On the boolean-width of a graph: structure and applications*

I. Adler!, B.-M. Bui-Xuan', Y. Rabinovich?, G. Renault!, J. A. Telle!, and M. Vatshelle!

! Department of Informatics, University of Bergen, Norway
2 Department of Computer Science, Haifa University, Israel

Abstract Boolean-width is a recently introduced graph invariant. Similar to tree-width, it mea-
sures the structural complexity of graphs. Given any graph G and a decomposition of G of boolean-
width k, we give algorithms solving a large class of vertex subset and vertex partitioning problems
in time O* (20(k2)) . We relate the boolean-width of a graph to its branch-width and to the boolean-
width of its incidence graph. For this we use a constructive proof method that also allows much
simpler proofs of similar results on rank-width by Oum (JGT 2008). For a random graph on n
vertices we show that almost surely its boolean-width is ©(log?n) — setting boolean-width apart
from other graph invariants — and it is easy to find a decomposition witnessing this. Combining
our results gives algorithms that on input a random graph on n vertices will solve a large class of
vertex subset and vertex partitioning problems in quasi-polynomial time O*(QO(log4 Y.

1 Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width and rank-width, have
many applications in the field of graph algorithms and especially in FPT algorithmics, see
e.g. Downey and Fellows [7], Flum and Grohe [8], and Hlinény et al. [11]. When comparing
such parameters, we should consider the values of the parameters on various graph classes, the
runtime of algorithms for finding a decomposition, the classes of problems that can be solved
by dynamic programming along such a decomposition, and the runtime of these algorithms.
Recently, Bui-Xuan et al. [3] introduced a new width parameter of graphs called boolean-width.
While rank-width is based on the number of GF (2)-sums (1 + 1 = 0) of rows of adjacency
matrices, boolean-width is based on the number of Boolean sums of rows (1+1 = 1). Although
is it open whether computing boolean-width is FPT, the number of Boolean sums of rows for a
matrix is easy to compute in FPT time by an incremental approach. Surprisingly, this number
is the same for the matrix and its transpose.

In this paper we study the structure of graphs of bounded boolean-width and we give
new algorithmic applications. Given a decomposition tree of boolean-width k of any graph,
we give algorithms solving a large class of vertex subset and vertex partitioning problems in
time O*(QO(kQ)). Then, we show that the boolean-width of G is at most its branch-width. For
a random graph on n vertices we show that almost surely its boolean-width is 9(log2 n), and
it is easy to find the corresponding decomposition tree. Combining our results gives algorithms
that on input a random graph on n vertices will solve a large class of vertex subset and vertex
partitioning problems in quasi-polynomial time O*(20(1°g4 ”)).

It is well-known that for any class of graphs tree-width is bounded if and only if branch-
width is bounded: we say the two parameters are equivalent. Likewise, clique-width, rank-width,
and boolean-width are equivalent. For any graph class we have only three possibilities: either
all five parameters are bounded (e.g. for trees) or none of them are bounded (e.g. for grids) or
only clique-width, rank-width and boolean-width are bounded (e.g. for cliques). Note that the
information in Figure 1 allows for a finer comparison. Let us say that parameter P is polylog
on a class of graphs C' if the value of P for any graph G in C is polylogarithmic in the size of
G. Then if P is polylog on C any algorithm with FPT runtime single exponential in parameter
P runs in quasi-polynomial time on input a graph in C'. From Figure 1 we see that if any

* Supported by the Norwegian Research Council, projects PARALGO and Graph Searching.

tree-width |branch-width| clique-width rank-width boolean-width
O*(21458tw)[21] O*(22bw) [6] O*(24cw) [16] O*(20475rw2+0(rw)) [2’9] O*(23boolw) [3]

MD

2]

Figure 1. Upper bounds tying parameters tw =tree-width, bw =branch-width, cw=clique-width, rw=rank-width
and boolw=boolean-width, and runtimes achievable for Minimum Dominating Set using various parameters. In
the upper part of the figure, an arrow from P to Q labelled f(k) means that any class of graphs having parameter
P at most k will have parameter QQ at most f(k), and co means that no such upper bound can be shown. Except
for the labels in a box the bounds are known to be tight, meaning that there is a class of graphs for which the
bound is £2(f(k)). For the two boxes containing labels 2* and 257!, a 2(2¥/?) bound is known [4]. For the
one containing label k? a 2(k) bound is known [3]. The arrows bw — boolw and tw — boolw are shown in
Theorem 3 of this paper.

of tree-width, branch-width, clique-width or rank-width is polylog on a class of graphs then
so is boolean-width, while the random graphs give an example of a class where boolean-width
is polylog but none of the other parameters are. An even finer comparison can be made by
looking at the bounds between the parameters in combination with the runtimes achievable for
a particular problem, as done for Minimum Dominating Set (MDS) in Figure 1. In this way,
note that for MDS, and in fact all problems adressed in Section 3, boolean-width compares well
to the other parameters. Finally, note that while defining a parameter with an artificially low
value, say by taking logarithms, would favor the comparison with other parameters in the upper
part of Figure 1, one would pay for it in the runtime of the algorithms, say by going from single
exponential O*(2P°(*)) to double exponential O*(22p0ly(k)).

The paper is organized as follows. In Section 2 we define in a common framework branch-
width, rank-width, and boolean-width. In Section 3 we give algorithms for a large class of
NP-hard vertex subset and vertex partitioning problems, namely (o, p)-problems and D,-
problems [22]. These are related to domination, independence and homomorphism, including
Max or Min Perfect Code, Max or Min Independent Dominating Set, Min k-Dominating Set,
Max Induced k-Regular Subgraph, Max Induced k-Bounded Degree Subgraph, H-Coloring,
H-Homomorphism, H-Covering, H-Partial Covering. Algorithms parameterized by either the
tree-width of the input graph, or by its clique-width, have already been given for this class of
problems [22,10], recently improved by van Rooij et al. [21]. The runtime achieved by these
algorithms are O*(29(t)) and O*(22pozy(cw>). Having small boolean-width is witnessed by a de-
composition of the graph into cuts with few different unions of neighborhoods across the cut.
This makes the decomposition natural for fast dynamic programming to solve problems, like Max
Independent Set, where vertex sets having the same neighborhoods can be treated as equiva-
lent [3]. Surprisingly, in this paper we extend such an observation to the much larger class of
vertex subset and vertex partitioning problems. Several new techniques are introduced in order
to achieve this and the runtime of these algorithms is O*(Qo(bwlwg)), which then can also be
interpreted as O*(20(**)) and O*(ZO(T“’AI)) by using the relationships in Figure 1, improving
the O*(22pozy(cw)) runtime in [10].

In Section 4 we relate boolean-width to branch-width. We prove for every graph G with
bw(G) # 0 that boolw(G) < bw(G). For the proof we develop a general method of construc-
tive manipulations of the decompositions, which also allows a simplified proof of a theorem by
Oum [19] showing that rw(G) < bw(G) (unless E(G) # () and no two edges of G are adjacent).

While Oum’s proof uses deep results from matroid theory, our argument avoids matroid theory
and is based on constructive manipulations of the decompositions, giving a good understanding
of the connections between the graph parameters. Kanté [13] gave a constructive proof showing
that the rank-width of a graph is at most 4 times its tree-width plus 2. We improve this result.

In Section 5 we show that a random graph on n vertices almost surely has boolean-width
8(log2 n), and it is easy to find the corresponding decomposition tree. This contrasts sharply
with a series of negative results establishing that almost surely a random graph on n vertices
has tree-width and branch-width [15], clique-width [12] and rank-width [17] all in ©(n). The
importance of this result is possibly not in the random graphs themselves, but in the indication
that boolean-width is sometimes — actually, quite often — much smaller than all the other param-
eters, and therefore potentially very useful. Our result also implies the following: any problem
solvable by dynamic programming in time O*(2p°ly(k)) given a decomposition of boolean-width
k, can be solved in quasi-polynomial time on input a random graph (where we do not need a
decomposition as part of input). Such problems include Minimum Dominating Set and Maxi-
mum Independent Set which can be solved in time O(n(n + 23¥k)) [3]. Moreover, combining
our results from Sections 3 and 5 we get an algorithm that given a random graph on n vertices,
solves (o, p)-problems and Dg-problems in quasi-polynomial time O"‘(2O(10g4).

