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Abstract. Rapidly changing business requirements necessitate the ad-
hoc composition of expert teams to handle complex business cases. Expert-
centric properties such as skills, however, are insufficient to assemble an
effective team. The given interaction structure determines to a large de-
gree how well the experts can be expected to collaborate. This paper
addresses the team composition problem which consists of expert in-
teraction network extraction, skill profile creation, and ultimately team
formation. We provide a heuristic for finding near-optimal teams that
yield the best trade-off between skill coverage and team connectivity.
Finally, we apply a real-world data set to demonstrate the applicability
and benefits of our approach.
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1 Introduction

Over the past years we have observed a trend towards online knowledge creation
and sharing (e.g., Slashdot1, Yahoo! Answers2). People increasingly apply their
expertise online to answer other users’ questions or provide additional informa-
tion on topics under discussion. Rapidly changing business requirements keep
individual companies from employing a large set of experts that continuously
cover the required skill set. Exploration of online communities allows dynamic
access to the top experts of the desired expertise.

Previous work focused on identifying the most important experts in an online
community (e.g., [?]). Complex business cases, however, require the complemen-
tary expertise of multiple experts that need to collaborate closely. A team of top
experts will be most effective if they have interacted before and thus exhibit
confidence in each other’s expertise. The problem is finding the best trade-off
between maximum skill coverage and maximum interaction connectivity. Finding
an optimal team configuration is non-trivial as the search space grows exponen-
tially with the number of required skills and available experts.

1 http://slashdot.org/
2 http://answers.yahoo.com/



In this paper we present a mechanism for extracting an expert network and
corresponding expert skill profiles from online discussion threads. Our novel
trade-off model allows fine-grained preference configuration of team connectivity
over maximum skill coverage. We provide a heuristic to extract the optimum
team composition from an expert network for a given trade-off configuration.
As the skill data originates from discussion sites, we envision the resulting team
compositions to collaborate well over the internet rather than work face to face.

Section ?? compares our work to previous research efforts. Section ?? out-
lines our approach in more detail based on a motivating example. Subsequently,
Section ?? describes the mechanism for extracting an expert network and cor-
responding skill profiles from discussion threads. Section ?? provides the formal
definition of the team formation problem. Section ?? demonstrates the adap-
tation of Simulated Annealing to our problem. The evaluation in Section ??
applies a real-world data set to demonstrate the effectiveness and efficiency of
our approach. The paper concludes with an outlook on future work.

2 Related Work

Team formation is an intensely studied problem in the operation research do-
main. Most approaches model the problem as finding the best match of experts
to required skills taking into account multiple dimensions from technical skills,
cognitive properties, and personal motivation [?,?,?]. Such research focuses only
on properties of individual experts that are independent of the resulting team
configuration.

Recent efforts introduce social network information to enhance the skill pro-
file of individual members. Hyeongon et al. [?] measure the familiarity between
experts to derive a person’s know-who. Cheatham and Cleereman [?] apply social
network analysis to detect common interests and collaborations. The extracted
information, however, is applied independently from the overall team structure.
These mechanisms present opportunities for refinement of the skill modeling and
configuration aspects of our approach but remain otherwise complementary.

To the best of our knowledge, Theodoros et al. [?] discuss the only team for-
mation approach that specifically focuses on the expert network for determining
the most suitable team. Our approach differs in two significant aspects. First, we
model a trade-off between skill coverage and team connectivity whereas [?] treats
every expert above a certain skill threshold as equally suitable and ignores every
expert below that threshold. Second, our algorithm aims for a fully connected
team graph (i.e., relations between every pair of experts). Theodoros et al. opti-
mize the team connectivity based on a minimum spanning tree (MST). We argue
that it is more important to focus on having most members well connected (i.e.
everybody trusts (almost) everybody else) within the team than focusing only
on the strongest ties within the team.

Analysis of various network topologies [?] has demonstrated the impact of the
network structure on efficient team formation. General research on the formation
of groups in large scale social networks [?] helps to understand the involved dy-



namic aspects but does not provide the algorithms for identifying optimal team
configurations. Investigations into the structure of various real-world networks
provides vital understanding of the underlying network characteristics relevant to
the team formation problem [?,?]. Papers on existing online expert communities
such as Slashdot [?] and Yahoo! answers [?] yield specific knowledge about the
social network structure and expertise distribution that need to be supported by
a team formation mechanism. Complementary approaches regarding extraction
of expert networks and their skill profile include mining of email data sets [?] or
open source software repositories [?].

Related research efforts based on non-functional aspects (i.e., non-skill re-
lated aspects) can also be found in the domain of service composition [?]. Here,
services with the required capabilities need to be combined to provide a desir-
able, overall functionality. Composition (i.e., formation) is driven by the client’s
preferences [?], environment context [?,?], or service context (i.e., current expert
context) [?]. We can take inspiration from such research to refine the properties
and requirements of teams to include context such as expert availability or loca-
tion. Nonetheless, the network structure remains equally unexplored in service
composition.

In contrast, the network structure has gained significant impact for determin-
ing the most important network element. A prominent example of a graph-based
global importance metric is Google’s page rank [?]. An extended version [?] yields
total ranks by aggregating search-topic-specific ranks. Inspired by the page rank
algorithm, Schall [?] applies interaction intensities and skills to rank humans in
mixed service-oriented environments. These algorithms provide additional means
to determine person-centric metrics but do not address the team formation prob-
lem.

3 Approach

Expert team composition consists of three phases. First, we extract experts from
discussion threads and form a social network (Fig. ?? Step 1). Basically, each
reply to a posting results in an edge between the author of the original posting
and the reply’s author.

Next, we derive expert skill profiles from titles and tags of discussion threads
(Fig. ?? Step 2). Each word represents a particular skill. Identification of mean-
ingful words from tags and titles is considered outside the scope of this work
as ultimately it is up to the user which skills (i.e., words) he/she defines as
required to be provided by the team of experts. The number of postings in a
thread associated with a particular skill determines the expert’s skill level.

Finally, we solve the team formation subproblem applying a heuristic that
searches the generated social network for the optimum team (Fig. ?? Step 3). The
optimum team configuration depends on the trade-off between skill coverage and
expert connectivity. We can recommend the top expert for each skill or accept
less qualified team members which, however, yield a more tightly connected



interaction network. The motivating example in the following subsection outlines
these steps in more detail.

D

A C

B

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Skills: Y, Z

Skills: X, Y, Z
Skills: X, Y

Skills: Y

(2) Skill Profile

Extraction (Sec. 4)

(1) Network Structure 

Extraction (Sec. 4)

X

Y

Z

(3) Team formation

(Sec. 5)

Fig. 1: Extracting network structure (1) and skill profile (2) from discussion threads
for expert team formation (3).

Motivating Example We observe the postings of five experts (Alice, Bob,
Carol, Dave, and Eve) across three posting threads on mobile computing (Mo-
bile), web technologies (Web), and streaming mechanisms (Streaming). Fig. ??
(left) provides the posting structure of these three discussions, displaying only
the author of a posting. The corresponding interaction structure is outlined in
Fig. ?? (right). In the discussion on mobile technologies Alice replied to a post-
ing by Bob. Therefore, we create an edge between these to experts. Carol also
participated in the discussion but did not respond directly to any of the ob-
served experts. Consequently we raise only her expertise level without creating
any edges. The same holds true for Alice’s second posting. Eventually we derive
following top experts for the three skills Mobile, Web, and Streaming : Alice is
the top expert for Mobile with two postings, Eve yields best expertise for Web
with three postings, and Bob and Carol share the most postings for Streaming.

We select Alice, Carol, and Eve to obtain one potential best qualified team.
They have, however, never directly interacted and thus share no common edge in
the network. An immediate improvement results from exchanging Carol for Bob
who is connected to Alice and yields the same expertise level as Carol. Ultimately,
a sensible trade-off consists of introducing Dave to the team for providing the
Web skill although he is not the most qualified expert. This trade-off, however,
produces an even better connected team where everyone knows everyone else. In
this paper, we will also consider edge weights to derive tighter connected teams.
We ignore them here, as the edge weights are all equal in this example.
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Fig. 2: Example transformation of discussion threads to interaction network and skills.
(Edge labels equal interaction count; M/W/S: Mobile, Web, and Streaming skills.)

4 Network and Skill Extraction

A posting thread is mapped to a tree graph F(P,R) with postings p ∈ P linked
by directed, weighted edges r ∈ R. Any edge ri points from a reply to its parent
posting and initially yields weight w(ri) = 1.

