Skip to main content

On the Small Cycle Transversal of Planar Graphs

  • Conference paper
Book cover Graph Theoretic Concepts in Computer Science (WG 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6410))

Included in the following conference series:

  • 881 Accesses

Abstract

We consider the problem of finding a k-edge transversal set that intersects all (simple) cycles of length at most s in a planar graph, where s ≥ 3 is a constant. This problem, referred to as Small Cycle Transversal, is known to be NP-complete. We present a polynomial-time algorithm that computes a kernel of size 36 s 3 k for Small Cycle Transversal. In order to achieve this kernel, we extend the region decomposition technique of Alber et al. [J. ACM, 2004 ] by considering a unique region decomposition that is defined by shortest paths. Our kernel size is an exponential improvement in terms of s over the kernel size obtained under the meta-kernelization framework by Bodlaender et al. [FOCS, 2009 ].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Bollobás, B., Krivelevich, M., Sudakov, B.: Maximum cuts and judicious partitions in graphs without short cycles. J. Comb. Theory Ser. B 88(2), 329–346 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bley, A., Grötschel, M., Wessly, R.: Design of broadband virtual private networks: Model and heuristics for the B-WiN. In: Robust Communication Networks: Interconnection and Survivability. DIMACS Series, vol. 53, pp. 1–16. AMS, Providence (1998)

    Google Scholar 

  4. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: FOCS CoRR, abs/0904.0727 (2009)

    Google Scholar 

  5. Brügmann, D., Komusiewicz, C., Moser, H.: On generating triangle-free graphs. Electronic Notes in Discrete Mathematics 32, 51–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  7. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  8. Guo, J., Niedermeier, R.: Linear problem kernels for NP-hard problems on planar graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Hoory, S.: The size of bipartite graphs with a given girth. J. Comb. Theory Ser. B 86(2), 215–220 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kortsarz, G., Langberg, M., Nutov, Z.: Approximating maximum subgraphs without short cycles. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 118–131. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Krasikov, I., Noble, S.D.: Finding next-to-shortest paths in a graph. Inf. Process. Lett. 92(3), 117–119 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pevzner, P., Tang, H., Tesler, G.: De novo repeat classification and fragment assembly. Genome Research 14(9), 1786–1796 (2004)

    Article  Google Scholar 

  13. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Timmons, C.: Star coloring high girth planar graphs. The Electronic Journal of Combinatorics 15(R124) (2008)

    Google Scholar 

  15. Xia, G., Zhang, Y.: On the small cycle transversal of planar graphs. Technical Report, http://www.cs.lafayette.edu/~gexia/research/sctrans.pdf

  16. Xia, G., Zhang, Y.: Kernelization for cycle transversal problems. In: AAIM, pp. 293–303 (2010)

    Google Scholar 

  17. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC 1978, pp. 253–264 (1978)

    Google Scholar 

  18. Zhu, J., Bu, Y.: Equitable list colorings of planar graphs without short cycles. Theor. Comput. Sci. 407(1-3), 21–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, G., Zhang, Y. (2010). On the Small Cycle Transversal of Planar Graphs. In: Thilikos, D.M. (eds) Graph Theoretic Concepts in Computer Science. WG 2010. Lecture Notes in Computer Science, vol 6410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16926-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16926-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16925-0

  • Online ISBN: 978-3-642-16926-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics