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Abstract. The paper is devoted to an analysis of the concurrent fea-
tures of asynchronous systems. A preliminary step is represented by the
introduction of a non-interleaving extension of barbed equivalence. This
notion is then exploited in order to prove that concurrency cannot be ob-
served through asynchronous interactions, i.e., that the interleaving and
concurrent versions of a suitable asynchronous weak equivalence actually
coincide. The theory is validated on two case studies, related to nominal
calculi (m-calculus) and visual specification formalisms (Petri nets).

1 Introduction

Since the introduction of process calculi, one of the richest sources of founda-
tional investigations stemmed from the analysis of behavioural equivalences. The
rationale is that in any formalism, specifications which are syntactically differ-
ent may intuitively denote the same system, and it is then pivotal to be able to
equate different specifications at the right level of abstraction.

By now classical, one of the most influential synthesis on the issue is of-
fered by the taxonomy proposed in the so-called linear time/branching time
spectrum [20]. Since then, a major dichotomy among equivalences was estab-
lished between interleaving and truly concurrent semantics, according to the
possibility of capturing the parallel composition of two systems by means of a
non-deterministic selection. Concretely, adopting a CcCs-like syntax, the system
represented by the specification a | b either coincides with (interleaving) or differs
from (truly concurrent) the system represented by a.b + b.a.

Behavioural equivalences for process calculi often rely on labelled transitions:
each evolution step of a system is tagged by some information aimed at capturing
the possible interactions of the system with the environment. Nowadays, though,
the tendency is to adopt operational semantics based on unlabelled transitions.
This is due to the intricacies of the intended behaviour of a system, especially
in the presence of topological or transactional features (see, e.g., foundational
calculi such as Mobile Ambients [14] or Join [18]).
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This paradigmatic shift stimulated the adoption of barbed congruence [33],
a behavioural equivalence based on a family of predicates over the states of a
system, called barbs, intended to capture the ability of a system of performing
an interaction with the environment. For instance, in the calculus of Mobile
Ambients [14], barb n verifies the occurrence of an ambient named n at top
level [30]; in ccs [31], a process satisfies barb « if it may input on channel a [33].

Assuming that systems interact with a form of synchronous communication,
barbs can be explained by a scenario where a system is just a black box with
several buttons, one for each possible interaction with the environment. An ob-
server can push a button only if the system is able to perform the corresponding
interaction. In this scenario, barbs check if buttons can be pushed. Similarly,
an asynchronous system is a black box equipped with several bags (unordered
buffers) that are used to exchange messages with the environment. At any time
the observer can insert a message in a bag or remove one, whenever present. In
this case, barbs check the presence of messages inside bags. Moreover, in order
to properly capture the scenario outlined above, for an observer internal steps
should not be visible: we thus focus on weak equivalences.

So far, barbed congruences included no concurrent feature, abstractly char-
acterized as the possibility of performing simultaneously more than one single
interaction. However, in the synchronous scenario, systems a.b + b.a and a | b
could be distinguished by an observer able to push two buttons at the same
time, since only a | b allows for the simultaneous pressing of buttons a and b.

The situations is less clearly-cut for asynchronous systems. Indeed, one of the
assumptions of this communication style is that message sending is non-blocking:
a system may send a message with no agreement with the receiver, and then
continue its execution. Hence, an observer interacting with a system by message
exchanges cannot know if or when a message has been received and thus message
reception is deemed unobservable. And since message sending is non-blocking,
a system which may emit a sequence of messages can also hold them, proceed
with internal computation and make them available at once at a later time. So,
the simultaneous observation of many sendings seems to add no discriminating
power to the observer. Concretely, systems a.b+ b.a and a | b should be equated
in an asynchronous setting, even if observing concurrent barbs.

Moving from this intuition, we propose a formal framework where the slo-
gan concurrency can’t be observed, asynchronously is formalised. We work in a
setting where we only assume the availability of an operator for parallel compo-
sition, used for defining the notions of concurrent barb and concurrent barbed
congruence: a system exhibits a concurrent barb a; ® as if it is decomposable
into two components exhibiting barbs a; and ag, respectively. We then identify
a set of axioms which are intended to capture essential features of asynchronous
systems in a barbed setting, showing that for any formalism satisfying them
barbed congruence and its concurrent variant coincide. The appropriateness of
the axioms is checked by proving that they are satisfied by concrete asynchronous
formalisms, like the asynchronous m-calculus [25,9] and open Petri nets [27], as
well as by the (output-buffered) asynchronous systems as characterised in [38].



