
Mapping ORM to Datalog: An Overview

Terry Halpin1, Matthew Curland2, Kurt Stirewalt2, Navin Viswanath2,
Matthew McGill2, Steven Beck2

1LogicBlox, Australia and INTI International University, Malaysia
2LogicBlox, USA

e-mail: {terry.halpin, matt.curland, kurt.stirewalt, navin.viswanath, matt.mcgill, ste-
ven.beck}@logicblox.com

Abstract: Optimization of modern businesses is becoming increasingly de-
pendent on business intelligence and rule-based software to perform predictive
analytics over massive data sets and enforce complex business rules. This has
led to a resurgence of interest in datalog, because of its powerful capability for
processing complex rules, especially those involving recursion, and the exploi-
tation of novel data structures that provide performance advantages over rela-
tional database systems. ORM 2 is a conceptual approach for fact oriented
modeling that provides a high level graphical and textual syntax to facilitate va-
lidation of data models and complex rules with nontechnical domain experts.
DatalogLB is an extended form of typed datalog that exploits fact-oriented data
structures to provide deep and highly performant support for complex rules
with guaranteed decidability. This paper provides an overview of recent re-
search and development efforts to extend the Natural ORM Architect
(NORMA) software tool to map ORM models to DatalogLB.

1 Introduction

In order to compete effectively in the information age, many businesses are exploiting
information technology as a way to promote efficiency and reduce costs. For exam-
ple, business intelligence tools and rule-based software are being increasingly used to
perform predictive analytics over massive data sets and enforce complex business
rules. This has led to a resurgence of interest in datalog, because of its powerful capa-
bility for processing complex rules, especially those involving recursion. Moreover,
novel data structures such as column-oriented data stores are being exploited to pro-
vide performance advantages over relational database systems for complex analytics
and data warehousing tasks (http://en.wikipedia.org/wiki/Column-oriented_DBMS).

While datalog and related technologies are powerful, the effective use of them
typically requires a considerable level of mathematical sophistication. This often re-
sults in a communication gap when the business experts, who best understand the
complex business rules and queries needed for their business, attempt to validate that
the technical rules and queries used in the implementation actually conform to their
requirements. This problem is best addressed by first formulating the models, rules
and queries at a conceptual level where they can be reliably validated with the busi-

ness domain experts, and then automatically transforming these high level constructs
into equivalent, lower level constructs (e.g. datalog code) for implementation.

This paper provides an overview of our recent research and development efforts to
support such a model-driven engineering approach to business analytics. For the con-
ceptual level, we use second generation Object-Role Modeling (ORM 2) [10]. Unlike
attribute-based approaches such as Entity-Relationship (ER) modeling [5] and class
diagramming within the Unified Modeling Language (UML) [23], ORM is fact-
oriented, where all facts, constraints, and derivation rules may be verbalized naturally
in sentences easily understood and validated by nontechnical business users using
concrete examples. ORM’s graphical notation for data modeling is far more expres-
sive than that of industrial ER diagrams or UML class diagrams, and its attribute-free
nature makes it more stable and adaptable to changing business requirements. Brief
introductions to ORM may be found in [12, 15], a detailed introduction in [16], a tho-
rough treatment in [18], and a comparison with UML in [14]. An overview of fact-
oriented modeling approaches, including ORM and others such as RIDL [22], NIAM
[24], and PSM [20], as well as history and research directions, may be found in [13].

For the datalog platform, we use datalogLB, a vastly extended version of datalog
developed by LogicBlox. DatalogLB is a typed datalog [24] that employs fact-oriented
data structures with performance benefits similar to those of column stores when
processing very complex rules over vast data sets. For detailed coverage of traditional
datalog, see [1, 6, 9]. DatalogLB extends basic datalog with stratified negation, types,
functions (including aggregate functions), transactions, modules (called “blocks”),
constraints, default values, ordered predicates, metalevel support, and other features.

Early tool support for ORM introduced two textual languages. Formal ORM Lan-
guage (FORML) was supported as an output verbalization language in InfoModeler
and the ORM solution within Microsoft Visio for Enterprise Architects. Conceptual
Query Language (ConQuer) enabled ORM models to be queried, and was imple-
mented in the InfoAssistant and ActiveQuery tools [3, 4]. However, the ConQuer lan-
guage was used only for formulating non-recursive ORM queries, not constraints or
derivation rules, and tool support for it is no longer available.

Recently, ORM was extended to ORM 2, with tool support provided by Natural
ORM Architect (NORMA) [8], including improved constraint verbalization in
FORML 2 [17, 19] as well as further rule options such as semiderived types, deontic
rules, and deep support for conceptual outer joins [18]. More recently, we developed a
role calculus to formally capture derivation rules in ORM [7], and the VisualBlox
team at LogicBlox has extended the NORMA tool to capture derivation rules and
have also developed a VisualBlox tool to map ORM models to DatalogLB.

Extensions to the NORMA tool allow ORM 2 derivation rules to be entered by
clicking options in a Model Browser, and are then stored in a structure based on the
role calculus, which offers a high level of semantic stability [7]. Compared to the Ac-
tiveQuery tool for ConQuer, NORMA’s derivation support covers a wider range of
rules (including recursion), has much better rule verbalization, and generates datalog
code for implementation instead of SQL. While it is planned to add SQL generation
for derivation rules at a later stage, our current efforts are focused on completing the
datalog generation. NORMA’s derivation language is designed to be relationally
complete, and at the time of writing, about 90% of its constructs have been automati-
cally transformed into DatalogLB.

While the role calculus offers advantages such as compactness and semantic stabil-
ity, its internal metamodel is technically challenging and its structures differ signifi-
cantly from those of datalog or SQL. To simplify the task of transforming role calcu-
lus structures into target languages such as datalog and SQL, we first map the role
calculus version of derivation rules to an intermediate structure based on the domain
relational calculus, and then transform this second structure into the target code.

This paper provides a high level overview of some of this work, illustrating some
of the mapping patterns by concrete examples. Discussion of the relevant metamodels
and detailed transformation algorithms is beyond the scope of this paper, but portions
of an early version of the role calculus metamodel may be found in [7].

The rest of this paper is structured as follows. Section 2 briefly illustrates how
ORM object types, fact types, and constraints map to DatalogLB. Section 3 discusses
the basics of mapping ORM derivation rules map to DatalogLB, including a rule for
placing existential quantifiers. Section 4 considers some derivation rule examples in-
volving use of scalar and aggregate functions. Section 5 summarizes the main results,
outlines future research directions, and lists references.

2 Mapping ORM Object Types, Fact Types, and Constraints

In logic, an individual is a single thing of interest (e.g. a specific person, country,
name, or number). An object in ORM corresponds to an individual in this sense. In
first-order logic (FOL), predication is allowed only over individuals, not predicates,
and quantification is allowed only over individual variables. First-order logic is unde-
cidable, so there are some first-order formulas whose truth value can’t be established
by any algorithm. An algorithm to map ORM models into unsorted, first-order logic
was provided by one of the authors in the late 1980s [10].

In the 1990s, the ConQuer query language for ORM was formalized in terms of
sorted FOL, extended by a special operator for outer joins as well as set and bag com-
prehension [4]. Later, ORM 2 added modal operators to distinguish between alethic
and deontic rules. Currently, deontic rules are ignored in mapping to datalog. While
outer joins can be captured in NORMA derivation rules, their transformation to Data-
logLB awaits further work.

Datalog is designed for database work, and is a decidable fragment of first-order
logic with powerful capabilities for storing, constraining, and deriving facts. As a log-
ic programming language, datalog’s support for recursive rules is more elegant and
efficient than that provided by relational database systems. Unlike other logic pro-
gramming languages such as Prolog, datalog programs are guaranteed to terminate.

Standard datalog uses prefix notation, with individual terms (individual variables
or constants) listed in parentheses after the predicate name. In basic datalog, a rule is
an expression of the form

q(τ1, …,τn) ← p1(x1, …), …, pm(y1, …).

where the head predicate q has as argument an ordered list of individual terms τ1, …τn
(n ≥ 0), each variable of which must occur in at least one argument of the body predi-
cates p1 … pm (m ≥ 0), the main propositional operator “←” (read as “if”) is the con-

verse implication operator from logic, and a comma “,” (read as “and”) between pre-
dications is the logical conjunction operator. A predication (the application of a
predicate to a list of variables or constants) is also known as an atom or positive lit-
eral. The head or the body may be empty (but not both). A rule is treated as shorthand
for a formula where the head variables are universally quantified at the top level, and
any other variables introduced in the body are existentially quantified, with the exis-
tential quantifiers placed at the start of the body [1, p. 279]. For example, the follow-
ing datalog rule

grandparentOf(x, y) ← parentOf(x, z), parentOf(z, y).

is equivalent to the following FOL formula (using mixfix predicates)
∀x∀y[x is a grandparent of y ← ∃z(x is a parent of z & z is a parent of y)].