Throughout the paper, missing proofs are given in the appendix.

2 Framework

In this paper, graphs are loopless simple undirected graphs. Let G be a graph with vertex set
V(G) and edge set E(G). For a vertex v € V(G) let N(v) be the set of all neighbours of v
in . We extend this to subsets X C V(G) by letting N(X) := (J,cx N(v). For a tree T we
denote the set of leaves by L(T'). A tree is subcubic if every vertex has degree either 1 or 3.

Let A be a finite set. For a subset X C A let X := A\ X. Let f: 24 — R be a sym-
metric set function, i.e. f satisfies f(X) = f(X) for all X C A. A decomposition tree of
f (on A) is a pair (7T,9), where T is a subcubic tree and ¢: L(T) — A is a bijection.
Each edge e € E(T) yields a partition P. of A, induced by the leaf labels of the two trees
we get by removing e from T': if 77 and T denote the two components of T — e, then
P. := (6(L(Ty) N L(T)),8(L(Tz) N L(T))). We extend the domain of f to edges e of T by
letting f(e) := f(X) for P, = (X, X). This is well-defined because f is symmetric. The f-
width of a decomposition tree (T',9) is f-w(T,0) := max{f(e) | e € E(T)}. The width of f
is width(f) := min{f-w(T,0) | (T,0) decomposition tree of f}. If |A] < 1, then f has no
decomposition tree and we let width(f) := f(A).

We now define branch-width of a graph. For a graph G and a subset X C E(G) let

A(X) :={v € V(G) | v is incident to both an edge from X and from F(G)\ X}

denote the border of X. We define cut-bwg := cut-bw: 28(%) — N as cut-bw(X) := |9(X)|.
Clearly, cut-bw is symmetric. The branch-width of G is defined as bw(G) := width(cut-bw).

For subsets X,Y C V(G) let M(x yy denote the X x Y -submatrix of the adjacency matrix
of G. Let A denote the symmetric difference of sets: AAB = (A\ B) U (B \ A). We define
cut-rkg := cut-rk: 2V(G) N as

cut-rk(X) :=log, {B C X | 3A C X with B= /\ N(v)n X} =rk(Mx %)),
vEA

where rk(M(Xy)) denotes the GF (2)-rank of My 5. Then the rank-width of G is rw(G) :=
width(cut-rk).

(@)

For boolean-width we define cut-bools := cut-bool: 2V () - R as

cut-bool(X) := log, ‘{B cX ‘ JA C X with B= N(A) HY}’ .

Surprisingly, the function cut-bool is symmetric [14, Theorem 1.2.3]. The boolean-width of a
graph G is boolw(G) := width(cut-bool). Let us give an alternative view on boolean-width.
Let R(Mx,y)) denote the set of all vectors spanned by the rows of M(x yy by taking Boolean

sums, i.e. 1 +1=1.1It is easy to see that cut-bool(X) = log, ‘R(M(Xy))} .

3 Vertex subset and vertex partitioning problems

Given a graph G together with a decomposition tree of cut-bool of width boolw, in this section
we give algorithms with runtime O*(2O(b0°l“’2)) solving a large class of problems, the so-called
(0, p) vertex subset and D, vertex partitioning problems as defined in [22]. Before coming to the
formal definition, let us give a general discussion about these problems and the graph parameters
we are addressing.

Firstly, these are problems expressible in MSO logic and it follows from Courcelle’s Theo-
rem [5] that they belong to FPT when parameterized by either the tree-width, branch-width,
clique-width, rank-width or boolean-width of the graph, when an appropriate decomposition is
also given in the input. However, applying Courcelle’s Theorem can only be seen as a theoret-
ical result for deciding the complexity class, since the runtime contains a highly exponential
factor (tower of powers). This results in several papers aiming at the design of algorithms
having the lowest dependency on the parameters [22,10,21], originally done for tree-width and
clique-width, but having an implication to the other parameters as well, e.g., by using the rela-
tionships in Figure 1 in a straightforward manner. Also, these are well-behaved problems when
parameterized by tree-width tw, namely there are O*(2O(t“’)) algorithms solving the problem
if a tree decomposition of width tw is given [22], with the fastest known for (o, p)-problems
being O*((d(c) + d(p) + 2)*) [21], where d(o) and d(p) are problem specific constants (see
below). This is not the same situation for clique-width, where until now the best runtime con-
tains a O*(22poly(cw>) double exponential factor [10]. Finally, for rank-width and boolean-width,
no specific algorithm is known so far other than a direct translation of the algorithm in [10]
using Figure 1, which then results in a runtime containing a triple exponential factor in the
parameter. The algorithms we give in this section are the first having a runtime with single
exponential dependency in the boolean-width, and hence also single exponential in rank-width
and clique-width. We now define formally this class of problems.

Definition 1. Let ¢ and p be finite or co-finite subsets of natural numbers. A subset X of
vertices of a graph G is a sigma-rho set, or simply (o, p)-set, of G if

cifvelX,

Vo € V(G) : [N(v)NX| € {pifUEV(G)\X-

The vertex subset problems consist of finding the size of a minimum or maximum (o, p)-
set in G. Several NP-hard problems are expressible in this framework, e.g., Max Independent
Set({0}, N), Min Dominating Set(N, N\ {0}), Max Strong Stable Set({0}, {0,1}), Max or
Min Perfect Code({0}, {1}), Also if we let M}, = {0,1,2,...k} then Min k-Dominating Set(N,
N\ M), Max Induced k-Regular Subgraph({k}, N) (see [22] for further details and a more
complete list). This framework is extendible to problems asking for a partition of V(G) into ¢
classes, with each class satisfying a certain (o, p)-property:

Definition 2. A degree constraint matrix D, is a ¢ by ¢ matrix with entries being finite or
co-finite subsets of natural numbers. A D,-partition in a graph G is a partition {Vi, Vs, ...,V }
of V(G) such that for 1 <4,j < g we have Yv € V; : [N (v) NV}| € Dgli, j].

The vertex partitioning problems for which we give algorithms in this paper consist of de-
ciding if G has a D, partition, the so-called 3D, problem. NP-hard problems fitting into
this framework include e.g. for any fixed graph H the problems known as H-Coloring or H -
Homomorphism (with g¢-Coloring being K, -Coloring), H-Covering, H-Partial Covering, and
in general the question of deciding if a graph has a partition into g (o, p)-sets [22].

We focus on algorithms for the vertex subset problems. Let a graph G and a decomposition
tree (T,6) of cut-bool be given as input. Our algorithm will follow a bottom-up dynamic
programming approach: subdivide an arbitrary edge of T to obtain a root r, and denote by T;.
the resulting rooted tree. With each node w of T, we associate a table data structure Tab,,,
that will store optimal solutions to subproblems related to V,,, the set of vertices of G mapped
to the leaves of the subtree of T, rooted at w. Each index of the table will be associated with
a certain class of equivalent subproblems that we need to define depending on the problem on
which we are focusing.

Let d(N) = 0. For every finite or co-finite set ¢ C N, let d(p) = 1 + min{mazzenz : x €
wymazzen® : x ¢ p}. We denote by d(o,p), or simply by d when it appears clearly in the
context that o and p are involved, the value d = d(o, p) = maz{d(c),d(p)}. Note that when
checking if a subset A of vertices is a (o, p)-set, as in Definition 1, it suffices to count the
number of neighbors up to d that a vertex has in A. This is the key to getting fast algorithms
and motivates the following equivalence relation.

Definition 3 (d-neighbor equivalence). Let G be a graph and A C V(G). Two vertex
subsets X C A and X' C A are d-neighbor equivalent w.r.t. A, denoted by X =% X', if
YVoeA: (INw)NX| = [Nw)NX'|)V(INw)NnX|>d A [Nw)nX'| >d).

We now depict the entries of the table data structure Tab,, . Roughly, we aim at solving the
vertex subset problems using one d-neighbor equivalence class per entry in Tab,,. For this, we
first define a canonical representative for every d-neighbor equivalence class.

Lemma 1. Let G be a graph and A C V(G). Then, for every X C A, there is R C A such
that R =% X and |R| < d-cut-bool(A). Moreover, the number of equivalence classes of =% is
at most Qd-cut—bool(A)2)

Proof. We start with the first part namely bounding the size of the minimal members. Let
R = X, go through all vertices z € X and delete x from R if R\ {z} =% X. Notice that
RCX and R Efg X and hence fulfill two of the requirements.

We then know that Vo € R 3y € N(z)\A : |[N(y)NX| < d, this since otherwise R\{z} =% X .
We build a set S as follows:
Let S =0, R = R. While you can find a pair * € R,y € A such that |[N(y) N R'| < d and
x € N(y). Remove N(y) from R, add = to S.

Note that all the x’s and ¥’s chosen are different since you remove the neighborhood of y from
R’ and that you can always find such a set unless R’ = (). Therefore we know |S| > | R|/d since we
remove at most d nodes in each step. Any of the 2!5! combinations of elements from S will form

a unique neighborhood. Therefore, we get from definition cut-bool(A) = cut-bool(A4) > |S].
Since |S| > |R|/d, R fulfills the last requirement.

To bound the number of equivalence classes we know from the previous arguments that we
only need to find the equivalence classes among the subsets of A of size at most d-cut-bool(A4).
Let H be obtained from the bipartite subgraph of G with color classes A, A after doing twin
contraction of all twins and adding an isolated vertex to each color class unless there already is
one. We know that every node of V(H) N A has a unique neighborhood, hence |V (H) N A| <
geut-bool(4) ~ Apy subset of A is a multiset of |V (H) N A, and a trivial bound on number of
multisets of |V (H) N A| with size d - cut-bool(A) gives us: number of equivalence classes less
than or equal to gd-cut-bool(4)? O

We now define the canonical representative canﬁl/w (X) of every subset X C V,,, and the

canonical representative canff—(Y) of every subset Y C V,,. For simplicity we define this

for V,, only, but the definition can be used for V,, as well, since everything we say about
X C V, canfl/w (X) and E“""/w will hold also for can?/—(Y), Y C V, and E%. Canonical
representatives are to be used for indexing the table TZL)bw at node w of the tree T, . Three
properties will be required. Firstly, if X Efl/w X', then we must have canﬁl,w (X) = canii/w (X").
Secondly, given (X,Y), we should have a fast routine that outputs a pointer to the entry
Taby[can{, (X)][canf/—w(Y)}. Thirdly, we should have a list whose elements can be used as en-
tries of the table, i.e. a list containing all canonical representatives w.r.t. E%l/w. The following
definition trivially fulfills the first requirement.

Definition 4. We assume that a total ordering of the vertices of V(G) is given. For every
X CV,, the canonical representative canii,w (X) is defined as the lexicographically smallest set

R C V,, such that: |R| is minimized and R ={, X.

Definition 5. Let G be a graph, A C V(G), and ¢ C N. For X C V(G), we say that X p-
dominates A if Vo € A: [N(v)NX| € p. For X C A, Y C A, wesay that (X,Y) o, p-dominates
Aif (XUY) o-dominates X and (X UY) p-dominates A\ X.

Definition 6. Let opt stand for either function max or function min, depending on whether
we are looking for a maximum or minimum (o, p)-set, respectively. For every node w of T, for
X CVyand Y CV,,let Ry = can?/w (X) and Ry = can? (Y). We define the contents of

Vaw
Tab,[Rx][Ry] as:

. optscv, {|S]: S = X and (S,Y) o, p-dominates V,,},
Taby|Rx][Ry] 0 if no such set S exists and opt = maz,
400 if no such set .S exists and opt = min.

Lemma 2. For every node w of T, a list containing all canonical representatives w.r.t. Eﬁl/w

can be output in time O(m + d - cut-bool(V,,) - 22d-cut-bool(Vuy)? +eut-bool(Vu)) - For epery subset
X C Vi, a pointer to cany, (X) in that list is found in time O(|X] - geut-bool(Vu))

Proof. Let H be obtained from the bipartite subgraph of G with color classes A, A after doing
twin contraction of all twins and and adding an isolated vertex to each color class unless there
already is one. This can be computed in O(|E(G)|) time [2] from the so-called external module
partition defined therein. We know from the proof of Lemma 1 that |V (H)NV,,| < 2¢ut-bool(Vu),
Combining Lemma 1 with the fact that a canonical representative is chosen among the sets of
minimal size belonging to that equivalence class, we know that the size of any representative is
no more than d - cut-bool(V,,). Knowing this we see that it is possible to loop through all sets
of size less than or equal to the largest representative.

A list C will be used in order to store the canonical representatives. We will later want to
access T'ab, [can“ifw (X)], so in the list C' we will store pairs, one being the set of vertices that
actually appear in can{l/w (X), and the other being a certain index. And we make one big table
M indexed by all subsets of size at most d - cut-bool(V,,). For each entry in M we will store
a pointer its representative in C'. So given a set X : |X| < d - cut-bool(V,,), M[X] will return
both the canonical representative and its index. To check if two sets X and Y are equivalent
we find their neighborhoods and see if they are equal up to d neighbors. Hence it can be done
in O((|X| + |Y])2¢eut-bool(Ve)) time.

We can compute list C' as follows. Set index = 0. We first loop over all sets X of size at
most d-cut-bool(V,,). To make sure we find the representatives as described in the definition of
canonical representatives, we loop over smaller sets first, and in lexicographically order among

7

those with same size. Then we loop over all sets R € C' and check if X =% R, if so M[X] points
to R.If no R € C is equivalent to X, add X,index to C, increase index and M[X] points to
X . In total this becomes O(m + 2d'°“t'b°°1(Vw)22d'°“t'b°°1(Vw)22d-cut—bool(Vw))2C“t'b°°1(Vw)) =
O(m + 22d-cut—bool(Vw)2+cut—bool(Vw)d . cut—bool(Vw)) time.

Finally, we compute can{l/w (X) as follows. Let X’ = X first go through all vertices = € X
and delete = from X' if X'\ {z} =} X. As we showed in proof of Lemma 1 we can now
assume |X'| < d-cut-bool(V,,). Now we look up in M and find a pointer to both the canonical
representative and the index. This means canfl/w (X) can be computed in O(|X|2¢ut-bool(Vu))
time. O

Note that at the root 7 of T, the value of Tab,[X][0] (for all X C V(G)) would be exactly
equal to the size of a maximum, resp. minimum, (o, p)-set of G (cf. E% has only one equivalence
class). For initialization, the value of every entry of T'ab,, will be set to 400 or —oco depending
on whether we are solving a minimization or maximization problem, respectively. For a leaf [of
T,., we perform a brute-force update: let A = {I} and B = A, for every canonical representative
R w.r.t. E%, we set:

— If IN(I) " R| € o then Tab[A][R] = 1.
— If IN(I) N R| € p then Tab;[0][R] = 0.

For a node w of T, with children a and b, the algorithm performs the following steps. For

every canonical representative Ry w.r.t. E?/—, for every canonical representative R, w.r.t. E{l/a,
w

and for every canonical representative R w.r.t. E“i/ , do:
b

— Compute R, = can“i/w (RyURy), Rg = can?/—(Rb U Ry) and Ry = can“i/—b(Ra U Ry)
— Update Taby,[Ry|[Rw] = opt(Taby,[Ry|[Rw), Taba[Ra][Ra] + Taby[Ry)[Ry]).

