Skip to main content

Pattern Recognition Using Spiking Neurons and Firing Rates

  • Conference paper
Advances in Artificial Intelligence – IBERAMIA 2010 (IBERAMIA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6433))

Included in the following conference series:

Abstract

Different varieties of artificial neural networks have proved their power in several pattern recognition problems, particularly feed-forward neural networks. Nevertheless, these kinds of neural networks require of several neurons and layers in order to success when they are applied to solve non-linear problems. In this paper is shown how a spiking neuron can be applied to solve different linear and non-linear pattern recognition problems. A spiking neuron is stimulated during T ms with an input signal and fires when its membrane potential reaches a specific value generating an action potential (spike) or a train of spikes. Given a set of input patterns belonging to K classes, each input pattern is transformed into an input signal, then the spiking neuron is stimulated during T ms and finally the firing rate is computed. After adjusting the synaptic weights of the neuron model, we expect that input patterns belonging to the same class generate almost the same firing rate and input patterns belonging to different classes generate firing rates different enough to discriminate among the different classes. At last, a comparison between a feed-forward neural network and a spiking neuron is presented when they are applied to solve non-linear and real object recognition problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.A.: Introduction to Neural Networks. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  2. Werbos, P.J.: Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 1550–1560 (1990)

    Article  Google Scholar 

  3. Garro, B.A., Sossa, H., Vazquez, R.A.: Design of Artificial Neural Networks using a Modified Particle Swarm Optimization Algorithm. IJCNN, 938–945 (2009)

    Google Scholar 

  4. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Networks 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  5. Rieke, F., et al.: Spikes: Exploring the Neural Code. Bradford Book (1997)

    Google Scholar 

  6. Hasselmo, M.E., Bodelon, C., et al.: A Proposed Function for Hippo-campal Theta Rhythm: Separate Phases of Encoding and Retrieval Enhance Re-versal of Prior Learning. Neural Computation 14, 793–817 (2002)

    Article  MATH  Google Scholar 

  7. Hopfield, J.J., Brody, C.D.: What is a moment? Cortical sensory integration over a brief interval. PNAS 97(25), 13919–13924 (2000)

    Article  Google Scholar 

  8. Loiselle, S., Rouat, J., Pressnitzer, D., Thorpe, S.: Exploration of rank order coding with spiking neural networks for speech recognition. IJCNN 4, 2076–2080 (2005)

    Google Scholar 

  9. Azhar, H., Iftekharuddin, K., et al.: A chaos synchronization-based dynamic vision model for image segmentation. IJCNN 5, 3075–3080 (2005)

    Google Scholar 

  10. Thorpe, S.J., Guyonneau, R., et al.: SpikeNet: Real-time visual processing with one spike per neuron. Neurocomputing 58(60), 857–864 (2004)

    Article  Google Scholar 

  11. Di Paolo, E.A.: Spike-timing dependent plasticity for evolved robots. Adaptive Behavior 10(3), 243–263 (2002)

    Article  Google Scholar 

  12. Floreano, D., Zufferey, J., et al.: From wheels to wings with evolutionary spiking neurons. Artificial Life 11(1-2), 121–138 (2005)

    Article  Google Scholar 

  13. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. on Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  14. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. on Neural Networks 15(5), 1063–1070 (2004)

    Article  Google Scholar 

  15. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    Google Scholar 

  16. Gerstner, W., et al.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  17. Frias-Martinez, E., Gobet, F.: Automatic generation of cognitive theories using genetic programming. Minds and Machines 17(3), 287–309 (2007)

    Article  Google Scholar 

  18. Hendrickson, E., et al.: Converting a globus pallidus neuron model from 585 to 6 compartments using an evolutionary algorithm. BMC Neurosci. 8(s2), P122 (2007)

    Article  Google Scholar 

  19. Price, K., Storn, R.M., Lampinen, J.A.: Diffentential evolution: a practical ap-proach to global optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  20. Murphy, P.M., Aha, D.W.: UCI repository of machine learning databases. Dept. Inf. Comput. Sci., Univ. California, Irvine, CA (1994)

    Google Scholar 

  21. Vazquez, R.A., Sossa, H.: A new associative model with dynamical synapses. Neural Processing Letters 28(3), 189–207 (2008)

    Article  Google Scholar 

  22. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. on SMC 9(1), 62–66 (1979)

    Google Scholar 

  23. Jain, R., et al.: Machine Vision. McGraw-Hill, New York (1995)

    Google Scholar 

  24. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on Information Theory 8, 179–187 (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vázquez, R.A. (2010). Pattern Recognition Using Spiking Neurons and Firing Rates. In: Kuri-Morales, A., Simari, G.R. (eds) Advances in Artificial Intelligence – IBERAMIA 2010. IBERAMIA 2010. Lecture Notes in Computer Science(), vol 6433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16952-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16952-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16951-9

  • Online ISBN: 978-3-642-16952-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics