
Foundations of Quantum Programming
(extended abstract)

Mingsheng Ying?

Center for Quantum Computation and Intelligent Systems,
University of Technology, Sydney, Australia

and
State Key Laboratory of Intelligent Technology and Systems,

Tsinghua University, Beijing, China

Keywords: Quantum computation; loop programs; predicate transformer se-
mantics; Floyd-Hoare logic

Progress in the techniques of quantum devices has made people widely believe
that large-scale and functional quantum computers will be eventually built. By
then, super-powered quantum computer will solve many problems affecting eco-
nomic and social life that cannot be addressed by classical computing. However,
our experiences with classical computing suggest that once quantum comput-
ers become available in the future, quantum software will play a key role in
exploiting their power, and quantum software market will even be much larger
than quantum hardware market. Unfortunately, today’s software development
techniques are not suited to quantum computers due to the essential differences
between the nature of the classical world and that of the quantum world. To
lay a solid foundation for tomorrow’s quantum software industry, it is critically
essential to pursue systematic research into quantum programming methodology
and techniques.

Intensive research on quantum programming has been conducted in the last
15 years, and many exciting results have been reported. The existing research
can be roughly classified into the following categories.

– Design of quantum programming languages [1], [11], [13], [14], [15], [23].
– Semantics of quantum programming languages [5].
– Verification of quantum programs [2], [3], [4], [6].
– Quantum software architecture [17].
– Quantum compilers [25], [12]
– Concurrent quantum programming and quantum process algebras [7], [9],

[10], [21], [24]

There are already two excellent survey papers of quantum programming [8],
[16]. This talk mainly summarizes the author and his collaborators’ work in the
foundations of quantum programming.

? This work was partly supported by the National Foundation of Natural Sciences of
China (Grant No: 60736011)



2 Foundations of Quantum Programming

1 Quantum Loop Programs [22]

Loops are a powerful program construct in classical computation. Some high-
level control features such as loop and recursion are provided in Selinger’s func-
tional quantum programming language QFC [15]. The power of quantum loop
programs is yet to be further exploited. The exploitation of such power requires
a deep understanding of the mechanism of quantum loops. The author and
Yuan Feng examined thoroughly the behaviors of quantum loops in a language-
independent way and found some convenient criteria for deciding termination of
a general quantum loop on a given input in the case of finite-dimensional state
spaces. More precisely, in [22], a general scheme of quantum loop programs was
introduced, the computational process of a quantum loop was described, and
the essential difference between quantum loops and classical loops was analyzed.
In addition, we introduced the notions of termination and almost termination
of a quantum loop. The function computed by a quantum loop was also de-
fined. Quantum walks were considered to show the expressive power of quantum
loops. Then we found a necessary and sufficient condition under which a quan-
tum loop program terminates on a given mixed input state. A similar condition
is given for almost termination. Furthermore, we proved that a quantum loop
is almost terminating if and only if it is uniformly almost terminating, and a
small disturbance either on the unitary transformation in the loop body or on
the measurement in the loop guard can make any quantum loop (almost) termi-
nating, provided that some dimension restriction is satisfied. A representation
of the function computed by a quantum loop was presented in terms of finite
summations of complex matrices.

2 Predicate Transformer Semantics of Quantum
Programs [20], [19]

Since it provides a goal-directed program development strategy and nondeter-
minacy can be accommodated well in it, predicate transformer semantics has a
very wide influence in classical programming methodology. There have been al-
ready two approaches to predicate transformer semantics of quantum programs
in the literature. The first approach was proposed by Sanders and Zuliani [14]
in designing qGCL, a quantum extension of the guarded-command language. In
this approach, quantum computation is reduced to probabilistic computation by
the observation (measurement) procedure. Thus, predicate transformer seman-
tics developed for probabilistic programs can be conveniently used for quantum
programs. The second approach was proposed by D’Hondt and Panangaden [5],
where the notion of a predicate is directly taken from quantum mechanics; that
is, a quantum predicate is defined to be an observable (a Hermitian operator)
with eigenvalues within the unit interval. In this approach, forward operational
semantics of quantum programs is described by super-operators according to
Selinger [15], and a beautiful Stone-type duality between state-transformer (for-
wards) and predicate-transformer (backwards) semantics of quantum programs



Foundations of Quantum Programming 3

can be established by employing the Kraus representation theorem for super-
operators.

To further develop the second approach, we have to tackle some problems
that would not arise in the realm of classical and probabilistic programming. One
of such problems is the commutativity of quantum weakest preconditions. Vari-
ous logical operations of quantum weakest preconditions such as conjunction and
disjunction will be needed in reasoning about complicated quantum programs,
but defining these operations requires commutativity between the involved quan-
tum predicates. However, the author and his collaborators [19] noticed that the
weakest preconditions of two commutative quantum predicates do not necessar-
ily commute. This is an obvious obstacle in the further development of predicate
transformer semantics for quantum programs, and it seems to be very difficult
to overcome in the general setting. The author and his collaborators [20] decided
to focus their attention on a special class of quantum predicates, namely projec-
tion operators. One reason for this decision is conceptual, and it comes from the
following observation: the quantum predicates dealt with in [5] are Hermitian
operators whose eigenvalues are within the unit interval, and in a sense, they
can be envisaged as quantization of probabilistic predicates. On the other hand,
projection operators are Hermitian operators with 0 or 1 as their eigenvalues,
and they should be thought of as quantization of classical (Boolean) predicates.
Physically, the simplest type of measuring instrument is one performing so-called
yes-no measurement. Only a single change may be triggered on such an instru-
ment, and it is often called an effect by physicists. Another reason is technical:
there is a bijective correspondence between the projection operators in a Hilbert
space and the closed subspaces of this space. The set of closed subspaces of a
Hilbert space was recognized by Birkhoff and von Neumann as (the algebraic
counterpart) of the logic of quantum mechanics, and its structure has been thor-
oughly investigated in the development of quantum logic for over 70 years. Thus,
we are able to exploit the power of quantum logic in our research on predicate
transformer semantics of quantum logic.

The author and his collaborators [20] developed a quite complete predicate
transformer semantics of quantum programs by employing some powerful math-
ematical tools developed in Birkhoff-von Neumann quantum logic. In particular,
they proved universal conjunctivity, termination law and Hoare’s induction rule
for quantum programs. The proof of termination law requires an essential appli-
cation of Takeuti’s technique of strong commutator introduced in his studies of
quantum set theory.

3 Floyd-Hoare Logic for Quantum Programs [18]

The fact that human intuition is much better adapted to the classical world than
the quantum world is one of the major reasons that it is difficult to find effi-
cient quantum algorithms. It also implies that programmers will commit much
more faults in designing programs for quantum computers than programming
classical computers. Thus, it is even more critical than in classical computing to



4 Foundations of Quantum Programming

provide formal methods for reasoning about correctness of quantum programs.
Indeed, several proof systems for verification of quantum programs and quan-
tum communication protocols have been proposed in the recent literature. For
example, Baltag and Smets [2] presented a dynamic logic formalism of informa-
tion flows in quantum systems, which is capable of describing various quantum
operations such as unitary evolutions and quantum measurements, and partic-
ularly entanglements in multi-partite quantum systems. Brunet and Jorrand [3]
introduced a way of applying Birkhoff and von Neumann’s quantum logic to
the study of quantum programs by expanding the usual propositional languages
with new primitives representing unitary transformations and quantum measure-
ments. In [4], Chadha, Mateus and Sernadas proposed a Floyd-Hoare-style proof
system for reasoning about imperative quantum programs using a quantitative
state logic, but only bounded iterations are allowed in their programming lan-
guage. Feng et al. [6] found some useful proof rules for reasoning about quantum
loops, generalizing several effective proof rules for probabilistic loops.

Recently, the author [18] established of a full-fledged Floyd-Hoare logic for de-
terministic quantum programs based on Selinger’s idea [15] of modeling quantum
programs as super-operators and D’Hondt and Panangaden’s notion of quantum
predicate as an Hermitian operator [5]. This logic includes a proof system for
partial correctness and a proof system for total correctness of deterministic quan-
tum programs. In particular, we are able to prove its (relative) completeness by
exploiting the power of weakest preconditions and weakest liberal preconditions
for quantum programs. It is worth mentioning that the proof of the (relative)
completeness requires techniques quite different from those for classical programs
and tools from analytic (continuous) mathematics.