Lemma 3. The table at node w is updated correctly, namely for any canonical representatives
R, and Rz w.r.t. E%l/w and E%’ if Taby|Ry|[Rw| is not £oo then

Taby|[Ry|[Rw| = optscv, {|S] : S E“jfw Ry A (S, Rw) o, p-dominates Vi, }.
If the value of the table is oo then there is no such above set S.

Theorem 1. For every n-vertex, m-edge graph G given along with a decomposition tree (T,)
for cut-bool, any vertex subset problem on G can be solved in
O(n(m + d - cut-bool-w(T, §)23¢cut-bool-w(T.0)*+eut-bool-w(T.0))) time where d = d(o, p).

Proof. Correctness follows directly from what has been said in this section. For complexity
analysis, for every node w of T;., we basically call the first computation of Lemma 2 once, then
loop through every triplet Ry, R,, Ry of equivalence classes, call the second computation of
Lemma 2 three times, and perform the table update. |

The algorithms for vertex partitioning problems are similar but require some graph-theoretic
observations and several technical details. For space reasons this has all been moved to the
appendix.

Theorem 2. For every n-vertex, m-edge graph G given along with a decomposition tree (T)
of cut-bool, any D,-problem on G, with d = max; ;d(Dy[t,j]), can be solved in
O(n(m + qd . cut-bool-w(T, 5)23qd~cut—bool—w(T,5)2+cut—bool—w(T,(5))) time.

4 Boolean-width is less than or equal to Branch-width

In this section we relate boolean-width to branch-width, and show the following

8

Theorem 3. Any graph G satisfies boolw(G) < bw(G) (unless E(G) # () and no two edges
of G are adjacent).

In order to clarify how the decomposition trees relate to each other, we divide our result into
two steps, addressing the intermediary notion of an incidence graph (see Lemmata 4 and 5).
However, we will also show how to easily derive from our method a direct proof without incidence
graphs. Our framework not only applies for boolean-width, but also captures other settings
including rank-width. The incidence graph I(G) of a graph G is the graph with vertex set
V(G)UE(G), where z and y are adjacent in I(G) if one of z,y is a vertex of G, the other is
an edge of G and x and y are incident in G.

Lemma 4. Any graph G satisfies boolw(I(G)) < bw(G) and rw(I(G)) < bw(G), unless
E(G) # 0 and no two edges of G are adjacent. In this case, bw(G) = 0 and rw(I(GQ)) =
boolw(I(G)) =1.

The proof is given in the appendix, but let us sketch the idea. Starting with a decomposition
tree (T,0) of cut-bwg of width k, we modify the decomposition tree in two steps. In the first
step, we replace every leaf £ of T by a subcubic tree with three leaves, and we label one of the
three leaves with the edge 6(¢) and we label the other two leaves with the two vertices incident
with §(¢). In a second step, for each v € V(G) we choose one leaf with label v, we keep this
leaf, and delete all other leaves that are labelled by v. In this way we obtain a decomposition
tree of cut-booly) (and of cut-rky(g)) of boolean-width (rank-width, resp.) at most k.

Lemma 5. Any graph G satisfies max{boolw(G),rw(G)} < min{boolw(I(G)),rw(I(G))}.

Theorem 3 now follows immediately from Lemmata 4 and 5. It is also easy to give a direct
proof using the proof idea of Lemma 4. The only difference is in the first modification step.
Instead of taking a subcubic tree with three leaves, we take the subcubic tree with two leaves
(since we do not need to assign leaves to graph edges). Note that there is no bound in the converse
direction: the class of all complete graphs has unbounded branch-width and the boolean-width
is at most 1. Nevertheless, moving to incidence graphs we prove a weak converse.

Lemma 6. Any graph G satisfies bw(G) < 2 - min{boolw(I(G)),rw(I(G))}.
Altogether, the same technique for proving Theorem 3 also shows that

Corollary 1. Any graph G satisfies boolw(G) < bw(G) < 2-boolw(I(G)) (unless E(G) # ()

and no two edges of G are adjacent).

Corollary 2. Any graph G satisfies

1. boolw(I(G)) < bw(I(G)) <2-boolw(I(G)) and
2. boolw(I(G)) <rw(I(G))+1 <2 -boolw(I(G)) + 1.

Proof. Note that bw(G) = bw(I(G)), unless E(G) # () and no two edges of G are adjacent. In
this case, bw(G) = 0 and bw(I(G)) = 1. Using this, the first statement follows from Lemmata 4

and 6. The second statement follows from the first by using a theorem from [19] stating that
rw(I(G)) € {bw(G),bw(G) — 1}. 0

5 Random graphs

Let G}, be a random graph on n vertices where each edge is chosen randomly and independently
with probability p (independent of n). There has been a series of negative results [15,12,17]
establishing that almost surely G, has rank-width, tree-width, branch-width and clique-width
©(n). In contrast we show in this section the following.

Theorem 4. Almost surely, boolw(G,) = © (%) .

We start with the upper bound and prove first the following lemma.

Lemma 7. Let G, be a graph as above, and let k, = {m%J . Then, almost surely, for all subsets
of vertices S C V(G) with |S| =k, it holds that [N(S)\ S| > |S| — k.

Proof. In what follows, we write simply G and k. Fix a particular S with |S| = k. For every
veES, let X, belif vg N(S), and 0 otherwise. Clearly, X, = 1 with probability (1 — p)*,
and Y 5 X, =[S\ N(S)|. Observe that B[} s X = (1 —p)f(n—k) < (1—p)kn. Call
this expectation p. By Chernoff Bound (see e.g. [18], p.68),

Pr|Y X, >k| < (%)k < ((1—p)kn)k = ((1—p)21“"/pn)k < nk,

veS

1
the last inequality due to the fact that for p € (0,1), (1 —p)r <e!.

Applying the union bound, we conclude that the probability that there exists S of size k
such that [N(S)\ S| < |S| —k is at most (}) -n™* < (kI)™ = o(1) and the statement
follows. O

Corollary 3. For G = G, and k = k, as before, for all cuts {A,Z} i G it holds almost
surely that cut-bool(A) = O (%) .

Proof. The number of distinct sets N(S) N A contributed by the sets S C A with |S| < k is
at most Z?:o (’Z) By the previous lemma, for all sets S C A with |S| > k, it holds almost
surely that |N(S) N A| > |A| — k. Therefore, almost surely, the sets S C A with |S| > k, also
contribute at most Zi‘c:o (") distinct sets N(S) N A. Thus, almost surely there are at most
2 Zf:o (TZL) distinct sets N(S) N A altogether. Taking the logarithm, we arrive at the desired
conclusion. O

The upper bound of Theorem 4 now follows easily: for any decomposition tree of cut-bool,
all the cuts it defines will almost surely have boolean-width at most O (%) . Next, we move

to the lower bound of Theorem 4. For simplicity of exposition, we restrict the discussion to the
case p = 0.5. The lower bound for that case follows from:

Lemma 8. Let {A, A} be a cut where |A| = |A| = m, and the edges are chosen independently
at random with probability 0.5. Then, Pr[cut-bool(4) = 2(log?m)] > 1 — 9= 2(m'?)
More concretely, the probability that among the neighborhoods of the subsets of A of size k =

0.25 - logy, m, there are less than gclog”m different ones (for a suitable constant c), is at most
27Q(n1'3))

To prove this lemma we need some notation and preliminary results first. Let the (random)
set S; C A, i=1,2,...,m be the neighborhood of the vertex i € A, and let S; = U;c1S;. We
shall only be interested in the I’s of size k as above. Call such I bad if m —|S;| < m®®. Call a
set I of size k thick if there are at least m®? indices i € {1,2,...,m} — I such that S; C S;.

the number of bad I’s

(%)

Claim 2. For a fized set I of size k, the probability that I is thick conditioned on its being
good (that is, not bad), is at most e (m'?)

