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Abstract. Multi-class classification algorithms are very widely used,
but we argue that they are not always ideal from a theoretical per-
spective, because they assume all classes are characterized by the data,
whereas in many applications, training data for some classes may be
entirely absent, rare, or statistically unrepresentative. We evaluate one-
sided classifiers as an alternative, since they assume that only one class
(the target) is well characterized. We consider a task of identifying whether
a substance contains a chlorinated solvent, based on its chemical spec-
trum. For this application, it is not really feasible to collect a statisti-
cally representative set of outliers, since that group may contain anything
apart from the target chlorinated solvents. Using a new one-sided classi-
fication toolkit, we compare a One-Sided k-NN algorithm with two well-
known binary classification algorithms, and conclude that the one-sided
classifier is more robust to unexpected outliers.
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1 Introduction

1.1 One-Sided Classification

One-sided classification (OSC) algorithms are an alternative to conventional
multi-class classification algorithms. They are also referred to as single-class
or one-class classification algorithms, and differ in one vital aspect from multi-
class algorithms, in that they are only concerned with a single, well-characterized
class, known as the target or positive class. Objects of this class are distinguished
from all others, referred to as outliers, that consist of all the other objects that
are not targets. In one-sided classification, training data for the outliers may be
either rare, entirely unavailable or statistically unrepresentative.

Over the past decade, several well-known algorithms have been adapted to
work with the one-sided paradigm. Tax [1] describes many of these one-sided
algorithms and notes that the problem of one-sided classification is generally
more difficult than that of conventional classification. The decision boundary in
the multi-class case has the benefit of being well described from both sides with
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appropriate examples from each class being available, whereas the single-class
case can only support one side of the decision boundary fully, in the absence
of a comprehensive set of counter-examples. While multi-class (including bi-
nary or two-class) algorithms are very widely used in many different application
domains, we argue that they are not always the best choice from a theoretical
perspective, because they assume that all classes are appropriately characterized
by the training data. We propose that one-sided classifiers are more appropriate
in these cases, since they assume that only the target class is well characterized,
and seek to distinguish it from any others. Such problem domains include indus-
trial process control, document author identification and the analysis of chemical
spectra.

1.2 Spectroscopic Analysis

Raman spectroscopy, which is a form of molecular spectroscopy, is used in phys-
ical and analytical chemistry. It involves the study of experimentally-obtained
spectra by using an instrument such as a spectrometer [2]. According to Gardiner
[3], Raman spectroscopy is a well-established spectroscopic technique which in-
volves the study of vibrational and rotational frequencies in a system. Spectra
are gathered by illuminating a laser beam onto a substance under analysis and
are based on the vibrational motion of the molecules which create the equiv-
alent of a chemical fingerprint. This unique pattern can then be used in the
identification of a variety of different materials [4].

1.3 Machine Learning Task

In this work, we consider the task of identifying materials from their Raman
spectra, through the application of both one-sided and multi-class classification
algorithms. Our primary focus is to analyse the performance of the classifiers
when “unexpected” outliers are added to the test sets. The spectra are gathered
from materials in pure form and in mixtures. The goal is to identify the presence
or absence of a particular material of interest from its spectrum. This task can
be seen as an “open-ended” problem, as having a statistically representative set
of counter-examples for training is not feasible, as has been discussed already.
In particular, we consider the application of separating materials to enable
the safe disposal of harmful solvents. Chemical waste that is potentially haz-
ardous to the environment should be identified and disposed of in the cor-
rect manner. Laboratories generally have strict guidelines in place, as well as
following legal requirements, for such procedures. Organic solvents can create
a major disposal problem in organic laboratories as they are usually water-
immiscible and can be highly flammable [5]. Such solvents are generally created
in abundance each day in busy laboratories. Differentiating between chlorinated
and non-chlorinated organic solvents is of particular importance. Depending on
whether a solvent is chlorinated or not will dictate how it is transported from the
laboratory and, more importantly, what method is used for its disposal [6]. Iden-
tifying and labeling such solvents is a routine laboratory procedure which usually
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makes the disposal a straightforward process. However, it is not unlikely that
the solvents could be accidentally contaminated or inadvertently mislabeled. In
such circumstances it would be beneficial to have an analysis method that would
correctly identify whether or not a particular solvent was chlorinated.