References

1. T. Altenkirch and J. Grattage, A functional quantum programming language, in:
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science
(LICS), 2005, pp. 249-258.

2. A. Baltag and S. Smets, LQP: the dynamic logic of quantum information, Mathe-
matical Structures in Computer Science, 16(2006)491-525.

3. O. Brunet and P. Jorrand, Dynamic quantum logic for quantum programs, Inter-
national Journal of Quantum Information, 2(2004)45-54.

4. R. Chadha, P. Mateus and A. Sernadas, Reasoning about imperative quantum
programs, Electronic Notes in Theoretical Computer Science, 158(2006)19-39.

5. E. D’Hondt and P. Panangaden, Quantum weakest preconditions, Mathematical
Structures in Computer Science, 16(2006)429-451.

6. Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Proof rules for the correctness of
quantum programs, Theoretical Computer Science, 386(2007)151-166.

7. Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Probabilistic bisimulations for
quantum processes, Information and Computation, 205(2007)1608-1639.

8. S. J. Gay. Quantum programming languages: survey and bibliography, Mathemat-
ical Structures in Computer Science, 16(2006)581-600.

9. S. J. Gay and R. Nagarajan, Communicating quantum processes, in: Proceedings of
the 32nd ACM Symposium on Principles of Programming Languages, Long Beach,
California, USA, ACM Press, 2005, pp. 145 - 157.



Foundations of Quantum Programming 5

10. P. Jorrand and M. Lalire, Toward a quantum process algebra, in: Proceedings of
the 1st ACM Conference on Computing Frontiers, Ischia, Italy, ACM Press, 2005,
pp. 111-119.

11. E. H. Knill, Conventions for quantum pseudocode, Technical Report LAUR-96-
2724, Los Alamos National Laboratory, 1996.

12. R. Nagarajan, N. Papanikolaou and D. Williams, Simulating and compiling code
for the sequential quantum random access machine, Electronic Notes in Theoretical
Computer Science, 170 (2007)101124.

13. B. Ömer, Structural quantum programming, Ph.D. Thesis, Technical University of
Vienna, 2003.

14. J. W. Sanders and P. Zuliani, Quantum programming, in: Proceedings, Mathemat-
ics of Program Construction, LNCS 1837, Springer-Verlag, 2000, pp. 88-99.

15. P. Selinger, Towards a quantum programming language, Mathematical Structures
in Computer Science, 14(2004)527-586.

16. P. Selinger, A brief survey of quantum programming languages, in: Proceedings
of the 7th International Symposium on Functional and Logic Programming, LNCS
2998, Springer, 2004.

17. K. M. Svore, A. V. Aho, A. W. Cross, I. L. Chuang, I. L. Markov, A layered software
architecture for quantum computing design tools, IEEE Computer, 39(2006)74-83.

18. M. S. Ying, Hoare logic for quantum programs, ACM Transactions on Program-
ming Languages and Systems Volume 33 Issue 6, December 2011 Article No. 19;
also see: http://xxx.lanl.gov/abs/0906.4586.

19. M. S. Ying, J. X. Chen, Y. Feng and R. Y. Duan, Commutativity of quantum
weakest preconditions, Information Processing Letters, 104(2007)152-158.

20. M. S. Ying, R. Y. Duan, Y. Feng and Z. F. Ji, Predicate transformer semantics
of quantum programs, in: I. Mackie and S. Gay (eds.), Semantic Techniques in
Quantum Computation, Cambridge University Press, 2010, pp. 311-360.

21. M. S. Ying and Y. Feng, An algebraic language for distributed quantum computing,
IEEE Transactions on Computers, 58(2009)728-743.

22. M. S. Ying and Y. Feng, Quantum loop programs, Acta Informatica, 47(2010)221-
250.

23. M. S. Ying and Y. Feng, A flowchart language for quantum programming, submit-
ted.

24. M. S. Ying, Y. Feng, R. Y. Duan and Z. F. Ji, An algebra of quantum processes,
ACM Transactions on Computational Logic, 10(2009)19

25. P. Zuliani, Compiling quantum programs, Acta Informatica, 41(2005)435-473.
26. P. Zuliani, Reasoning about faulty quantum programs, Acta Informatica,

46(2009)403-432