The expert social network is modeled as an undirected graph SN (V, E). The
nodes are experts v ∈ V, the weighted edges e ∈ E link two experts if at least
one of them has once posted a reply to the other. Applying undirected edges is
more appropriate than directed edges as without in-depth semantic analysis we
cannot distinguish between an expert correcting a novice, or a novice requesting
clarification from an expert. We, therefore, interpret each link as an interaction.
The edge weight w(e) derives from the amount of replies between two experts.

Each expert exhibits a skill profile SP comprising of multiple skills s. During
thread transformation, we first extract the topics from the thread and interpret
them as skills3. We then count for each expert active in the underlying thread the
number of postings and increase his/her skill counter ki(s) correspondingly. Each
posting increases the skill counter by 1 as this is the simplest assumption when
the content of the posting remains unknown. Some online discussion sites apply
a moderation scheme that allows moderators and/or other users to evaluate the
quality of individual postings (e.g., http://slashdot.org). Filtering out of low
quality posts can then be applied to better represent a user’s expertise and deter
non-experts to boost their expert-level through flooding a forum with irrelevant
posts. Scores provide a refined expertise structure, however our general approach
works on any discussion tree.

The absolute skill values are only an intermediary metric, as we need to be
able to compare multiple skills. To this end, we measure for each expert and each
skill the expertise level qi(s) in the interval [0; 1]. A linear transformation maps
the absolute skill counter to the relative expertise level: qi(s) = ki(s)/max(k(s))
such that the expert with most postings of a given skill s yields expertise
q(s) = 1. The overall aggregation of skills from every expert determines the

3 Consideration of synonyms and/or additional skill reasoning based on knowledge
models is outside the scope of this paper.



network’s skill portfolio SSN . Note that the transformation from thread struc-
ture to interaction network doesn’t necessarily create a new social network but
rather updates the edges between experts as well as skills of experts in an al-
ready existing network. Transformation of the posting structure to social network
links is, however, not immediately applicable on raw threads in the presence of
anonymous postings.

Thread Reduction Most discussion sites allow anonymous postings. The chal-
lenge is to remove those postings without jeopardizing the transformation of
remaining postings to the interaction network. There are two ways to deal with
such postings. On the one hand, we can ignore them and rely solely on direct
replies between known experts. When the number of anonymous postings is high,
however, this will reduce the likelihood of having a sensible set of interactions.
On the other hand, we can simply bridge the anonymous postings, thereby risk-
ing to introduce interactions between experts that do not reflect reality. Take
the initial thread in Figure ?? (left part) as an example. In the first case, we
would merely derive a link between Eve and Dave. The second case would yield
an overrated link between Eve and Dave (4 replies) and also an overly strong
link between Dave and Alice (1 reply).
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Fig. 3: Reduction of posting threads and transformation to interaction network.

Our thread reduction algorithm (Alg. ??) mitigates both disadvantages by
combining link bridging with link dampening. The link strength between a post-
ing and a reply is halved for each intermediary anonymous posting, thereby
rapidly decreasing with distance. Figure ?? (middle part) displays the reduced
thread and the link strength of each reply towards its parent. Ultimately, all
non-anonymous users from a discussion tree become part of the social network.
When extracting an optimal team, however, filtering out experts below a mini-
mum level of expertise improves processing speed.



Algorithm 1 Thread Reduction Algorithm T RA(F(P,R)).
for Posting m ∈ P do

if isAnonymousCreator(m) then
Posting parent ← getSuccessor(F , m)
ReplyEdge mp ← getEdge(T , m, parent)
/* Remove the edge from the anonymous posting to its parents */
removeEdge(F , mp)
for Posting child ∈ getPredecessors(F , m) do

/* For each reply */
ReplyEdge cm ← getEdge(F , child, m)
/* Remove the edge from the reply to the posting */
removeEdge(F , cm)
/* Add a new reply edge bridging the anonymous posting */
ReplyEdge cp ← createEdge(F , child, parent)
/* Reduce the edge weight */
setEdgeWeight(cp, getWeight(mp) ∗ getWeight(cm) ∗ 0.5)

end for
end if

end for

5 Formalizing the Team Formation Problem

The team formation problem defines a set of required skills SR ⊆ SSN . The
importance of each contained skill s ∈ SR is given by weight w(s) in the interval
]0; 1] with

∑
i wi(s) = 1. The goal is finding the set of experts T ⊆ V that

exhibits a good-enough match of the required skill while providing a sufficient
degree of connectivity within the team. Here the exact meaning of the terms
good-enough and sufficient are subject to the trade-off between skill coverage
and team distance.

Skill coverage measures how well the set of experts match the required set of
skills SR. For each skill s, the best match is the team member with the highest
corresponding expertise level q(s). A single expert potentially yields the highest
expertise level for multiple skills. Subsequently, the team’s overall skill fulfillment
CT is defined as:

CT =
∑

i

max(qj(si)) ∗ w(si) where vj ∈ T ∀si ∈ SR (1)

The team with maximum achievable coverage is denoted as Top(SR) and yields
for every required skill an expert with maximum expertise level q(s) = 1. The
top team, however, is not the best choice when its members have little interacted
before. The team distance DT quantifies the amount and strength of inter-team
links compared to the maximum possible connectivity:

DT =
∑

ET

1
w(eij)

+ (
|T | ∗ (|T | − 1)

2
− |ET |) ∗ β ∗max(

1
w(e)

) ∀i, j ∈ T (2)



where |ET | is the number of intra-team edges whereas max( 1
w(e) ) determines

the weight of the weakest link in the overall social network. As we aim to min-
imize DT , we sum across all inverted edge weights and add a penalty for every
non-existent edge. The penalty parameter β determines the impact of such a
non-existing edge. For β = 1 a missing edge between two experts receives the
minimum interaction weight, thus switching to a configuration with an addi-
tional edge has almost no impact on distance. As β → ∞ the existing edge
weights loose their significance and teams exhibiting a fully connected graph
will yield the lowest distance. A sensible value derived from our experiments is
β = 4 which we will use throughout this paper.

The overall team quality QT is ultimately obtained though aggregating skill
coverage CT and team distance DT . We introduce the trade-off parameter α that
configures acceptable combinations of coverage and distance:

QT = α ∗ CT + (1− α) ∗ (1− DT
DMAX

) α = [0; 1] (3)

where DMAX is the maximum distance for a team of |SR| experts what yield no
direct inter-team edges (|ET | = 0). The top team Top(SR) will yield the highest
quality when α approaches 1, whereas the best connected team will provide the
best quality for α → 0. We can guarantee a minimum skill coverage level if we
include only experts that exhibit a given expertise threshold.

For the example team formation problem in Figure ??, we derive following
quality measurements for the three considered teams when applying α = 0.5. A
team comprising Alice, Carol, and Eve will yield quality QACE = 0.5 with
CACE = 1 and DACE = 12. The team consisting of Alice, Bob, and Eve
achieves better distance, and thus also better quality: QABE = 0.625, with
CABE = 1 and DABE = 9. Finally, the combination of Alice, Bob, and Dave pro-
vides the best quality (for the given trade-off parameter): QABD = 0.82, with
CABD = 0.8̇ and DABD = 3. In all three cases, DMAX = 12 as 3 edges ∗ (β =
4) ∗ (max(1/w(e)) = 1) → 12.

6 Team Formation Heuristic

In the search of a better trade-off between skill coverage and team distance, we
need to test various expert combinations. Investigations of the rich-club phe-
nomenon in scientific collaboration networks (e.g., [?]) have shown that a suf-
ficiently well connected team is unlikely to be amongst the very top ranked
experts. A network exhibiting rich-club properties has the best-connected nodes
form tightly connected communities. In the case of expert networks — such as
scientific author networks — such tight collaborative groups exist only within
particular research domains but not beyond. Consequently, we need to include
also experts below the top 10 in our search for acceptable team configurations
when skills are increasingly different (e.g., when skills belong to distinct do-
mains).



Brute-force testing of every possible combination, however, quickly becomes
unfeasible. Testing the top m experts for SR skills has O(mSR) computational
complexity (i.e., already for 10 experts and 10 skills, we would need to analyze
10 billion combinations). Our goal is to find a better connected team than the
aggregation of the top experts for each skill but not necessarily the best possible
solution. Simulated Annealing [?] is a suitable optimization heuristic for this
problem.