Datalog adopts the closed world assumption (CWA), so if the same atom appears

as the head of exactly n rules, the logical disjunction of the n rule bodies provides an
if-and-only-if (iff) condition for the head. For example, the logical rule ∀x∀y[x is a
parent of y ← (x is a father of y ∨ x is a mother of y)] may be set out in datalog as

parentOf(x, y) ← fatherOf(x, y).
parentOf(x, y) ← motherOf(x, y).

DatalogLB, allows such disjunctions to be captured as a single rule, using a semico-

lon “;” for the inclusive-or operator. In datalogLB, “←” is rendered as “<-” and no ital-
ics are used. So the above parenthood rule may be set out in DatalogLB thus:

parentOf(x, y) <- fatherOf(x, y) ; motherOf(x, y).

Datalog extended with negation allows negated atoms (negative literals) in the
body. DatalogLB uses an exclamation mark “!” for the logical negation operator. An
anonymous variable (denoted by an underscore “_” and read as “something”) is used
to existentially quantify a variable that is not referenced elsewhere in the formula (in
which case the implicit existential quantifier has scope over only the atom in which
the underscore occurs). For example, the derivation rule for living parents expressed
as the FOL formula ∀x[x is a living parent ← (∃y(x is a parent of y) & ~ x died)] may
be formulated thus:

livingParent(x) <- parentOf(x, _), !died(x).
DatalogLB is a typed datalog, so each of its predicates is constrained to apply to a se-
quence of zero or more types. Object types are modeled in datalogLB as unary predi-
cates. Entity types are directly supported, but value types are currently handled as im-
plicit subtypes of the associated data type. Type declarations are specified as
constraints, or “right-arrow” formulas, using “->” (read as “implies” or “only if”) for the
material implication operator. Entity types that are identified using reference modes
are declared along with their reference modes, using a colon “:” in the variable list of
the reference predicate. For example, Country(.code) maps to:

Country(x), country:code(x:y) -> string(y).	
An ORM fact type corresponds to a set of one or more typed predicates. A Data-

logLB predicate represents exactly one ORM fact type, so qualified predicate names
are often used to distinguish predicates that have the same predicate reading in ORM.

For example, the m:n predicates in Person runs Company and Horse runs Race may be de-
clared respectively as follows:

person:company:runs(x, y) -> Person(x), Company(y).
horse:race:runs(x, y) -> Horse(x), Race(y).
If a fact type has a uniqueness constraint spanning n-1 roles, a square-bracket nota-

tion is used to indicate the functional nature of the predicate. For example:
person:birthcountry[p]=c -> Person(p), Country(c).
Additional uniqueness constraints need to be declared separately. Variable names

may include letters and digits. For example, the ORM schema in Figure 1 may be de-
clared in DatalogLB as follows, using the functional predicate declaration style to cap-
ture the left-hand uniqueness constraint on the head of government predicate and a
separate clause to capture the right-hand uniqueness constraint.

Politician(p), politician:name(p:n) -> Politician(p), string(n).
Country(c), country:code(c:cc) -> Country(c), string(cc).
politician:countryGoverned[p]=c -> Politician(p), Country(c).
politician:countryGoverned[p1]=c, politician:countryGoverned[p2]=c -> p1=p2.

Fig. 1. A populated 1:1 ORM fact type.

The above code is an example of a DatalogLB program. Data files are declared sep-
arately using delta predicates. For example, the data population in Figure 1 may be
declared using the following assertions, where the “+” indicates insertion (addition of
a fact to a predicate’s population). Facts may be retracted (using “−”) or modified us-
ing other options.

+politician:countryGoverned["Barack Obama"] = "US".
+politician:countryGoverned["Julia Gillard"] = "AU".
To illustrate the benefits of DatalogLB for capturing ORM constraints, consider the

ORM schema shown in Figure 2(a), which is fragment of a larger schema discussed
elsewhere [16]. The equivalent DatalogLB code shown in Figure 2(b). For discussion
purposes, comments are inserted above the code for three constraints.

The mandatory role constraint that each book has a title is neatly expressed using
an anonymous variable. The exclusion constraint that no book may be written and re-
viewed by the same person is also easily captured using negation. Finally, the acyclic
constraint on the book translation predicate is enforced by introducing a recursively
derived ancestor predicate and then declaring that to be irreflexive. This is much sim-
pler than the equivalent SQL code, and also offers better performance.