Claim 1. Pr > 05| < Mt

10
Corollary 4. Pr[the number of thick I's > 0.5- ()] < e—f2(m'?)

Proof of Lemma 8: Define a directed random graph G whose vertices are the sets I of size k,
and (I,J) is an edge if Sy C Sr. Observe that the size of maximum independence set in G is
precisely the number of different neighborhoods. Since Sy contains only S;’s where J is a union
of i’s such that S; C Sy, we conclude that if a set I is thin, then its degree is no more than

d - k 4+ m0? _ k +m09 ~ 0-10-25logym myo_ 9—2(log?m) | m
k 0.25 - logs m k k)~

Consider the subgraph of G induced by the thin I’s. Let N be its number of vertices.

By a standard greedy argument, the size of the maximum independence set in a graph of
a maximal outdegree d is at least 23\41' Indeed, mark a vertex of indegree < d in G (there
must be such), then remove it and all its neighbours of both types from G, and continue in the
same manner on the remaining graph. Since by Corollary 4, N' > 0.5 - (Tg) with probability

1-— e‘Q(ml‘s), the statement follows. O

Proof of Theorem 4: The upper bound has already been proved. For the lower bound we restrict
for simplicity of exposition to the case p = 0.5. Consider a (%, %)—balanced cut in G. Due to
the monotonicity of the cut-bool with respect to taking induced subcuts, the Lemma 8 applies
in this case with m = n/3. Therefore, the probability that cut-bool of this cut is £2(log®n) is
1— e (") Since there at most 2" cuts in G, we conclude that with probability 1 — e~ ')
all balanced cuts have such cut-bool. Since any partition tree of G must contain a (%, %)—

balanced cut, the statement follows. O

6 Further Research

In this paper we have seen that for random graphs boolean-width is the right parameter to
consider: any decomposition tree will have boolean-width polylogarithmic in n. This also hints
at the existence of large classes of graphs where boolean-width is polylogarithmic in the value
of the other parameters, and raises the question of identifying these. One such class of graphs is
defined by the so-called Hsu-grids [3], where boolean-width is ©(logn) and rank-width, branch-
width, tree-width and clique-width are ©(y/n). In contrast, we know that the boolean-width of
regular graphs is ©(n) [20], thus such an above mentioned class should exclude these graphs.

We believe that boolean-width should be useful for practical applications. We have initiated
research to find fast and good heuristics computing decompositions of low boolean-width, similar
to what is done for treewidth in the TreewidthLIB project [1].

A big open question is to decide if the boolean-width of a graph can be computed in FPT
time. The relationship between rank-width and boolean-width is still not completely clear. Could
it be that the boolean-width of any graph is linear in its rank-width? Currently the best bound
is boolw(G) < ifrw(G)2 + grw(G) + log rw(G) [3].

The runtime of the algorithms given here for (o, p)-problems and D,-problems have the
square of the boolean-width as a factor in the exponent. For problems where d = 1 we can in
fact improve this to a factor linear in the exponent [3], but that requires a special focus on these
cases. In fact, we believe that also for the other problems (with any constant value of d) we
could get runtimes with an exponential factor linear in boolean-width. We must then improve
the bound in Lemma 1, by showing that the number of d-neighborhood equivalence classes is no
more than the number of 1-neighborhood equivalence classes raised to some function of d. This
question can be formulated as a purely algebraic one as follows: First generalize the concept of
Boolean sums (141 =1) to d-Boolean sums (i + 7 = min(i 4 j,d)). For a Boolean matrix A
let Rq(A) be the set of vectors over {0,1,...,d} that arise from all possible d-Boolean sums of
rows of A. Is there a function f such that |Rg(A)| < |Ry(A)|f () leglog|Ri(A)7

11

References

1.

2.

®

10.

11.

12.

13.

14.
15.

16.
17.
18.
19.
20.
21.

22.

H. Bodlaender and A. Koster. Treewidth Computations I Upper Bounds. Technical Report UU-CS-2008-032,
Department of Information and Computing Sciences, Utrecht University, 2008.

B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. H -join decomposable graphs and algorithms with runtime
single exponential in rankwidth. Discrete Applied Mathematics. article in press.
http://dx.doi.org/10.1016/j.dam.2009.09.009.

B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs. In 4th International Workshop on
Parameterized and Ezact Computation (IWPEC’09), volume 5917 of LNCS, pages 61-74, 2009.

D. Corneil and U. Rotics. On the relationship between clique-width and treewidth. SIAM Journal on
Computing, 34(4):825-847, 2005.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 193—-242. 1990.

F. Dorn. Dynamic programming and fast matrix multiplication. In 14th Annual European Symposium
(ESA’05), volume 4168 of LNCS, pages 280-291, 2006.

R. Downey and M. Fellows. Parameterized Complezity. Springer Verlag, 1999.

J. Flum and M. Grohe. Parameterized Complezity Theory. Springer Verlag, 2006.

R. Ganian and P. Hlinény. On Parse Trees and Myhill-Nerode-type Tools for handling Graphs of Bounded
Rank-width. Discrete Applied Mathematics. article in press.
http://dx.doi.org/10.1016/j.dam.2009.10.018.

M. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with fixed clique-width.
Theoretical Computer Science, 299(1-3):719-734, 2003.

P. Hlinény, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and their applications.
The Computer Journal, 51(3):326-362, 2008.

0. Johansson. Clique-decomposition, NLC-decomposition and modular decomposition — Relatiohships and
results for random graphs. Congressus Numerantium, 132:39-60, 1998.

M. Kanté. Vertex-minor reductions can simulate edge contractions. Discrete Applied Mathematics,
155(17):2328-2340, 2007.

K. H. Kim. Boolean matriz theory and its applications. Marcel Dekker, 1982.

T. Kloks and H. Bodlaender. Only few graphs have bounded treewidth. Technical Report UU-CS-92-35,
Department of Information and Computing Sciences, Utrecht University, 1992.

D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. Discrete
Applied Mathematics, 126(2-3):197-221, 2003. Abstract at SODA’01.

C. Lee, J. Lee, and S. Oum. Rank-width of Random Graphs, submitted manuscript.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

S. Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory, 57(3):239-244, 2008.
Y. Rabinovich and J. A. Telle. On the boolean-width of a graph: structure and applications
arxiv.org/pdf/0908.2765.

J. Rooij, H. Bodlaender, and P. Rossmanith. Dynamic programming on tree decompositions using generalised
fast subset convolution. In 17th Annual European Symposium on Algorithms (ESA’09), 2009. to appear.

J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial k-trees. SIAM
Journal on Discrete Mathematics, 10(4):529-550, 1997.

12

Appendix
Proof of Lemma 3

Let a,b be the children of w in T, assume Tab, and Taby are correct. We first show that if
Taby[Ry|[Rw] = s and hence not o0, then there exists a set S,, satisfying all the conditions.
For a value of Tab, to be set to s, it means that an update happened in the algorithm,
hence there exist R, and Rp such that: Rz = canf/—a(Rb U Rg) Ry = can?/—b(Ra U Ry) and
Taby[R,][Ra] + Taby[Ry][Ry] = 5. Then we know that there exist S, and Sj such that (S, Rg)
o, p-dominates V; and (S, R;) o, p-dominates V; and that |S, U Sp| = s. Let Sy, = Sq U Sy,
then S, fulfills the two conditions |S| = s and R, Egl/w Sy, now we need to show that (S, Ry)
o, p-dominates V. Since (S, U Ry) E%l% Rz and (S, Rg) o, p-dominates V, it follows from
Definition 3 and 5 that (S,, SpURw) o, p-dominates V,, this is left as an exercise for the reader.
Similarly we conclude that (S, SqURzw) o, p-dominates Vj, Let S = S, URg = S,USU Ry then
we get S o-dominates V, and S o-dominates Vj,, hence it follows from Definition 5 that S o-
dominates V,,. Similarly we get S p-dominates V, and S p-dominates V;, hence S p-dominates
V. Combining the two last facts it follows from definition 5 that (S, Rw)o, p-dominates V.

Next we will VR,,, R show that if there exist an optimal set S E{‘l/w Ry, such that (S, R)
o, p-dominates V,,, then Tab,, [canv (Sw)][Rw] = |Sw|- Let Sq =Sy, NV, and S, = S, N V.
Since the algorithm goes through all triples of representatives, it will at some point go through
(R, Ry, Ri), where R, = canﬁl,a(Sa) and Ry = canﬁl,b(Sb). Since (Sy, Rw) o, p-dominates V,,,
(Sq U Sp U Ry) o-dominates V,, and (S, U Sy U Ry)p-dominates V,,. Then (Sy, Sy U Ryp) o
dominates V,, and (S, S, URw) o, p-dominates V},. Since in the algorithm Rg = canfl/E(SbUR@),
(Sa; Ra) o, p-dominates V;. Similarly we get that (Sp, R;) o, p-dominates V;. Since Sy, is the
optimal Sg, Sz and Sy, S; must be optimal too, this means that Tab,[R,][Ra] + Taby[Ry][Ry] =
|Sq U Sy| = |Swl, hence Taby,[Ry|[Rw] = |Swl-

By induction all tables will be correct. O

Proof of Theorem 2

We use similar techniques as those for vertex subset problems.

Definition 7. Let G be a graph and let A C V(G) be a vertex subset of G. Two g¢-tuples
(X1, X2,...,Xy) and (Y7, Y5,...,Y,) of subsets of A are equivalent, denoted by (X1, Xo, ..., X;) E%’d
(Yla Yv?a shy Y;]) ’ if

Vivv e A: (|N(v) N X;| = [N(v) NYi|) V (IN(v) N X;i| > d A [N(v) N Y| > d).

Lemma 9. (X, Xy,...,X,) = —q’ (Y1,Ya,....,Y,) if and only if ViX; =% Y;. A consequence is

—qd is at most that of E‘i to the power q.

that the number of equivalence classes of =

The lemma follows directly from Definitions 3 and 7. In the sequel we will define the values
of Tab,, directly indexed by the equivalence classes. For this we need to first define canonical
representatives. For a node w of T}, and X = (X1, Xo, ..., Xy) : X; C V,,, we define can'{/d(X) =

(canv (X1), ccmv (X2),.. can‘xi/w(Xq)).

Definition 8. Let G be a graph and A C V(G). Let X = (X1, X»,...,X,) € A? and Y =
(Y1,Ya, ..., Y,) € A”. We say that (X,Y) D,-dominates A if for all 4,5 we have that (X; UY;)
Dyli, j]-dominates X; (cf. Definition 5).

Definition 9. For every node w of T,, for every X = (X1, Xo,...,Xq) € A? and every Y =
(V1,Ya,...Y,) € A% let Ry = can‘{}j(?() and Ry = cang}j(y). We define the contents of
Taby[Rx][Ry] as

TRUE if 3 partition & = (51, 52, ..., 54) of V,, such that:
Taby[Rx][Ry] & S E"]/’j Ry and (S,Ry) Dy-dominates V,,
FALSE otherwise.

The solution to the 3D, -problem is given by checking if some entry in the table at the
root has value TRUFE. The computation of the list of all canonical representatives w.r.t. E%}j
is basically ¢ times the one given in the previous section. The same situation holds for the
computation of a canonical representative from the input of a ¢-uplet. Firstly, initialize all

values in all tables to FALSE.

For a leaf [of T, we will also denote the vertex of G mapped to [by [. Let A = {i}.
Firstly, there are g possible classes [could belong to in a g-partition of A (recall that empty
sets are allowed). We call their canonical representatives respectively Ry, , Rx,, ..., Rua,.
Secondly, for vertices in B = V(G) \ {{} note that they are either neighbors of { or not. Hence
we have at most d + 1 choices (namely 0,1,...,d — 1, > d) for each of the ¢ partition classes.
(A consequence is that Tab; has at most ¢(d + 1)¢ entries.) For every canonical representative
Ry = W1,Ys,...,Y,) wr.t. E‘gd, we have that (Rux,,Ry) Dg-dominates {l} if and only if
ViIN (1) NYj| € Dyli, j]. Accordingly, we perform the following update for every ¢ and for every
Ry :

Tab;[Rx,)[Ry] is set to be TRUE if and only if Vj [N (1) NY;| € Dyli, j].

In the following, J q denotes the componentwise union of two ¢-tuples. For a node w with
children a and b, the algorithm performs the following steps. For every canonical representative

d . . d .
Rw w.r.t. E(‘Z/’ , for every canonical representative R, w.r.t. E‘{} , and for every canonical
w a

representative Ry w.r.t. Eg/’bd, do:

— Compute R, = can?}j(Ra U, Re), Ra = cany(Rb U, Rw), R = cang/—fl(Ra U, Rw)
— If Taby[Ry|[Rw] = FALSE then Taby,[Ry|[Rw] = Tabs[Ra][Ra] A Taby[Ry][Ry]

Before proving the algorithm, let us mention that it is straightforward to extend the algorithm
to find the maximum or minimum cardinality of a vertex partition class over all D,-partitions.

We now prove the algorithm. The complexity analysis is very similar to the one given in
Theorem 1. The correctness proof follows the same style as the proof of Lemma 3, Some steps
are not explained here because they were explained in Lemma 3.

For the correctness, let a,b be the children of w in T, assume Tab, and Tab, are correct.
(=) For this direction of the proof we have that Tab,[Ry][Rw] = TRUE. Then there must
exist some Ry, Ry such that Tab,[R4][Ra] = TRUE and Taby[Ry][Ry] = TRUE, where Rg =
ccmﬁl/a (RyU, Rw) and Ry = canfl/b (RaU, Rw). Hence there exists S, partition of V, and S
partition of V4 such that (Sq, Ra) Dg-dominates V, (Sy, Ry) Dy-dominates V;,. This means that
Vi, j i (Sa; U Ra;) Dgli, j]-dominates S,, and Vi, j : (S, U jo) Dyi, j]-dominates Sp,. It then
follows that: Vi, j : (S, USy; U Rw,) Dyli, j]-dominates Sy, and Vi, j : (Sa; U S, U Rg;) Dyli, j]-
dominates Sp,. It then follows that: Vi,j : (Sw; U Rw,) Dgli, j]-dominates S,,. Which means
(S, Rw) Dy-dominates V.

(«=) For this direction of the proof we have that there exists a partition S = (57, ...5;) of V,,
such that: (S,Ry) Dg-dominates Vi,. This means that Vi,j : (Sw; U Rg;) Dyli, j]-dominates
Sw, - Let Sy, Sp be the componentwise intersection of S, with V,, and Vj respectively. We then
have: Vi, j : (Sw, U Rg;) Dgli, j]-dominates S,; and Vi, j : (Sw, U Rg;) Dgli, j]-dominates Sp, .

14

Hence Vi,j : (Sa; U Sy, U Ry;) Dgli, j]-dominates S,, and Vi,j : (Sq; U Sp; U Rg;) Dyli, j]-
dominates S,,. Let Ra = can?/—a(Sb U, Rw) and Ry = can?/—b(Sa U, Rw) then Vi,j : (Sq; U
Rg;) Dyli, j]-dominates S,, and Vi, j : (S, U jo) Dyli, j]-dominates Sp,. Let Rq = can“i/a (Sa)
and Ry = canﬁl/b(Sb) then Tab,[Ru][Ral] = TRUE and Taby[Ry|[R;] = TRUE. Since the
algorithm goes through all triples, it will at some point go through (R4, Rp, Rw). And it will
set Tab,[Ry][Rw| to true, once it is true it will never change.

By induction all tables will be correct. O

Proof of Lemma 4

If E(G) =10, then all width parameters are 0 and there is nothing to show. If F(G) # 0 and no
two edges of G are adjacent, it is easy to see that bw(G) =0 and rw(I(G)) = boolw(I(G)) =
1. Now assume that E(G) contains two adjacent edges. This implies bw(G) > 1. Moreover,
we may assume that G has no isolated vertices. (We can always add isolated vertices to a
decomposition tree without increasing the cut-bool-width and the cut-rk-width.) Let (T, \)
be a decomposition tree of d-width k of G = (V, E). Now we modify (7,) in two steps.