6.1 Simulated Annealing

Simulated Annealing (SA) is a heuristic for approximating a global optimum
in complex mathematical problems. It is well suited for problems with discrete
search space such as the order of cities in the traveling sales man problem. We
briefly outline the generic heuristic aspect and discuss the problem specific parts
in the subsequent subsections in more detail. Simulated annealing is an iterative
process building on following basic components:

Candidate Solution contains the current best problem solution which is grad-
ually improved. In the team formation problem, the current solution T as-
signs one expert to each skill, potentially having one expert covering multiple
skills.

Solution Energy Function measures the quality of a given solution. SA aims
to find a solution with the lowest possible energy. The current quality func-
tion QT returns higher values for better team configurations. We provide the
restructured equation in the following subsection to derive a suitable energy
function.

Neighborhood Function provides a new candidate solution based on the cur-
rent solution. A good neighborhood function traverses the search space
quickly, but produces new solutions that yield similar energy level to the
preceding solution. The neighborhood function takes a team configuration
and replaces the expert of a random skill.

Transition Function decides whether to accept a new solution or to stick with
the current one. Simulated Annealing also accepts team configurations that
yield worse quality than the current one to avoid local optima.

Cooling function gradually reduces the temperature. Large solution changes
are less likely for lower temperatures. As the temperature falls, worse solu-
tions are less likely to be accepted.

We briefly outline the iterative process in Algorithm ?? as provided in the
JUNG 1.7.6 framework4. We omit some configuration parameters for sake of
clarity. Transition function and Cooling function are problem independent, thus
introduced here. We discuss neighborhood function and energy function in the
subsequent subsections. For now, we treat these as blackboxes.

Simulated annealing takes an initial solution (i.e., the top expert for every
skill) and derives the corresponding energy. Simulated Annealing continues to
4 http://jung.sourceforge.net/



evaluated similar solutions as long as the temperature has not reached zero and
there are more available iterations. A new solution is always accepted when it
yields lower energy (Alg. ?? line 12). Worse solutions are accepted with proba-
bility pSA defined as:

pSA = e−
δenergy

temp (4)

where δenergy is the energy difference between the current and new solution, temp
is the current annealing temperature, and e is Euler’s number. A transition to a
solution with higher energy is possible as long as the temperature remains high,
or the energy difference is very small.

The freezing process depends on the cooling rate and current iteration state.
As long as the number of successful transitions is high (i.e., success close to tries)
the system remains in a search space region that still provides many solutions
with lower energy. The function for the temperature in the next iteration is
defined as:

tempn = r
(limitaccept− success

tries
)∗tries

cooling ∗ temp (5)

where tries, rcooling, and limitaccept are configuration parameters. For our ex-
periments, we apply tries = 100, rcooling = 0.99, and limitaccept = 0.97

Algorithm 2 Simulated Annealing Algorithm SA(maxIt, startTemp).
1: T ← calcNewSolution(startTemp)
2: nrg ← calcEnergy(T )
3: temp ← startTemp
4: iteration ← 0
5: while temp > 0 ∪ iteration < maxIt do
6: success ← 0
7: for tries do
8: /* Neighborhood function provides a new solution. */
9: newSolution ← calcNewSolution(T , temp)

10: nrgnew ← calcEnergy(newSolution)
11: δenergy ← nrg − nrgnew

12: if doTransition(δenergy, newSolution, temp) then
13: T ← newSolution
14: nrg ← nrgnew

15: success + +
16: end if
17: end for
18: temp ← calcTemperature(temp, success)
19: iteration + +
20: end while
21: return T



6.2 Simulated Annealing Energy Function

The energy function provides the tradeoff between skill coverage CT and team
distance DT . A solution consists of an expert for each skill. We cannot directly
reuse the overall team quality function QT as SA requires an energy function
that decreases with raising solution quality. The initial solution consists of the
top expert for each required skill in SR. This composition provides an upper
boundary to the possible skill coverage. Any better solution must exhibit lower
energy by reducing the distance DT . Expert compositions that additionally come
with lower coverage need to yield proportionally even lower distance. The pro-
portion is determined by the tradeoff factor α. The initial solution has energy =
1. Any solution that reduces coverage and distance to similar extent yields also
energy = 1. Ultimately, the energy function for a solution T is defined as:

nrgT =
1− (α ∗ CT + (1− α) ∗ (1−D′T ∗ D−1

top))
1− α

(6)

where D′T is the normalized distance DT /DMAX and Dtop is the normalized
distance of the initial solution. As no solution can yield higher coverage than
the top experts, any solution with higher distance than Dtop will yield an energy
value greater than 1 and thus can safely be ignored. Dividing the aggregation
of skill coverage and distance by 1 − α ensures that regardless of α the initial
solution and any proportional tradeoff will always yield nrg = 1.