Fig. 2. (a) An ORM schema mapped to (b) DatalogLB.

3 Mapping Derivation Rules

The above acyclic constraint enforcement introduced a derived fact type under the
covers. ORM users may also introduce derived fact types of their own, and have
NORMA map these to DatalogLB. For implementation, we first capture the derivation
rules in a role-calculus based structure, and then transform this to an intermediate,
domain relational calculus structure, from which the DatalogLB code is generated.

Derivation rules may be used to derive either subtypes or fact types. The NORMA
screenshot in Figure 3(a) includes two derived subtypes and one derived fact type.
Figure 3(b) shows how the associated derivation rules are displayed in the Model
Browser after being entered by selecting and clicking the relevant options.

(a) (b)

Fig. 3. NORMA screenshot of an ORM schema and its derivation rules.

The derivation path for the subtype FastCarDriver starts with Person (the path root)
and navigates via the drives predicate to Car and then onto the isFast predicate, per-
forming a conceptual join on Car. NORMA generates the following verbalization for
the derivation rule: *Each FastCarDriver is some Person who drives some Car that is fast. The
role calculus form of the rule is translated to a named tree structure representing the
following sorted, relational calculus formula {x:Person | ∃y:Car (x drives y & y is
fast)}. This is then transformed to an equivalent version of the following DatalogLB
rule, using standard techniques for reducing sorted to unsorted logic, and employing
implicit quantification:

FastCarDriver(x) <- Person(x), Car(y), person:car:drives(x, y), car:isFast(y).
The derivation path for the NonDriver subtype starts with Person and then negates its

entry into the drives predicate. This verbalizes as: *Each NonDriver is some Person who
drives no Car. This maps to a named structure for the relational calculus formula
{x:Person | ~∃y:Car x drives y}. For first-time users of datalog, the following rule may
seem like an acceptable way to encode this rule:

NonDriver(x) <- Person(x), !(Car(y), person:car:drives(x, y)). -- error!
However, the implicit existential quantification ∃y is before the negation rather

than inside it, so the body is satisfied if x is a person, and there is anything that is not
a car or is not driven by x. The range of y is unrestricted, so the rule is unsafe. In basic
datalog, negands in the rule body are restricted to atoms, but in the above example the
negand is a conjunction. DatalogLB allows negated conjunctions if the variables in the
negand are range restricted outside the negation (which is not true of the y variable in
the above example). One solution is to generate the code in two steps, first deriving
the opposite predicate and then negating it as shown below. It can also be done in one
rule simply as NonDriver(x) <- Person(x), !person:car:drives(x,_).

Driver(x) <- Person(x), Car(y), person:car:drives(x, y).
NonDriver(x) <- Person(x), !Driver(x).
Figure 3 also includes the derived fact type in Person doesn’t drive all cars. This is in-

tended to return each person where there is at least one car not driven by that person.
In this case, the derivation path starts with a car variable, and then uses negation to
navigate to the person(s) who don’t drive that car, and finally the derived role of Per-
son is bound to that person variable. This verbalizes as: *Person doesn’t drive all cars if and
only if for some Car it is not true that that Person drives that Car.

A key aspect of generating the relational calculus version of the rule is knowing
where to place existential quantifiers. Unprojected root variables are existentially
quantified. Hence the derivation rule currently being discussed leads to the following
relational calculus formula: {x:Person | ∃y:Car ~x drives y}.

ORM is essentially a sugared, visual version of sorted logic, hence in ORM each
variable that is projected is a typed variable. The act of projecting on a typed variable
in the scope of a negation ensures that the type declaration for that variable is lifted
outside the negation. As a more general approach that works also with unsorted rela-
tional calculus, we introduce the following Existential Placement Rule (EP).

For each variable ν that occurs only in the rule body, place ∃ν immediately before
the minimal wff that contains all the ν occurrences. Hence, if ν occurs only inside a
negation then place ∃ν immediately after the negation symbol.

For the current derivation rule, the unsorted relational calculus formula with im-

plicit quantification is {x | Person x & Car y & ~x drives y}. The only variable intro-
duced in the rule body is y, and the minimal wff containing all its occurrences is Car y
& ~x drives y. Applying EP now yields {x | Person x & ∃y(Car y & ~x drives y)},
which is equivalent to the sorted version given earlier. Using the Change of Scope
rule ∃ν(p & Φν).≡. p & ∃νΦν where p is any wff in which ν does not occur free, this
now maps to the DatalogLB code shown below. In contrast to our NORMA and Visu-
alBlox implementation, the ActiveQuery tool [4], although dealing well with many
tasks, fails to provide correct semantics for this rule when formulated as a query.

doesntDriveAllCars(x) <- Person(x), Car(y), !drives(x, y).