Synopsis. Section 2 introduces our framework: the notion of concurrent barb,
the corresponding behavioural equivalence and Theorem 1, stating the unob-
servability of concurrency through asynchronous interactions. Sections 3 and 4
show how our theory captures asynchronous m-calculus and open Petri nets,
respectively. In the latter case the new concurrent equivalence is shown to co-
incide with standard step semantics. Section 5 proves that systems deemed as
(output-buffered) asynchronous in [38] fall into our theory. Section 6 draws some
conclusions, discusses related works and outlines directions for further research.

2 A Theory of Concurrent Barbs and Asynchrony

This section introduces a notion of equivalence based on concurrent barbs. It is
then argued that, for a reasonable notion of asynchronous system, the possibility
of observing concurrent barbs does not add any discriminating power.

2.1 Transition Systems and Barbs

Let P be a set of systems (ranged over by p, ¢ ...) and -C P X P a transition
relation: we write p — ¢ for (p,q) €—, and we denote by —* the reflexive and
transitive closure of —.

A barb is a predicate over the set P representing a minimal observation on
any system. The set of barbs, ranged over by a, b, z, y ..., is denoted B and we
write pl, if the system p satisfies the barb a. For each barb a € B, we say that
p weakly satisfy a, written pll,, if p —* p’ and p’|,. Moreover, we write pO],, if
p'lq holds Vp' such that p —* p’. The weak version pOl}, is defined analogously.

We finally assume to have a commutative and associative parallel composition
operator on systems | : P x P — P, satisfying the axioms below

p—p Pla
(P pla — p'lg (P2 opd.

In other terms, the parallel operator must preserve the barbs and the tran-
sition relation: the requirement concerning its associativity and commutativity
would not be essential for our theory, but it simplifies the presentation.

With these ingredients we can define a behavioural equivalence which equates
two systems if these cannot be distinguished by an observer that can add com-
ponents in parallel and observe the barbs which are exposed. In the paper we
focus only on weak equivalences, hence the qualification “weak” is omitted.

Definition 1 (saturated barbed bisimilarity). A symmetric relation R C
P x P is a saturated barbed bisimulation if whenever pRq then Vr € P

— Va € B, if p|rlla then q|riq
— if p|lr =* p’ then q|r —* ¢’ and p'Rq’

We say that p and q are saturated barbed bisimilar (written p ~ q) if there exists
a saturated barbed bisimulation relating them.
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Fig. 1. The syntax and the reduction semantics of Sccs and AcCcs.

Note that ~ is, by definition, a congruence with respect to the parallel com-
position operator®. It differs from barbed congruence [33] since in the latter the
observer is allowed to add a parallel component only at the beginning of the com-
putation and not at any step. Hence, in general, barbed congruence is coarser
than saturated barbed bisimilarity, although in many cases the two definitions
coincide (as e.g. in the asynchronous 7-calculus [19]).

As a running example for illustrating our theory we use a finite fragment of
ccs [31] and its asynchronous counterpart, with the reduction semantics in [32],
but our considerations would trivially extend to the full calculus. A set of names
N is fixed (ranged over by a, b ...) with 7 &€ N. The syntax of synchronous
ccs (sces) processes is defined by the grammar on the left of Figure 1, while
asynchronous CCS (ACCS) processes are defined by the grammar on the right. In
both cases processes are considered up to structural congruence =. The transition
relation — for sccs is defined by rules SYN, TAU, and PAR. For ACCS, rule SYN
is replaced by ASYN: the occurrence of an unguarded a indicates a message that
is available on some communication media named a. The message disappears
whenever it is received. Note that output prefixes a.p are absent in ACCS.

The definition of the “right” notion of barb is not a trivial task. For sccs
both input and output barbs are considered (see e.g. [33]). Intuitively, a process
has an input (output) barb on a if it is ready to perform an input (output) on
a. Formally, if « = a or a = @, then pl, when p = a.p; + m | ps for processes
p1,p2, m. Following [1], for AcCS only output barbs are considered, defined by
pla when p = @ | py for a process p;. The idea is that, since message sending
is non-blocking, an external observer can just send messages without knowing if
they will be received or not. Hence inputs are deemed unobservable.

Several works (e.g. [36,26,7]) have proposed abstract criteria for defining
“good” barbs independently from the formalism at hand. Here, inspired by [36],
we propose to formalise the intuition that barbs should capture the possibility
of exhibiting an observable behaviour by introducing a notion of test.

* Requiring ~ to be closed under all unary contexts, instead of just —|r (see [26,30]),
would not substantially change our theory, yet make its presentation more complex.



Definition 2 (barbs witnessed by a test). A test is a family t of systems
indexed by barbs, i.e., t = {t, | x € B}. Given a barb a € B and a system p € P,
an element t, € t is called a concrete test for a on p if whenever p —* p’

P'la iff Pty = p" and p'Ol,.

A barb a is witnessed by a test t if for all systems p,q € P there exists a barb
x € B such that t, €t is a concrete test for a on both p and q.

Intuitively, a concrete test for a barb a on a process p is a process t, capable of
exposing a barb x, which is instead never observable in the evolution of p. Process
t, releases a (permanent) barb x only after interacting with a process exposing
barb a. Since x can never be generated by p, observing z in the evolution of
p’ | tz, where p’ is a reduct of p, witnesses that p’ has exposed the barb a.

Note that the notion of witness is defined by considering pairs of processes:
this is motivated by the fact that tests witnessing a barb will be used when
comparing processes in the bisimulation game.

Hereafter, we assume that any barb is always witnessed by some test.

(B) For any a € B there exists a test witnessing a. We denote t* a chosen
test that witnesses barb a.

The assumption above holds for any calculus endowed with reduction seman-
tics and barbs that we are aware of (see e.g. [32,1, 14, 18]). For instance, in ACCS
each output barb a is witnessed by the test t* = {a.z | x € N'}. Indeed, for
all processes p, g, a concrete test for a on p and g can be t2 = a.z, for v € N
a name that syntactically occurs neither in p nor in ¢. Note that input barbs
cannot be witnessed by any test in ACCS, since there are no output prefixes. In
sccs, instead, for the presence of both input and output prefixes, an input barb
a is witnessed by the test {a.7 | z € N'}.

Axiom (B) is pivotal in Section 2.3: the chosen witness for a barb is needed in
the formulation of our axiom of asynchrony (AA), which abstractly characterizes
a basic feature of asynchronous systems with reduction semantics and barbs.

2.2 Concurrent Barbs and Non-Interleaving Semantics

Most semantics for interactive systems are interleaving, meaning that parallelism
is reduced to non-determinism, or, in terms of processes, a.b + b.a ~ a|b. Here
we propose a non-interleaving semantics based on barbs. For this, we first need
a concurrent transitions relation on systems ~~C P x P, for which we assume

() - C~C

and thus ~»*=—"*. The assumption is quite natural: it just means that (1) each
non-concurrent transition is also a concurrent one and (2) each concurrent tran-
sition p ~~ ¢ is simulated by a sequence of non-concurrent ones p — ... — q.



p—p p~p qg~dq
p~p pla~p|d

Fig. 2. Parametric rules for a concurrent transition relation.

For both sccs and Accs the relation ~» can be defined by the rules in Fig-
ure 2. Alternative definitions could be given, in order e.g. to avoid several concur-
rent communications on the same channel. This is irrelevant here as our theory
abstracts from the actual definition of ~» and only relies on property (C) above.

As a second ingredient, we introduce concurrent barbs. For a set X, let X®
denote the free commutative monoid over X, whose elements are called multisets.

Definition 3 (concurrent barbs). The set of concurrent barbs CB is the free
monoid B®, ranged over by A, B, X, Y ... We write pl% to mean that p satisfies
the concurrent barb |5 . The satisfaction relation is defined by the rules

Pla pla and ¢l
Pla pletasn

Weak concurrent barbs are defined as pll§ if p~*p’ and p'l5.

A more abstract theory could be defined relying on general, non necessarily free
monoids of barbs. We defer this proposal to the full version of the paper.

Definition 4 (concurrent saturated barbed bisimilarity). Concurrent sat-
urated barbed bisimilarity, denoted by ~€, is defined by replacing — with ~ and
Vo with 5 in Definition 1.

Note that for general, possibly synchronous languages, the concurrent equiv-
alence can distinguish processes that are identical in the interleaving semantics.
For example, in SCCS a.b+b.a ¢ a | b since a.b+b.a does not satisfy |J, ., while
alb does. Instead, if we consider AccCs, where only output barbs are available, it
is easy to see that the two processes are equivalent with respect to ~°.

2.3 Concurrency Can’t Be Observed, Asynchronously

This section focus on the observability of concurrency through asynchronous in-
teractions, arguing that ~“=~ in formalisms with asynchronous communication.

As a first step we require that assumption (B) actually holds for concurrent
barbs, a property denoted as (CB). Formally, the witness property is defined as
in Definition 2 by replacing B with CB3, — with ~» and |, with .

A further assumption is now needed, relating concrete tests for concurrent
barbs and reduction sequences. Since it is intended to capture an essential feature
of asynchronous communication, it is referred to as the Aziom of Asynchrony

(AA) Let A be a concurrent barb, p a system, té( a concrete test for A on
pwith X = @ x;. If plt4 =" prlay =% ... =" puda, then pllS.
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Fig. 3. Syntax, structural congruence and reduction relation of the asynchronous .

Informally, the axiom can be explained as follows. We can think that A is a
multiset of output messages. The fact that t‘;‘( is a concrete test for A on p and
that p|t‘)4( —* pide, = ... =" pnly, means that p can emit the messages in
A one after the other. Then the intuition is that, if the system is asynchronous
and thus sending is non-blocking, the messages can be also kept internally and
made all available concurrently at the end.

As for our running examples, axiom (AA) holds in ACCS, but not in sccs.
In fact, take the ScCs process p = a.b. A concrete test for the concurrent barb
A = a®b could be t‘;‘( = a.1 | b.Zy with X = 77 ® 3. Yet, p\t‘;‘( —b| 7 |
b.l‘_z — X1 ‘ To but p /ﬂil

Relying on the assumptions made so far, we can prove the desired theorem.

Theorem 1 (concurrency can’t be observed, asynchronously). For any
formalism satisfying azioms (P1), (P2), (CB), (C), and (AA), concurrent satu-

rated barbed bisimilarity and saturated barbed bisimilarity coincide, i.e., ~=n~"°.

3 Asynchronous m-calculus

This section shows that the asynchronous mw-calculus fits in the theory of Sec-
tion 2, and thus saturated barbed congruence (which coincides with barbed
congruence [1]) and its concurrent version coincide.

Asynchronous 7-calculus has been introduced in [25] as a model of distributed
systems interacting via asynchronous message passing. Its syntax is shown in
Figure 3: we assume an infinite set A/ of names, ranged over by a,b ..., with
7 & N, and we let p,q ...range over the set P, of processes. Free names of
a process p (denoted by fn(p)) are defined as usual. Processes are taken up
to a structural congruence, axiomatised in Figure 3 and denoted by =. The
reduction relation, denoted by —, describes process evolution: it is the least
relation —C P, x P, closed under = and inductively generated by the axioms
and rules in Figure 3.

As for Accs (Section 2), barbs account only for outputs. So, for an output @,
plzifp = (va1) ... (vay)(ablg) and Vi, a # a; [1]. Concurrent barbs are multisets
of outputs, and they check the presence of several parallel outputs.



A non-interleaving semantics for the calculus is obtained by introducing a
concurrent transition relation ~», as defined in Figure 2. Multiple synchroniza-
tions over the same channel are thus allowed, as in the semantics proposed in [12,
34]. Different approaches are conceivable, see e.g. [28], yet they could still be ac-
commodated in our theory.

Now, let ~, denote saturated barbed bisimilarity for the asynchronous =-
calculus and let ~¢ denote the concurrent one. It is worth remarking that ~
coincides with the standard semantics for the calculus, namely, asynchronous
bisimilarity [1], as shown in [19]. Then we have the following result.

Corollary 1 (concurrency can’t be observed in asynchr. 7). ~,=~¢.

This follows from Theorem 1. Indeed, axioms (P1), (P2), and (C) clearly
hold. Concerning (CB), a test witnessing the concurrent barb A = @, @, is
th={td | C = R, A té = ay(by).cd| ... |an(by).Cnd A Vi.b; # ¢;}: for
processes p,q, we obtain a concrete test té for A on p and ¢ by taking a C
containing only names syntactically occurring neither in p nor q. With the above
definition, it is easy to prove that also the Axiom of Asynchrony (AA) holds.

4 Open Petri Nets

Open Petri nets [27,37, 3] are a reactive extension of ordinary P /T nets, equipped
with a distinguished set of open places that represent the interfaces through
which the environment interacts with a net. This kind of interactions is inherently
asynchronous (see e.g. [2]) and thus it represents an ideal testbed.

This section shows that indeed the interleaving and concurrent equivalences
defined in the literature (see e.g. [3]) are instances of ~ and ~¢, respectively.
Then, since all the axioms of our theory are satisfied, these equivalences coincide.

Definition 5 (open nets). An open net is a tuple N = (S, T, *(.), (.)*,0) for
S a set of places, T a set of transitions, *(.),(.)* : T — S® functions mapping
each transition to its pre- and post-set, and O C S a set of open places. A marked
(open) net is pair N = (N, m) for N an open net and m € S® a marking.

Examples of marked nets can be found in Figure 4. As usual, circles represent
places and rectangles transitions. Arrows from places to transitions represent
function °(.), arrows from transitions to places represent (.)*. An open net is
enclosed in a box and open places are on the border of such a box.

We assume a fixed infinite set S of place names. The set of interactions
(ranged over by i) is Zs = {sT,s~ | s € S}. The set of labels (ranged over by 1)
consists in {0} WZs. The firing (interleaving) semantics of open nets is expressed
by the rules on the top of Figure 5, where we write *¢t and t* instead of *(¢) and
(t)*. The rule (TR) is the standard rule of P/T nets (seen as multiset rewriting)
modelling internal transitions, which are labelled with 0 for subsequent use. The
other two rules model interactions with the environment: at any moment a token
can be inserted in (rule (IN)) or removed from (rule (OUT)) an open place.
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Fig. 4. Marked open nets and their parallel composition.
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Fig. 5. Firing and step semantics for open nets.

Weak transitions are defined as usual, i.e., 2 denotes the reflexive and tran-
sitive closure of — and = denotes ——3=. We write N = N’ when N = (N, m),
N’ = (N,m') and m = m’.

Definition 6 (firing bisimilarity). A symmetric relation R over marked nets
is a firing bisimulation if whenever N1RNs, if Ny Y Ni then N L NS and
N{RNJ. We say that N1 and Ny are firing bisimilar (written N1 = Ny) if there
exists a firing bisimulation R such that Ny RNs.

In order to ease the intuition, nets can be thought of as black boxes, where
only the interfaces are visible. Two nets are bisimilar if they cannot be distin-
guished by an observer that may only insert and remove tokens in open places.

Steps of open nets (~) are defined in Figure 5, bottom. Step labels (ranged
over by ¢, ¢q,co...) are multisets of interactions Zy. By rule (CFIR), each firing
is also a step and, in particular, the label 0 is interpreted as the empty multiset.
Rule (csTEP) allows to construct concurrent steps. Weak transitions are defined

aos usgal: % denotes the reflexive and transitive closure of ~> and +% denotes
. Step bisimilarity (<°) is defined by replacing = with — in Definition 6.

We now show that ~ and ~¢ are instances of ~ and ~¢, respectively. The

parallel composition N1|No of open nets Ny, Ny is obtained by gluing them on
their open places. More precisely, N1|Ny is the marked net obtained by taking



the disjoint union of the nets, merging open places with the same name and
summing the markings. An example of composition is shown in Figure 4.

Transitions — of marked nets correspond to transitions — in the theory of
Section 2, and 2 corresponds to ~~. Barbs check the presence of tokens in open
places. Formally, if we write m C n for m,n € S® whenever m = n®n’ for some
n’ € S®, the marked net N = <]\7, m) satisfies the barb b, denoted Ny, if b € O
(i.e., b is an open place of N) and b C m. Concurrent barbs check the presence
of multisets of tokens: for m’ € 8%, N|¢, if m’ € O® and m’ C m.

With these definitions it is possible to prove that firing (step) bisimilarity
coincides with (concurrent) saturated barbed bisimilarity.

Proposition 1. Let Ny, Ns be two marked nets with the same set of open places.
Then N1 ~ N2 ’Lﬁ N1 ~ N2 and N1 ~¢ NQ ZﬁNl ~¢ NQ.