6.3 Simulated Annealing Neighborhood Function

The neighborhood function generates a new solution given a current solution.
The function needs to be able to (a) traverse the search space in short time and
(b) find neighboring configuration with similar energy. The first requirement
guarantees that the simulated annealing algorithms is able to reach all states in
a timely manner, thus potentially identifying the optimum solution. The second
requirement ensures the algorithm’s convergence. A random solution is more
likely to be worse (rather than better) than the current solution. Jumping be-
tween high energy states maintains a high temperature level, thereby keeping
the system from cooling down and finding the desired areas of low energy.

Our neighborhood function addresses both concerns. We randomly select
a required skill s and exchange the current expert vold with another expert
vnew with probability pnh. The neighborhood probability pnh depends on the
interaction proximity and threshold parameter snh

snh =
temp

maxTemp
∗ (proxmax − proxmin) + proxmin (7)

pnh(enew) =

{
1

m−1 if prox(vold, vnew) ≥ snh
ψ

m−1 otherwise with ψ = prox(vnew,vold)−proxmin

snh−proxmin

(8)

where m is the number of candidate experts. The proximity prox(vold, vnew)
between two experts is defined by the shortest hop path (SHP) with maximum
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Fig. 4: Probability function for selecting a particular expert based on annealing tem-
perature and interaction proximity.

edge weights. We sum across all traversed edges and take the hop count into
account to penalize for the number of intermediary experts. The stronger two
experts are connected, the higher their proximity.

prox(vi, vj) =
∑

k w(e)
k ∗ (k − 1) + 1

∀w(e) ∈ max[SHP (vi, vj)] (9)

For the expert selection probability pnh we define proxmax = max[prox(vold, vi)]
and analog proxmin = min[prox(vold, vi)] where vi is any expert that provides a
minimum expertise level of the selected skill (q(s) > 0). This prevents the selec-
tion of experts that are in close proximity but who do not provide the required
skill. When the expected workload requires a minimum number of members tmin,
we simply remove members of the current solution from the candidate set. We
first remove the worst ranked existing expert until no expert from the candidate
set (if selected) would violate the size constraint.

The neighborhood probability function ensures that experts that are in prox-
imity of the current solution are more likely to be selected, than experts further
away. Besides interaction proximity, also the current temperature affects this
probability. In the beginning, when temperature is still high, proximity has little
effect and every expert is equally like being selected. Later in the process, the
probability of selecting a particular expert decreases linearly with distance. As
shown in Figure ??, snh moves from proxmin to proxmax as the temperature
falls towards zero. Note that the neighborhood probability function pnh is not a
classical probability density function as the sum of probabilities for all observed
experts does not add up to 1.

This neighborhood function enables to quickly traverse the complete search
space at the beginning. Later, we still can reach every solution, but require more
steps to do so. We assume two experts in proximity to yield similar links to
common neighbors. Thus, as we increasingly select new experts that are close to
their replaced predecessor, the total connectivity will improve on average more
than selecting random experts. Subsequently, two candidate solutions will yield
similar energy values. This avoids fruitless testing of solutions with high energy.



7 Evaluation

We evaluate our team formation mechanism with a real world data set extracted
from Slashdot. We provide a brief introduction to the data set. The experiments
consist of 8 sets of 5 skill configurations for a total of 45 different skill configura-
tions. We present one example for in-depth discussion of the effect and successful
results of our approach.

Experiment Setup Slashdot is a well understood and rich data set [?] de-
scribing a large user community. Users submit information technology related
news items which the editors decide to publish or not. News fall into multiple
categories (i.e., subdomains) such as linux, apple, or games. A published piece of
news becomes a story which all users—anonymous or logged-in—can comment
on. These comments create a posting hierarchy. Slashdot exhibits the charac-
teristics of a large-scale expert network. Some users remain consistently active
throughout all subdomains. Other users join in an ad-hoc manner, participate for
a limited period, and then vanish again. Users are interested in providing their
knowledge to improve the quality and information content of a story. They rarely
engaging in long running personal communication threads with other users [?,?].