We have carried out several experiments for this identification using both
one-sided and multi-class classification algorithms in order to analyse the effect
of adding “unexpected” outliers to the test sets.

2 Related Research

Madden and Ryder [7] explore the use of standard multi-class classification tech-
niques, in comparison to statistical regression methods, for identifying and quan-
tifying illicit materials using Raman spectroscopy. Their research involves using
dimension reduction techniques to select some features of the spectral data and
discard all others. This feature selection process is performed by using a Genetic
Algorithm. The predictions can then be made based only on a small number of
data points. The improvements that can be achieved by using several different
predictor models together were also noted. This would come at the cost of in-
creased computation but was shown to provide better results than using just
one predictor by itself.

O’Connell et al. [8] propose the use of Principal Component Analysis (PCA),
support vector machines (SVM) and Raman spectroscopy to identify an analyte!
in solid mixtures. In this case, the analyte is acetaminophen, which is a pain re-
liever used for aches and fevers. They used near-infrared Raman spectroscopy
to analyse a total of 217 samples, some of which had the target analyte present,
of mixtures with excipients? of varying weight. The excipients that were in-
cluded were sugars, inorganic materials and food products. The spectral data
was subjected to first derivative and normalization transformations in order to
make it more suitable for analysis. After this pre-treatment, the target analyte
was then discriminated using Principal Component Analysis (PCA), Principal
Component Regression (PCR) and Support Vector Machines. According to the
authors, the superior performance of SVM was particularly evident when raw
data was used for the input. The importance and benefits of the pre-processing
techniques was also emphasized.

Howley [9] uses machine learning techniques for the identification and quan-
tification of materials from their corresponding spectral data. He shows how
using Principal Component Analysis (PCA) with machine learning methods,
such as SVM, could produce better results than the chemometric technique of
Principal Component Regression (PCR). He also presents customized kernels for
use with spectral analysis based on prior knowledge of the domain. A genetic

! An analyte is a substance or chemical constituent that is determined in an analytical
procedure.

2 An excipient is an inactive substance used as a carrier for the active ingredients of
a medication.
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programming technique for evolving kernels is also proposed for when no domain
knowledge is available.

3 A Toolkit for One-sided Classification

In the course of our research, we have developed a one-sided classification toolkit
written in Java. It is a command line interface (CLI) driven software package that
contains one-sided algorithms that may be chosen by the user at runtime and
used to create a new classifier based on a loaded data set and a variety of different
adjustable options. Both experiment-specific and classifier parameter options
can be set. The toolkit was designed to carry out comprehensive and iterative
experiments with minimal input from the user. The resulting classifiers that
are generated can be saved and used at a later stage to classify new examples.
The user can set up many different runs of an experiment, each differing by an
incremented random number seed that shuffles the data for every run before it
is broken up into training and testing sets. Results are printed to the screen as
they are calculated; these include the classification error, sensitivity, specificity
and confusion matrix for each run or individual folds.

4 Data Sets and Algorithms Used

4.1 Primary Data Set

The primary data set that we used for these experiments was compiled in earlier
research, as described by Conroy et al. [6]. It comprises of 230 spectral samples
that contain both chlorinated and non-chlorinated mixtures. According to the
authors, the compilation of the data involved keeping the concentrations of the
mixtures as close as possible to real life scenarios from industrial laboratories.
Twenty five solvents, some chlorinated and some not, were included; these are
listed in Table 1.

Several variants of the data set were created, which differed only by the
labeling of the solvent that was currently assigned as the target class. In each
of these variants, all instances not labeled as targets were labeled as outliers.
These relabeled data sets were used in the detection of the specific chlorinated
solvents: Chloroform, Dichloromethane and Trichloroethane. As an example of
the data, the Raman spectrum of pure Chloroform, a chlorinated solvent, is
shown in Fig. 1. Other samples from the data set consist of several different
solvents in a mixture which makes the classification task more challenging. A
final separate data set was created such that all of the chlorinated solvents were
labeled as targets. This is for carrying out experiments to simply detect whether
a given mixture is chlorinated or not.

4.2 Secondary Data Set

For our Scenario 2 experiments (see Section 5.1), we introduce 48 additional
spectra that represent outliers that are taken from a different distribution to
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Table 1. A list of the various chlorinated and non-chlorinated solvents used in the
primary data set and their grades.(Source: Conroy et al. [6])

Solvent Grade Solvent Grade
Acetone HPLC Cyclopentane Analytical
Toluene Spectroscopic Acetophenol Analytical
Cyclohexane |Analytical & Spect. n-Pentane Analytical
Acetonitrile Spectroscopic Xylene Analytical
2-Propanol Spectroscopic Dimethylformanide Analytical
1,4-Dioxane |Analytical & Spect. Nitrobenzene Analytical
Hexane Spectroscopic Tetrahydrofuran Analytical
1-Butanol  [Analytical & Spect. Diethyl Ether Analytical
Methyl Alcohol Analytical Petroleum Acetate Analytical
Benzene Analytical Chloroform Analytical & Spect.
Ethyl Acetate Analytical Dichloromethane [Analytical & Spect.
Ethanol Analytical 1,1,1-trichloroethane|Analytical & Spect.

Table 2. Summary of chlorinated and non-chlorinated mixtures in the primary data
set. (Source: Howley [9])

Chlorinated Non-chlorinated|Total
Pure Solvents 6 24 30
Binary Mixtures 96 23 119
Ternary Mixtures 40 12 52
Quaternary Mixtures 12 10 22
Quintary Mixtures 0 7 7
Total 154 76 230

those that are present in the primary dataset. These samples are the Raman
spectra of various laboratory chemicals, and none of them are chlorinated sol-
vents nor are they the other materials that are listed in Table 1. They include
materials such as sugars, salts and acids in solid or liquid state, including Su-
crose, Sodium, Sorbitol, Sodium Chloride, Pimelic Acid, Acetic Acid, Phthalic
Acid and Quinine.

4.3 Algorithms Used

We carried out the one-sided classification experiments using our toolkit. The
conventional classification experiments were carried out using the Weka [10]
machine learning software.

We have chosen a One-Sided k-Nearest Neighbour (OkNN) algorithm and
two conventional classification algorithms; namely, k-Nearest Neighbour, that
we refer to as Two-Class KNN, and a Support Vector Machine (SVM) that we
will refer to as Two-Class SVM.

The OKNN algorithm we use is based on one described by Munroe and Mad-
den [11]. The method involves choosing an appropriate threshold and number of
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Fig. 1. The Raman Spectrum of a sample of 100% pure Chloroform

neighbours to use. The average distance from a test example ‘A’ to its m nearest
neighbours is found and this is called ‘D1’. Then, the average distance of these
neighbours to their own respective k nearest neighbours is found and called ‘D2’.
If ‘D1’ divided by ‘D2’ is greater than the threshold value, the test example ‘A’
is rejected as being an outlier. If it is less than the threshold, then it is accepted
as being part of the target class.

5 Description of Experiments

5.1 Scenarios Considered

Two scenarios are described in our experiments, as described next.

Scenario 1: “Expected” Test Data Only. In this scenario, the test data is
sampled from the same distribution as the training data. The primary dataset
is divided repeatedly into training sets and test sets, with the proportions of
targets and outliers held constant at all times, and these internal test sets are
used to test the classifiers that are built with the training datasets.