In the first modification step, for every leaf ¢t € L(T') we take the unique cubic tree T; with
four leaves £} ... ¢ such that the distance between ¢} and ¢4 is 2. We attach T} to the tree T
by identifying ¢} and ¢. In this way we obtain a new subcubic tree 7" where every leaf t of T is
replaced by three new leaves ¢ 0%, ¢%. We now define the function X': L(T") — VUE as follows:
Suppose t € L(T) is a leaf with A(t) = {u,v} € E(G), assuming that if exactly one of the
extremities of this edge has degree one, then it is u. Then we let X (¢}) := u, N (£) := {u,v},
and X (¢4) := v. In this way we obtain a labeled tree (1",)\) where X is surjective (because G
has no isolated vertices) on vertices of G an. Now for every vertex v € V the preimage \'~!(v)
is nonempty, but is may contain more than one leaf of 7", whereas for every h € E the preimage
N~Y(h) is a singleton.

In the second modification step, for every v € V we choose one t, € L(T") with X (¢,) =v
and we prune all other leaves ¢ € L(T"), ¢ # t,, satisfying X' (¢) = v. Having done this for all
v € V', we obtain a subtree 7” C T". Let \” denote the restriction of X to the leaves of T” such
that the pair (7", \”) is a decomposition tree of cut-bool on I(G) and for cut-rk on I(G).
We claim that both cut-bool-w((7”,\")) < k and cut-rk-w((T",\")) < k. Towards this, let
e € E(T") be an edge.

First suppose e was already an edge in T'. Then let (Y,Y°) be the partition of E(G)
obtained by removing e from T in the decomposition tree (T, \) of §-width k. Let S := 0X.
Then |S| < k. Moreover, let (X, X¢) be the partition of V(G) obtained by removing e from
T" in the decomposition tree (T”,\"). Recall that \'(L(T")) = VUE. Any set Z C VUE can
be written as a disjoint union Z = VzUEZUSz, where Vz := (ZNV)\ S, Ez := ZNE and
Sz:=7ZNS~S.

Consider the matrix Mx xe) as an (SxyUVxUEXx) - (Sx<UVycUExec) matrix.

Claim. Every non-zero entry in M x xc) corresponds to an edge-vertex incidence where the
vertez is in S.
Proof of the Claim. First note that Ex =Y and Ex. = Y°. Moreover, from our construction
it follows that
v € Vx if and only if v is incident with an edge in Y, and (1)
v € Vxe if and only if v is incident with an edge in Y°. (2)

Since I(G) is bipartite, obviously, the only submatrices of My xc) possibly containing non-
zero entries are induced by Vx - Exc, Ex X Vxe, Xg X Exc, and Ex - Sxc. Hence it suffices to

15

show that the only submatrices that may contain non-zero entries are Xg- Exc and Ex X Sxe.
Suppose towards a contradicion, that Vx - Exc has a non-zero entry. Then there is a vertex
v € Vx and an edge h € Exc = Y such that v is incident with h. But, by (1), v is incident
with an edge h/ € Y as well, and hence v € S, a contradiction. Symmetrically, (using (2) instead
of (1)) Ex - Sxc induces a zero submatrix. This proves the claim. n

Hence, non-zero entries only correspond to edge-vertex incidences where the vertices are in
S. Since |Sx|+ [Sxe| = |S] < k, it follows that both cut-bool-w(e) < |S| < k and cut-rk-
w(e) < |S] < k.

Finally, suppose e is an edge of some subcubic tree T; created and attached to a leaf ¢t € L(T)
in the first modification step. Let e; € E(T) be the edge incident with t. We first argue for
boolean-width. If cut-bool(e) < 1 there is nothing to show, because bw(G) > 1. Otherwise,
cut-bool-w(e) = 2 or cut-bool-w(e) = log,(3). But then it is easy to see that both ends of
d(t) have degree at least 2 and cut-bool-w(e) < §-w(e;) = 2 and hence §-w(T”,\") > 2. The
argument for rank-width is analogous.

Altogether, it follows that both cut-bool-w(T”,\") < k and cut-rk-w(T”,\") < k. Hence
boolw(I(G)) < bw(G) and rw(I(G)) < bw(G). 0

Proof of Lemma 5

Let (T,) be any decomposition tree of I(G). We denote by k = cut-bool;)-w(T,A) and
r = cut-rkyg)-w(T,) its boolean-width and rank-width, respectively. Let (7", \") be the de-
composition tree of G such that A is the restriction of A to the elements of V(G), and T is
obtained from 7' by deleting all leaves labeled by elements of F(G) and contracting all internal
nodes having degree 2. Let k¥’ = cut-boolg-w (7", \') and ' = cut-rkg-w(7”,). We will prove
that max{k’,r'} < min{k,r}.

Let € be an edge of T”, and (X, X¢) the partition of V(G) induced by the leaves of the
trees we get by removing ¢ from T’. Since T’ is obtained from “pruning” some leaves in
T, there exists an edge e of T such that the partition (Y,Y°) of V(G)UE(G), induced by
the leaves of the trees we get by removing e from 7T, satisfies X C Y and X¢ C Y. In
order to prove the lemma, we only need to prove that max{cut-bools(X),cut-rkg(X)} <
min{cut-bool;)(Y), cut-rk;)(Y)}.

Let M(y,y«) denote the Y - Y“-submatrix of the adjacency matrix of I(G). Since V(G) and
E(G) are independent sets in I(G), we assume w.l.o.g. that

0A
Myye) = (B 0)

where the rows of A correspond to Y N V(G), the columns of A to YN E(G), the rows of
B to Y N E(G), and the columns of B to Y°N V(G). Now remove all columns of A having
two 1’s, remove all rows of B having two 1’s, remove all identical columns in what remains
of A, remove all identical rows in what remains of B, remove all rows and columns with only
0-coordinates in what remains of the matrix, and obtain

M(Y,YC) (B/ 0 .

This process can only decrease the value of either cut-bool or cut-rk functions. We will now
prove that both A’ and B’ are permutation matrices. Indeed, since A comes from an incidence
graph, it is straightforward to check that each column of A’ now has exactly one 1. Suppose
that a row of A’ has more than one 1. Then, there are two columns of A’ having coordinate 1

16

on this row. But both columns have only one 1, and therefore they are identical. Contradiction.
Hence, each row of A’ has exactly one 1, and A’ is a permutation matrix. A similar argument
holds for B’. Finally, let V4 be the set of rows of A’ and Vg the set of columns of B’ Since A’
and B’ are permutation matrices, both cut-bool and cut-rk values for M(’KYC) are equal to
|Var| +|Vp/|. We have proved that |Va/| + [Vp/| < min{cut-bool;)(Y), cut-rk;)(Y)}. Note
that the elements of V4 and Vg correspond to vertices of G.

Let M(x xc) denote the X - X“-submatrix of the adjacency matrix of G. We will split
M(X7Xc) into two matrices My and My such that: both GF(2)-sum and Boolean-sum of M;
and My are equal to M(x xc); there are at most |Vas| non-zero rows in M ; and there are at
most |Vp/| non-zero columns in My . This would allow to conclude the lemma because this would
imply max{cut-boolg(X), cut-rkg(X)} < |[Va| + |Vp|.

Let M; be the matrix where the rows correspond to X and the columns to X¢ in such a way
that they are ordered as in M(x yc) and there is a 1 at the intersection of the row corresponding
to a vertex u and the column corresponding to a vertex v if and only if wv € (E(G)NY*) (uv
is an edge of G and moreover uv and v belong to the same side of the cut of T given by e).
Let Mj be the matrix where the rows correspond to X and the columns to X¢ such that they
are ordered as in M(x y¢) and there is a 1 at the intersection of the row corresponding to a
vertex u and the column corresponding to a vertex v if and only if uv € (E(G)NY) (uv is an
edge of G and moreover uv and u belong to the same side of the cut of T' given by e).