In order to apply Theorem 1, we finally need to prove that all the axioms are
satisfied. This is immediate for (P1), (P2), and (C). Instead, concerning (CB), a
test witnessing a barb b € S is given by t* = {t® | z € S}, where t5 = N, is
the net in Figure 4, middle. For a concurrent barb B =b; ®---®b,, € S® a test
is given by t8 = {t§ | X = Q[ z; At§ =t |.. . |tl»}. With this definition of
test, also the Axiom of Asynchrony (AA) can be easily shown to hold. Hence, as
a corollary of Theorem 1 we get the following result.

Corollary 2 (concurrency can’t be observed in open nets). ~=~°.

5 On Selinger’s Axiomatization

An axiomatization of different classes of systems with asynchronous communi-
cation has been proposed in [38]. Roughly speaking, a system is said to be asyn-
chronous if its observable behaviour is not changed by filtering its input and/or
output through a suitable communication medium, which can store messages
and release them later on. Different choices of the medium (queues, unordered
buffers) are shown to lead to different notions of asynchrony, and suitable sets
of axioms are then identified which are shown to precisely capture the various
classes of asynchronous systems.

In order to further check the appropriateness of our framework, here we
prove that the class of systems characterised as asynchronous in [38] satisfy
the requirements in Section 2. More precisey, we focus on so-called out-buffered
asynchrony with feedback [38, Section 3.2], where output is asynchronous, the
order of messages is not preserved and the output of a process can be an input for
the process itself (feedback). The corresponding axioms [38, Table 3] are listed
in Figure 6. They are given for labelled transition systems, with labels in a, out a
and 7 denoting input, output and internal transitions, respectively.

In order to bring the correspondence to a formal level, we must overcome two
problems. Firstly, the theory in [38] is developed for a labelled semantics, while
we are concerned with barbed reduction semantics, and secondly, the theory
in [38] does not consider concurrent transitions, which are pivotal in our setting.

10
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Fig. 6. Axioms for out-buffered agents with feedback.

The first issue is solved by taking as reductions p — p’ the 7-transitions
out a

p = p’ and by defining (output) barbs pl, if p 255,
As a parallel operator for out-buffered agents with feedback, we use the
parallel composition with interaction defined in [38, Section 3.1] and given by®
p=p q=q plg #85" r
« (0% T
pla = v'lq pla = pld’ plg =7

As far as concurrent barbs are concerned, we define plS, where A = @', a;

whenever p 224 2298 This is motivated by the fact that, by axiom (FB1),
this implies that the same outputs can be performed by p in any order (in
particular p = for any i € {1,...,n}). In words, although the labelled transition
system does not provide any information on concurrency, we assume that outputs
which can be observed in any order are generated concurrently.

Moreover, A(p) denotes the acceptance set of p defined as A(p) = {a | Ip’ :
p —"p and p'l,}, and we stick to systems p such that the set A(p) is finite.5

With the above definitions, it is easy to see that axiom (B) holds.

Lemma 1. A4 barb a is witnessed by test t* = {t% | t2 g M} In particular,
forp, q, if v ¢ A(p) U.A(q), the system t% is a concrete test for a on p and q.

Concurrent reductions can now be defined as in Figure 2. With this definition
it is not difficult to see that assumptions (P1), (P2), (C) hold, and that (CB) is

5 Actually, this operator is associative and commutative only up-to isomorphism of
the underlying transition space of the system, which is implicitly assumed here.

6 This requirement is far from restrictive. For instance, it holds in the m-calculus since
for all processes p, g such that p —* ¢ we have fn(q) C fn(p).

11



an immediate consequence of (B). In fact the test witnessing a concurrent barb
A=@Q)  a;canbe t* = {t5 | X = @, o At2 € t% Aty =t [t¢n )}

With this set up we can finally prove that also the Axiom of Asynchrony
(AA) holds for any out-buffered system p with feedback.

Lemma 2. Let A = Q. a; be a concurrent barb, let p be a system satisfying
the azxioms in Figure 6, and let t’f( be a concrete test for A on p with X =

®?:1 . pr|t§— —* prda, =% oo 2" pplda, then pl§.

6 Conclusions, Related and Future Works

Building on the notion of concurrent barbs, we introduced a non interleaving
observational congruence for systems, and we proved that our slogan holds in a
rather general fashion: whenever the observer is only able to check the possible
interactions of a system with the environment, and the system can interact only
through an unordered buffer (corresponding to the out-buffered systems with
feedback of [38]), then concurrency cannot be observed, i.e., concurrent barbs
add no observational power.