The subdomain names are directly mapped to skills. Each story maps to the
skill represented by its parent subdomain. The slashdot moderation system also
enables classification of postings according to Insightful, Interesting, Informative,
Funny, etc. content which we combine with subdomains to generate more fine-
grained skills. We group the experiment set in two rough categories: (i) cross-
subdomain teams and (ii) mixed inter-intra subdomain teams.

The first three experiment sets (Ex1 → Ex3) yield 6, 7, and 8 skills, respec-
tively, out of 10 available subdomains. When ever a user posts in a story within
a subdomain, his/her corresponding skill is raised by 1. The first skill set SSUB

contains S1 = apple, S2 = ask, S3 = entertainment, S4 = mobile, S5 = linux,
S6 = developers, S7 = games, S8 = news, S9 = slashdot, and S10 = it.
The remaining 5 experiment sets introduce skills combined from predicates and
subdomains; thus only postings with predicates are considered. When a user’s
posting within subdomain X receives a predicate Y, then the user’s skill XY
is increased (e.g., an Interesting posting within subdomain linux increases skill
linuxInteresting. The experiment sets (Ex4 → Ex8) are derived from 2x4, 6x2,
4x3, 3x4, and 4x4 subdomain-predicate combinations. The second skill set is the
combination of SSUB and SPRED = {P1 = Informative, P2 = Interesting,
P3 = Funny, P4 = Insightful } → {S1P1, . . . , S10P4} for a total of 40
skills.

All experiment rounds applied α = 0.5 and experts had to yield q(s) ≥ 0.5
to be considered for a particular skill s. Experts that did not provide a single
required skills were temporarily removed from the social network to improve
processing speed. Each skill was considered of equal importance, thus the skill
weights w(s) were uniformly set to 1/|SR|.



Experiment Results We analyze experiment set Ex1 configuration 4 in more
detail. The required eight skills are SR = {S1, S2, S3, S4, S7, S8, S9, S10}. Fig-
ure ?? visualizes the interaction structure of the initial and the optimal team.
The initial team of top experts are Ttop = {V 5, V 6, V 7, V 8, V 9, V 10} . The op-
timal team Topt = {V 1, V 2, V 3, V 4, V 7, V 10} keeps V 7 and V 10 from the initial
team but introduces four new experts5. Note that expert V 7 and V 10 provide
two skills each (see also Table ??). The optimal team improves the distance by
90% (from DTOP = 0.40 down to D′

T = 0.04) while reducing the skill coverage to
CT = 0.67(≡ 33%). The optimal team graph is fully connected, and in addition,
also exhibits stronger links between members than the initial team.

Fig. 5: Optimal expert team (green squares)
and initial expert team (yellow hexagons)
for experiment set Ex1 skill configura-
tion 4. Line thickness represents interaction
distance; with solid intra-team links and
dashed inter-team links. (Colors online)

Skill Ttop Topt r(s) q(s)

S1 V 8 V 1 5 0.594
S2 V 7 V 7 1 1.0
S3 V 6 V 10 12 0.535
S4 V 5 V 10 6 0.515
S7 V 9 V 2 4 0.524
S8 V 7 V 7 1 1.0
S9 V 10 V 3 5 0.577
S10 V 7 V 4 7 0.648

Table 1: Expert skills for initial TTOP

and optimal team TOPT for Ex1 con-
figuration 4. Rank r(s) and utility q(s)
of each expert for the provided skill are
in brackets. All experts in TTOP yield
rank r = 1 and utility q(.) = 1.

We have printed the energy of the initial, optimal, and next top-30 solutions
in Figure ??. The best and second best solution yield almost identical energy
and are also distance and skill fulfillment wise rather similar. The team con-
figuration, however, differs by one dropped, and two additional members. Most
top-30 solutions for this skill configuration remain around nrgT = 0.83. Within
those solutions a broad spectrum of teams exist that cover the range from low
distance/low skill coverage to high distance/high skill coverage. We can then
apply a-posteriori preferences towards higher skilled or lower skilled expert com-
positions from such a set of equally qualified teams. Our algorithm found in total

5 These 10 experts make up Ttop and Topt. The corresponding slashdot IDs are:
V 1:622222, V 2:987471, V 3:595695, V 4:71849, V 5:25149, V 6:912633, V 7:957197,
V 8:18001, V 9:727027, and V 10:835522. In total, 49 experts qualified as team member
candidate (at least one q(s) > 0.5) embedded in a social network of 17765 experts.