Scenario 2: “Unexpected” and “Expected” Test Data. In this scenario,
we augment each test dataset with the 48 examples from the secondary data set
that are not drawn from the same distribution as the training dataset. There-
fore, a classifier trained to recognise any chlorinated solvent should reject them
as outliers. However, these samples represent a significant challenge to the clas-
sifiers, since they violate the standard assumption that the test data will be
drawn from the same distribution as the training data; it is for this reason that
we term them “unexpected”.

This second scenario is designed to assess the robustness of the classifiers in
a situation that has been discussed earlier, whereby in practical deployments of
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classifiers in many situations, the classifiers are likely to be exposed to outliers
that are not drawn from the same distribution as training outliers. In fact, we
contend that over the long term, this is inevitable: if we know a prior:i that the
outlier class distribution is not well characterized in the training data, then we
must accept that sooner or later, the classifier will be exposed to data that falls
outside the distribution of the outlier training data.

It should be noted that this is different from concept drift, where a target
concept may change over time; here, we have a static concept, but over time
the weaknesses of the training data are exposed. Of course, re-training might be
possible, if problem cases can be identified and labeled correctly, but we concern
ourselves with classifiers that have to maintain robust performance without re-
training.

5.2 Experimental Procedure

The data sets, as described earlier, were used to test the ability of each al-
gorithm in detecting the individual chlorinated compounds. This involved three
separate experiments for each algorithm, to detect Chloroform, Dichloromethane
and Trichloroethane. A fourth experiment involved detecting the presence of any
chlorinated compound in the mixture.

All spectra were first normalized. A common method for normalizing a dataset
is to recalculate the values of the attributes to fall within the range of zero to one.
This is usually carried out on an attribute-by-attribute basis and ensures that
certain attribute values, which differ radically in size from the rest, don’t domi-
nate in the prediction calculations. The normalization carried out on the spectral
data is different to this in that it is carried out on an instance-by-instance basis.
Since each attribute in an instance is a point on the spectrum, this process is
essentially rescaling the height of the spectrum into the range of zero to one.

For each experiment, 10 runs were carried out with the data being randomly
split each time into 67% for training and 33% for testing. The splitting procedure
from our toolkit ensured that there was the same proportion of targets and
outliers in the training sets as there was in the test sets. The same data set splits
were used for the one-sided classifier algorithms and the Weka-based algorithms,
to facilitate direct comparisons.

A 3-fold internal cross validation step was used with all the training sets,
to carry out parameter tuning. A list of parameter values was passed to each
classification algorithm and each, in turn, was used on the training sets, in order
to find the best combination that produced the smallest error estimate. It must
be emphasized that we only supplied a small amount of different parameters for
each algorithm and that these parameters used were the same for all of the four
variants of the data set. The reason for this was that our goal was not to tune
and identify the classifier with the best results overall but to notice the change
in performance when “unexpected” outliers were added to the test set.

For the One-Sided kNN algorithm, the amount of nearest neighbours (m)
and the amount of their nearest neighbours (k) was varied between 1 and 2. The
threshold values tried were 1, 1.5 and 2. The distance metric used was Cosine
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Similarity. For the Weka experiments, the Two-Class kNN approach tried the
values 1,2 and 3 for the amount of nearest neighbours. The Two-Class SVM
varied the complexity parameter C with the values of 1,3 and 5. The default
values were used for all of the other Weka parameters.

5.3 Performance Metric

The error rate of a classification algorithm is the percentage of examples from the
test set that are incorrectly classified. We measure the average error rate of each
algorithm over the 10 runs to give an overall error estimate of its performance.
With such a performance measure being used, it is important to know what
percentage of target examples were present in each variant of the data set. This
information is listed in Table 3 below.

Table 3. Percentage of target examples in each variant of the primary data set

Dataset Targets|“Expected” Outliers|Target Percent
Chlorinated or not|| 154 76 66.95%
Chloroform 79 151 34.34%
Dichloromethane 60 170 26.08%
Trichloroethane 79 151 34.34%

6 Results and Analysis

The results of the experiments carried out are listed in Table 4, Table 5, and
Table 6 below. Each table shows the overall classification error rate and standard
deviation (computed over 10 runs) for each algorithm, for both of the scenarios
that were tested.