4 Functions

Figure 4 shows an ORM schema with two derived fact types. The FORML derivation
rules involve a multiply operator and a sum function (both are treated as functions in
NORMA). An earlier paper discussed how to capture these two rules in the role calcu-
lus [7]. We now discuss their transformation to DatalogLB. The asserted fact types
map in the usual way. Assuming a float32 data type for AUDValue, the subtotal deri-
vation rule maps to a named version of the relational calculus expression:
{li:LineItem, st:Float32 | ∃q:Quantity ∃p:AUDValue (li hasQuantity q & li hasUnit-
Price p & st = q * p)}. This maps to the following predicate declaration and rule in
DatalogLB:

lineItem:subtotalValue[x]=y -> LineItem(x), float[32](y).
lineItem:subtotalValue[x]=y <- lineItem:quantity[x]=q, lineItem:unitPrice[x]=p, y=q*p.
The invoice total rule uses the subtotal rule, generating a named version of the fol-

lowing relational calculus expression: {i:Invoice, t:Float32 | t = sum{st:AUDValue |
∃li:LineItem (li is on i & li has subtotal value st)}}. DatalogLB includes a function
called “total” to sum over sets or bags of numeric values. This function may now be
applied to the derived subtotal predicate to derive the invoice total predicate.

Fig. 4. Derivations involving a mathematical operator and aggregate function.

A special “agg” syntax is used for this as well as other aggregate functions (e.g.
counts, minima and maxima). The type declaration and derivation rule for the invoice
total is rendered by the following DatalogLB code:

invoice:totalValue[x]=t -> Invoice(x), float[32](t).
invoice:totalValue[x]=t <- agg<< t=total(st) >> lineItem:invoice[li]=x,

lineItem:subtotalValue[li]=st.

5 Conclusion

This paper provided a high level overview of our recent work to automatically trans-
form ORM models, including derivation rules, to an extended version of datalog, us-
ing a sorted, relational calculus based structure as an intermediate format between the
initial role calculus based source structure and the final datalog code. A general pro-
cedure was introduced for placement of existential quantifiers in the intermediate
structure to ensure that the desired semantics are achieved. To assist readers unversed
in datalog, we have used simple, concrete examples to illustrate the main ideas. In
practice, rules of far greater complexity are supported.

As future research, we plan to cater for DatalogLB derivation rules that are not yet
supported in NORMA and VisualBlox. For example, in DatalogLB heights may be or-
dered using a meta-predicate and the top ranking function may then be used to return
the top r height values via the following rule. Adding high level support for such rules
will empower more users to exploit the expressive power of DatalogLB.

heightRank:heightVal[r]=hv <- agg<<hv = top[r](y)>> height:cmValue(_:y).
Derivation rules and queries are safe only if they are guaranteed to execute in a fi-

nite time. Most versions of datalog implement safety using syntactic checks proposed
by Ullman (e.g. all head variables must occur in the rule body, and any variables in an
arithmetic or relational subgoal must also appear in a positive relational subgoal) [9].
While efficient to implement, these safety rules are in fact too strong (e.g. see [21]),
and we are researching ways to accept rules in a more convenient format that can be
transformed into Ullman-safe rules. Apart from more sophisticated support for safety,
we plan to extend our ORM-to-DatalogLB conversion to 100% coverage, add support
for dynamic rules [2], and extend both ORM and our mapping procedures to exploit
new features being added to DatalogLB (e.g. existential variables in rule heads).

Acknowledgment: The assistance of our LogicBlox colleague Martin Bravenboer in
providing helpful feedback on related work is greatly appreciated.

References

1. Abiteboul, S., Hull, R. & Vianu, V. 1995, Foundations of Databases, Addison-Wesley.
2. Balsters, H. & Halpin, T. 2008, ‘Formal Semantics of Dynamic Rules in ORM’, On the

Move to Meaningful Internet Systems 2008: OTM 2008 Workshops, eds. R. Meersman, Z.
Tari, P. Herrero et al., Monterrey, Mexico, Springer LNCS 5333, pp. 699-708.

3. Bloesch, A. & Halpin, T. 1996, ‘ConQuer: a conceptual query language’, Proc. ER’96:
15th Int. Conf. on conceptual modeling, Springer LNCS, no. 1157, pp. 121-133.

4. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. ER’97: 16th
Int. Conf. on conceptual modeling, Springer LNCS, no. 1331, pp. 113-126.

5. Chen, P. P. 1976, ‘The entity-relationship model—towards a unified view of data’. ACM
Transactions on Database Systems, 1(1), pp. 9−36.

6. Colomb, R. 1998, Deductive Databases and their Applications, Taylor & Francis Ltd,
London.

7. Curland, M., Halpin, T. & Stirewalt, K. 2009, ‘A Role Calculus for ORM’, On the Move
to Meaningful Internet Systems 2009: OTM 2009 Workshops, eds. R. Meersman, P. Her-
rero & T. Dillon, Springer LNCS 5872, pp. 692–703.

8. Curland, M. & Halpin, T. 2010, ‘The NORMA Tool for ORM 2’, Proc. CAiSE-2010 Fo-
rum, Tunisia.

9. Garcia-Molina, T., Ullman, J. & Widom, J. 2009, Database Systems: The Complete Book,
2nd edition, Pearson.

10. Halpin, T. 1989, ‘A Logical Analysis of Information Systems: static aspects of the data-
oriented perspective’, doctoral dissertation, University of Queensland. Available as an 18
MB bitmap pdf file at http://www.orm.net/Halpin_PhDthesis.pdf.

11. Halpin, T. 2005, ‘ORM 2’, On the Move to Meaningful Internet Systems 2005: OTM 2005
Workshops, eds R. Meersman, Z. Tari, et al., Cyprus. Springer LNCS 3762, pp 676-87.

12. Halpin, T. 2006, ‘ORM/NIAM Object-Role Modeling’, Handbook on Information Systems
Architectures, 2nd edn, eds P. Bernus, K. Mertins & G. Schmidt, Springer, Heidelberg, pp.
81-103.

13. Halpin, T. 2007, ‘Fact-Oriented Modeling: Past, Present and Future’, Conceptual Model-
ling in Information Systems Engineering, eds. J. Krogstie, A. Opdahl & S. Brinkkemper,
Springer, Berlin, pp. 19-38.

14. Halpin, T. 2008, ‘A Comparison of Data Modeling in UML and ORM’, Encyclopedia of
Information Science and Technology, 2nd edn, vol. II, ed. M. Khosrow-Pour, Information
Science Reference, Hershey PA, USA, pp. 613-618.

15. Halpin, T. 2009, ‘Object-Role Modeling’, Encyclopedia of Database Systems, ed. L, Liu
& M. Tamer Ozsu, Springer-Verlag, Berlin.

16. Halpin, T. 2010, ‘Object-Role Modeling: Principles and Benefits’, International Journal
of Information Systems Modeling and Design, Vol. 1, No. 1, IGI Global, pp. 32-54.

17. Halpin, T. & Curland, M. 2006, ‘Automated Verbalization for ORM 2’, On the Move to
Meaningful Internet Systems 2006: OTM 2006 Workshops, eds. R. Meersman, Z. Tari, P.
Herrero et al., Montpellier. Springer LNCS 4278, pp. 1181-90.

18. Halpin, T. & Morgan, T. 2008, Information Modeling and Relational Databases, Second
Edition, Morgan Kaufmann, San Francisco.

19. Halpin, T. & Wijbenga, J. 2010, ‘FORML 2’, Enterprise, Business-Process and Informa-
tion Systems Modeling, eds. I. Bider et al., LNBIP 50, Springer, Heidelberg, pp. 247–260.

20. ter Hofstede, A., Proper, H. & van der Weide, T. 1993, ‘Formal definition of a conceptual
language for the description and manipulation of information models’, Information Sys-
tems, vol. 18, no. 7, pp. 489-523.

21. Hull, R. & Su, J. 1993, ‘Domain Independence and the Relational Calculus’, Technical
Report 88-64, Comp. Science Dept., University of Southern California.

22. Meersman, R. 1982, The RIDL Conceptual Language, Int. Centre for Information Analy-
sis Services, Control Data Belgium, Brussels.

23. Object Management Group 2003, UML 2.0 Superstructure Specification. Online at:
www.omg.org/uml.

24. Wintraecken J. 1990, The NIAM Information Analysis Method: Theory and Practice,
Kluwer, Deventer, The Netherlands.

25. Zook, D., Pasalic, E., & Sarna-Starosta, B. (2009). Typed Datalog. In Practical Aspects of
Declarative Languages (PADL’09), LNCS 5418 (pp. 168-182). Berlin: Springer.

