Skip to main content

Learning to Discover Faulty Spots in cDNA Microarrays

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2010 (IBERAMIA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6433))

Included in the following conference series:

  • 1382 Accesses

Abstract

Gene expression ratios obtained from microarray images are strongly affected by the algorithms used to process them as well as by the quality of the images. Hundreds of spots often suffer from quality problems caused by the manufacturing process and many must be discarded because of lack of reliability. Recently, several computational models have been proposed in the literature to identify defective spots, including the powerful Support Vector Machines (SVMs). In this paper we propose to use different strategies based on aggregation methods to classify the spots according to their quality. On one hand we apply an ensemble of classifiers, in particular three boosting methods, namely Discrete, Real and Gentle AdaBoost. As we use a public dataset which includes the subjective labeling criteria of three human experts, we also evaluate different ways of modeling consensus between the experts. We show that for this problem ensembles achieve improved classification accuracies over alternative state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary cDNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  2. Lashkari, D.A., DeRisi, J.L., McCusker, J.H., Namath, A.F., Gentile, C., Hwang, S.Y., et al.: Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl. Acad. Sci. USA 94(24), 13057–13062 (1997)

    Article  Google Scholar 

  3. Eisen, M.B., Brown, P.O.: DNA arrays for analysis of gene expression. Meth. Enzymol. 303, 179–205 (1999)

    Article  Google Scholar 

  4. Alizadeh, A.A., Eisen, M.B., Davis, E.E., Ma, C., Lossos, I.S., Rosenwald, A., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)

    Article  Google Scholar 

  5. Bengtsson, A., Bengtsson, H.: Microarray image analysis: background estimation using quantile and morphological filters. BMC Bioinformatics 7(96), 1–15 (2006)

    Google Scholar 

  6. Chen, T.B., Lu, H.H.S., Lee, Y.S., Lan, H.J.: Segmentation of cDNA microarray images by kernel density estimation. Journal of Biomedical Informatics 41, 1021–1027 (2008)

    Article  Google Scholar 

  7. Giannakeas, N., Fotiadis, D.I.: An automated method for gridding and clustering-based segmentation of cDNA microarray images. Comput. Med. Imaging Graph. 33, 40–49 (2009)

    Article  Google Scholar 

  8. Bariamis, D., Maroulis, D., Iakovidis, D.: Unsupervised SVM-based gridding for DNA microarray images. Comput. Med. Imaging Graph. (2009)

    Google Scholar 

  9. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., et al.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  10. Sturn, A., Quackenbush, J., Trajanoski, Z.: Genesis: cluster analysis of microarray data. Bioinformatics 18(1), 207–208 (2002)

    Article  Google Scholar 

  11. Chopra, P., Kang, J., Yang, J., Cho, H.J., Kim, H.S., Lee, M.G.: Microarray data mining using landmark gene-guided clustering. BMC Bioinformatics 9(92), 1–13 (2008)

    Google Scholar 

  12. Peterson, L.E., Coleman, M.A.: Logistic ensembles of Random Spherical Linear Oracles for microarray classification. Int. J. Data Min. Bioinform. 3(4), 297–382 (2009)

    Article  Google Scholar 

  13. Axon GenePix Pro 7.1., http://www.moleculardevices.com

  14. Eisen, M.: Scanalyze (1999), http://rana.lbl.gov/EisenSoftware.html

  15. Ruosaari, S., Hollmen, J.: Image analysis for detecting faulty spots from microarray images. In: Lange, S., Satoh, K., Smith, C. (eds.) DS 2002. LNCS, vol. 2534, pp. 259–266. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Hautaniemi, S., Edgren, H., Vesanen, P., Wolf, M., Jrvinen, A.K., Yli Harja, O., et al.: A novel strategy for microarray quality control using bayesian networks. Bioinformatics 19(16), 2031–2038 (2003)

    Article  Google Scholar 

  17. Bicego, M., Martínez, M.D.R., Murino, V.: A supervised data-driven approach for microarray spot quality classification. Pattern Anal. Applic. 8, 181–187 (2005)

    Article  MathSciNet  Google Scholar 

  18. Vapnik, V.: The nature of statistical learningn theory. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  19. Liu, X., Zhang, L., Li, M., Zhang, H., Wang, D.: Boosting image classification with LDA-based feature combination for digital photograph management. Pattern Recognition 38(6), 887–901 (2005)

    Article  Google Scholar 

  20. Baluja, S., Rowley, H.A.: Boosting sex identification performance. International Journal of Computer Vision 71(1), 111–119 (2007)

    Article  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  22. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  23. Schapire, R.E.: The Strength of Weak Learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  24. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of Statistics 28, 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Benediktsson, J.A., Swain, P.H.: Consensus theoretic classification methods. IEEE Trans. Systems, Man Cybernet. 22, 688–704 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larese, M.G., Granitto, P.M., Gómez, J.C. (2010). Learning to Discover Faulty Spots in cDNA Microarrays. In: Kuri-Morales, A., Simari, G.R. (eds) Advances in Artificial Intelligence – IBERAMIA 2010. IBERAMIA 2010. Lecture Notes in Computer Science(), vol 6433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16952-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16952-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16951-9

  • Online ISBN: 978-3-642-16952-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics