Sci. 101 (2004) 3–24

22. Xie, F., Levin, V., Browne, J.C.: Model checking for an executable subset of UML.
In: ASE ’01: Proceedings of the 16th IEEE international conference on Automated
software engineering, Washington, DC, USA, IEEE Computer Society (2001) 333