As case studies, we considered open Petri nets and the asynchronous -
calculus, showing that they fall in our framework. In particular, for nets we
recovered the ordinary firing and step semantics (as defined in [3]); while for
the m-calculus the well-known asynchronous bisimilarity [1]. Our result holds for
other interesting formalisms as well, such as the Join calculus [18]. Indeed, the
latter is an instance of [38] and thus, as proved in Section 5, our theory applies.

The non-interleaving equivalence we introduced intuitively corresponds to
step semantics. This has been shown for the concrete case of open Petri nets,
even if it seems hard to raise the correspondence at an abstract level. Some idea
could come from the observation that steps naturally arise from the theory of
reactive systems [29] when replacing — with ~». Since p — ¢ means that —|a

is the smallest context ¢[—] such that c[p] — ¢, analogously the step p a®p q
would mean that —|a|b is the smallest ¢[—] such that c[p] ~ ¢. As a side remark,
note that one of the compelling arguments against step semantics (i.e., that it
is not preserved by action refinement [21]) looses its strength in the paradigm
of reduction systems and barbed equivalences, since actions (labels) disappear.

As far as ST-equivalences [23] are concerned, it seems conceivable to develop
an ST-operational semantics in an asynchronous setting, making production and
consumption of messages (tokens) not instantaneous (see, e.g., [22] for a net
model where token consumption is non-instantaneous and [13] for a similar study
on Linda-like languages) and we conjecture that unobservability of concurrency
would hold true also in this setting.

Close to our spirit are also equivalences with localities [10], that distinguish
(interleaving equivalent) processes by observing the locations where interactions
occur. We chose of not adopting this kind of equivalence for two main reasons:
(1) localities are usually structured as trees, but this does not make much sense
either in a calculus featuring joins (e.g. [18]) or in a graphical formalism such

12



as open Petri nets; (2) equivalence with localities have never been defined for
reduction semantics and, more importantly, for asynchronous formalisms.

It can be shown that equivalences with localities are incomparable with
ours. Still we conjecture that our slogan “concurrency can’t be observed, asyn-
chronously” still holds for equivalences with localities. Indeed, since in the asyn-
chronous case inputs are not observable, also their locations should not be ob-
servable. Therefore, only the locations of outputs could be observed, but these
are all independent (since outputs have no continuations). A formal study of
equivalences with localities for asynchronous systems is left as future work.

Our proposal is quite far from other non-interleaving semantics, such as those
proposed in e.g. [16, 17, 21]: these consider causal properties of the systems, either
by direct inspection of the state structure or by suitably enriching the labels of
the transition steps, thus being of a more extensional nature. For these semantics,
the fact that the internals of the systems are directly inspected, clearly implies
that the unobservability of concurrency will not hold.

It would be interesting to investigate the possibility of extending our re-
sults to other classes of languages. This could include asynchronous calculi with
bounded capacity channels, where a bounded number of messages can be trans-
mitted simultaneously along the same channel. We would also like to study
notions of asynchrony based on buffers which are not just unordered bags, but
ordered structures like queues (see e.g. [5,6,38,4]). A preliminary investigation
on the calculi mq and 7g in [4] (where buffers are, respectively, queues and
stacks) seems to suggest that our results on the unobservability of concurrency
should extend also to “ordered asynchrony”. Intuitively, a key difference would
be that in these calculi concurrent barbs should be sets of barbs instead of
multisets, since these ordered buffers should not allow concurrent operations.
Finally, another appealing case study could concern Linda-like languages, where
the presence of test-and-check operators might allow an observer to verify not
only the presence but also the absence of messages. In the same class would then
end up also nets with inhibitor arcs.

The different distinguishing power of concurrent equivalences in the syn-
chronous and asynchronous case could also be inspiring for the development of
additional separation results between the two paradigms, along the style of [35].
In more general terms, integrating our framework with the one proposed in [24]
seems to represent a promising direction for future investigations.

So far, few papers (such as e.g. [8, 15, 11]) tackled the study of the concurrency
features of asynchronous systems. And to the best of our knowledge our result,
albeit quite intuitive, has never been shown on any specific formalism, let alone
for a general framework as in our paper. Indeed, besides the catchy slogan,
we do believe that our work unearthed some inherent features of asynchronous
systems that should hopefully shed some further light on the issue. That is, it
should represent a further step towards a complete characterisation of the still
fuzzy synchronous/asynchronous dichotomy.
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