Let v € X and v € X°. If uv ¢ E(G), then, in any of the matrices Mx xe), M1 and My,
there is a 0 in the intersection of the row corresponding to u and the column corresponding to
v. If uv € E(G), namely if uv belongs to either Y or Y but not both, then, beside Mx x«), we
can find in one and only one among M; and M- a 1 in the intersection of the row corresponding
to u and the column corresponding to v. Hence, both GF(2)-sum and Boolean-sum of M; and
Mj are equal to My xe).

Let u € X be a vertex such that there is at least one 1 in the row corresponding to u in
My, namely Jv € X¢, uv € E(G)NY*. Then, there is exactly one 1 in the column of My y-«)
corresponding to uv and at least one 1 in the row corresponding to u, and therefore there is
still a column corresponding to uv and a row corresponding to u in M (’Y,YC). Hence, there are
at most |Vy/| non-zero rows in M;. A similar argument holds for |Vp/| and Mj. 0

Proof of Lemma 6

For the proof of Lemma 6 we need two lemmas on induced matchings. An induced matching in
a graph G is a set Y C E(G) of pairwise non-adjacent edges, such that no edge of E(G)\Y
connects two vertices that are both incident to edges in Y. A graph G is bipartite, if V(G) can
be partitioned into two sets V(G) = AUB such that every edge of G connects a vertex in A to
a vertex in B. Note that an induced matching in G corresponds to a submatrix S of M4 p),
which is a permutation matrix.

For an integer » > 0, let I, denote the identity matrix with r rows and columns.

Lemma 10. Let v > 0 be an integer. Let G be a bipartite graph witnessed by the partition
V(G) = AUB. Assume M4,y has at most two 1s in each column and at least r non-zero
rows. Then G has an induced matching of cardinality [5].

Proof. We may assume that M := M4 g) has no zero rows. It suffices to show that, by permuting
the rows, permuting the columns and possibly deleting some rows and columns of M, we can
obtain the matrix Ifﬂ . This is trivial for » < 2. Let r > 3. We choose a non-zero row with as
few 1’s as possible. We delete each column which has a 1 on this row except one. We move the

17

row we chose to the bottom of the matrix, and we move the column which has a 1 on this row
to the right of the matrix. All remaining rows are non-zero. Then we delete the other row which
has a 1 on this column if it exists. We obtain a matrix

M’0

where M’ is a boolean matrix with at most two 1s in each column and at least r —2 non-zero
rows. Applying the inductuve hypothesis ti M’ we obtain the matrix I rr=2] by permuting the
2

rows, permuting the columns and deleting some rows and columns of M’. Then, by applying
the same transformation on M*, we obtain I(ﬂHl = 1[5 . O
2

Lemma 11. Let G be a bipartite graph witnessed by the partition V(G) = AUB. Suppose G
contains an induced matching of cardinality k. Then cut-rk(A) > k and cut-bool(A4) > k.

Proof. Since an induced matching corresponds to a submatrix S of M4), which is a permu-
tation matrix, the lemma follows easily. O

Proof of Lemma 6. We prove bw(G) < 2 - boolw(I(G)). Let (T,\) be a decomposition
tree of cutbool-width k of I(G). Let (7",)\') be the decomposition tree of G, where T” is the
subtree obtained from T by suppressing the leaves labeled by elements of V(G), and) is the
restriction of A to L(T"). Let e € E(T") be an edge. Let (X, X€) be the partition of V(I(G))
obtained by removing e from 7' in the decomposition tree (7',).

Since I(G) is a bipartite graph witnessed by V(I(G)) = V(G)UE(G), we can write

0 M
M x xe) = <M2 0)

where the rows of M; correspond to X NV(G), the columns of M; correspond to XN E(G),
the rows of My correspond to X NE(G) and the columns of Ms correspond to X“NV(G). Thus
we have k > cut-bool(X) = cut-bool(X NV(G)) + cut-bool(X“NV(G)). Since the elements
of E(G) have degree 2 in I(G), there are at most two 1s in any column of M; and in any row
of M. Let 71 be the number of non-zero rows of M. From Lemmas 10 and 11 it follows that
[5] < cut-bool(X NV(G)) and hence r; < 2 - cut-bool(X N V(G)). Symmetrically, letting
ro be the number of non-zero columns of My, we have ry < 2 - cut-bool(X°N V(G)). Now,
every vertex in the border 9(F(G) N X) is incident to an element of F(G) N X and an element
of E(G) N X¢, so it corresponds either to a non-zero row of M, or to a non-zero column of
M, . Hence §(E(G)NX) <71+ < 2(cut-bool(X NV(G)) + cut-bool(X NV (G))) < 2k. It
follows that d-w(7”,\') < 2k, and hence bw(G) < 2-boolw(I(G)).

For a proof of bw(G) < 2-rw(I(G)), we merely replace the word ‘cutbool’ by ‘cutrk’ in the
proof above. O

Proof of Claim 1

First, we claim that for a fixed I of size k, Pr[Iis bad] < e 2(m"™) Let X; be1if i & S;, and
0 otherwise. Clearly, the random variables {X;}™, are independent, and Pr[X; = 1] = m~%%.
The expectation of X = . X; is m®™. Using the following Chernoff Bound for the left side
tail (see e.g., [18]):

—52B[X]

Pr{X < (1-0)-E[X]] < ¢ 2

)

18

we conclude that -
Pr[I is bad] = Pr[X <m®®] < e 2(m™")

Next, consider a random permutation o € Sy, , and define the sets I; = o{(j — 1)k +1,...,jk}
where j =1,2,...t=m/k. (To avoid messy calculations, assume for simplicity that k& devides
m.) We claim that the probability that the fraction of the bad sets in this family is 0.5 or more,
is at most e=2m"™) Let Y;, j=1,2,...,t, be an indicator random variable taking the value
1if Y; is bad, and 0 otherwise. Observe that Y;’s are independent, and that, by the previous
discussion, Pr[Y; = 1] = e~ 2m* ™) Let Y = Z§:1YJ Applying the Chernoff Bound we
conclude that

€ E(i) /2 —02(mO-75) 0.25<Izg2m —02(m!T4)
Y > P . m < m
Pr|[t/2] < (12 > < (26 e) e .

Observe that the number of permutations ¢ is only m!, and thus, applying the union bound,
we conclude that with probability 1 — e‘Q(ml‘M), for all o’s, the fraction of the bad sets in the
corresponding family {I; }5‘:1 is less than 0.5. To conclude the proof of the claim, observe that
the random family {Ij}z‘:l obtained by randomly choosing o, uniformly covers the family of
all I'’s of size k. Therefore, with the same probability, the fraction of the bad sets in the latter
family is less than 0.5 as well. O

Proof of Claim 2

For ¢ &€ I, let Z; be an indicator random variable being 1 if S; C Sy, and 0 otherwise. Clearly,
Z;’s are independent, and Pr[Z; = 1] < 2-m"" Let Z = Z%H Z;. Applying once more the
Chernoff Bound, we conclude that

0.9 0.9

Pr [Z > mo,g] < (GEO(QZ)> < O <m0.1) 2—Q(m0-5))m _ e_Q(ml,s).
mo-

Proof of Corollary 4

Let B be the event that the number of good I’s is at least 0.5 - (7]?), and let C be the event
that all good I’s are thin (that is, not thick). Using Claim 1, Claim 2, and the union bound, we
conclude that

Pr[C] < Y Pr[[is good and thick] = Y Pr[T is thick | T is good] - Pr[I is good]]
I 1

m) e_Q(mLS) _ e_Q(mLS)
0.25 - logy m ’

Let D be the event that there are at least 0.5 - (’g) thin I'’s. Clearly, BN C C D. Thus, by

Claim 1 and Claim 2, Pr[D] > Pr[BNC] > 1—Pr[B]—Pr[C] > 1—¢ 2m"?), O