more than 100 team configurations which yield a better trade-off than the initial
team Ttop.
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Initial, optimal, and subsequent 30 top solutions
for Ex1 − Config 4: 8 Subdomains (8 Skills)

Fig. 6: Initial (top right), optimal (bottom
left), and top 30 solutions (normalized val-
ues) for Ex1 configuration 4.
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Optimal Tradeoff Ex4 −−> Ex8
equal energy level

Fig. 7: Normalized optimal solutions for
Ex1 → Ex3 (squares) and Ex4 → Ex8 (cir-
cles). (All initial solutions reside at [1, 1].

The results of configurations Ex1 → Ex3 reveal that the team formation
heuristic finds significantly better solutions for all of the observed skill combi-
nations. The normalized team distance D′

T of the optimal solutions (Figure ??
blue squares) amounts to 0.004 up to 0.17 of the initial distance while skill ful-
fillment remains comparatively high between 0.67 and 0.93. For each required
skill configuration, our approach found more than 100 solution that all provide
a better tradeoff than the initial team configuration Ttop. When we compare the
absolute distance values (DT ) in Figure ??, we note that the initial distance
does not affect the heuristic’s ability to find significantly well connected teams.

In experiment sets Ex4 → Ex8, we tested for the effect of correlated skills
(i.e., predicates within the same subdomain) and larger skill sets. The heuristic
still determines better solutions (except for configuration 5 in set 8 having 16
skills) but does not achieve as high quality tradeoffs as in Ex1 → Ex3 (compare
the red circles to the blue squares in Figure ??). Increasing the skill set results in
larger teams which are unlikely to exhibit similar dense connectivity as smaller
groups. Larger skill sets come also with lower alternative trade-off solutions. For
the Ex4 → Ex8, there exist on average 84.2, 76.4, 48.6, 49.6, and 17.2 alterna-
tives, respectively. The effect of similar skills becomes apparent in Ex8 which
contains all four predicates from 2 subdomains (ocher, upside down triangles
in Figure ??). Although team distance is significantly lower, the improvement
remains en par with the worst improvements in experiment 1. The average dis-
tance of set Ex8 D′

EX8 = 0.23 remains significantly above the distance of set
Ex1 D′

EX1 = 0.08 (having also 8 skills).
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Fig. 8: Initial and optimal solutions for the
15 skill configurations in Ex1 → Ex3. Ini-
tial solutions are slightly shifted (+/- 0.01)
for sake of clarity.
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Fig. 9: Initial and optimal solutions for the
25 skill configurations in Ex4 → Ex8. Ini-
tial solutions are slightly shifted (+/- 0.02)
for sake of clarity.

Evaluation Summary Our team composition algorithm provides excellent re-
sults across all experiment sets. Figure ?? compares the average and standard
deviation of energy, distance, and coverage for all eight experiment sets. Our
approach yields for all set consistently high skill coverage (∼ 0.8). The over-
all energy is, hence, mostly determined by team distance. Increasing skills and
skill similarity limit the achievable distance reduction. We are able to detect
significantly better connected teams for configurations of up to 12 skills, and
still some improvement for up to 16 skills. Teams without explicit management
structure, however, rarely exceed 10 to 12 members. We therefore did not test
any configurations larger than 16 skills.

8 Conclusion

Online communities provide both the raw data for deriving expert skill profiles
and their interaction structure. Considering only independent expert proper-
ties is insufficient for finding the best suited team. Optimal team composition
requires a trade-off between skill coverage and expert connectivity. We have
demonstrated the benefit of our heuristic for finding well connected experts that
simultaneously yield high expertise level in a social network. In the future, we
will investigate mechanisms to support skill dependencies (i.e., respective experts
connected tighter). This allows for finding optimally structured teams without
having to focus on neither fully connected graphs nor minimum-spanning tree
graphs. Such skill dependencies also provide the basis for composing optimally
structured teams beyond 12 members in combination with management skills.
At the same time, we plan to evaluate our algorithm with other online commu-
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Fig. 10: Average and standard deviation of energy, distance, and coverage for all ex-
periment sets (full lines). The respective skill count for each experiment set is given by
the dashed, green line. (Colors online)

nities that exhibit a larger overall skill set. A qualitative comparison to other
team formation algorithms is also an open topic.
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