It can be seen that while the conventional multi-class classifiers perform quite
well in the first scenario, their performance quickly begins to deteriorate once
the “unexpected” outliers are introduced in Scenario 2. The One-Sided kNN’s
performance is generally worse than the multi-class approach in Scenario 1. As
described in Section 1.1, the decision boundary for the multi-class classifiers have
the benefit of being well supported from both sides with representative training
examples from each class. In such a scenario, the multi-class algorithms essen-
tially have more information to aid the classification mechanism and, therefore,
would be expected to out-perform the one-sided approach.

In detecting whether or not a sample is chlorinated, the average error rate of
the Two-Class kNN increased by 28.87% and the Two-Class SVM increased by
33.57% in Scenario 2. In contrast with the two-class classifiers, the One-Sided
kNN is seen to retain a consistent performance and the error is only increased by
0.14%. When the algorithms are detecting the individual chlorinated solvents,
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the same pattern in performance can be seen. The multi-class algorithms’ error
rates increase, in some cases quite radically, in the second scenario. The One-
Sided kNN manages to remain at a more consistent error rate and, in the case
of Chloroform and Dichloromethane, the overall error rate is reduced somewhat.

It should be noted that our experiments are not concerned with comparing
the relative performances of a one-sided classifier versus the multi-class classi-
fiers. Rather, we analyse the variance between the two scenarios for each indi-
vidual classifier and demonstrate the short-comings of the multi-class approach
when it is presented with “unexpected” outliers. Our results demonstrate the
one-sided classifier’s ability to robustly reject these outliers in the same circum-
stances.

Table 4. Overall average error rate for two-class kNN in both scenarios

Two-Class kNN Scenario 1. Scenario 2.
Error % (std. dev.)|Error % (std. dev.)

Chlorinated or not 6.49 (2.03) 35.36 (3.65)

Chloroform 22.59 (6.93) 39.44 (7.37)

Dichloromethane 11.94 (4.89) 16.24 (3.49)

Trichloroethane 23.24 (5.10) 25.68 (4.27)

Table 5. Overall average error rate for two-class SVM in both scenarios

Two-Class SVM Scenario 1. Scenario 2.
Error % (std. dev.)|Error % (std. dev.)

Chlorinated or not 4.67 (1.95) 38.24 (2.19)

Chloroform 11.68 (4.01) 37.2 (2.39)

Dichloromethane 8.70 (4.37) 11.68 (3.52)

Trichloroethane 11.03 (3.47) 30.08 (2.50)

Table 6. Overall average error rate for one-sided kNN in both scenarios

One-Sided kNN Scenario 1. Scenario 2.
Error % (std. dev.)|Error % (std. dev.)

Chlorinated or not 10.90 (4.5) 11.04 (4.7)

Chloroform 26.10 (3.43) 18.32 (3.16)

Dichloromethane 12.98 (3.23) 9.36 (2.84)

Trichloroethane 20.77 (3.46) 21.04 (5.07)
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7 Conclusions and Future Work

Our research demonstrates the potential drawbacks of using conventional multi-
class classification algorithms when the test data is taken from a different dis-
tribution to that of the training samples. We believe that for a large number of
real-world practical problems, one-sided classifiers should be more robust than
multi-class classifiers, as it is not feasible to sufficiently characterize the outlier
concept in the training set. We have introduced the term “unexpected outliers”
to signify outliers that violate the standard underlying assumption made by
multi-class classifiers, which is that the test set instances are sampled from the
same distribution as the training set instances. We have shown that, in such
circumstances, a one-sided classifier can prove to be a more capable and robust
alternative. Our future work will introduce new datasets from different domains
and also analyse other one-sided and multi-class algorithms.
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