Skip to main content

Verifying the Modal Logic Cube Is an Easy Task (For Higher-Order Automated Reasoners)

  • Chapter
Verification, Induction, Termination Analysis

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6463))

Abstract

Prominent logics, including quantified multimodal logics, can be elegantly embedded in simple type theory (classical higher-order logic). Furthermore, off-the-shelf reasoning systems for simple type type theory exist that can be uniformly employed for reasoning within and about embedded logics. In this paper we focus on reasoning about modal logics and exploit our framework for the automated verification of inclusion and equivalence relations between them. Related work has applied first-order automated theorem provers for the task. Our solution achieves significant improvements, most notably, with respect to elegance and simplicity of the problem encodings as well as with respect to automation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B., Brown, C.: TPS: A Hybrid Automatic-Interactive System for Developing Proofs. Journal of Applied Logic 4(4), 367–395 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, P.B.: General models and extensionality. Journal of Symbolic Logic 37, 395–397 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, P.B.: General models, descriptions, and choice in type theory. Journal of Symbolic Logic 37, 385–394 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  5. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning. LNCS (LNAI), vol. 6173, pp. 76–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Benzmüller, C.: Combining logics in simple type theory. In: The 11th International Workshop on Computational Logic in Multi-Agent Systems, Lisbon, Portugal. Lecture Notes in Artifical Intelligence, Springer, Heidelberg (2010)

    Google Scholar 

  7. Benzmüller, C., Brown, C.E., Kohlhase, M.: Higher order semantics and extensionality. Journal of Symbolic Logic 69, 1027–1088 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Benzmüller, L.C. Paulson. Quantified Multimodal Logics in Simple Type Theory. SEKI Report SR–2009–02 (ISSN 1437-4447). SEKI Publications, DFKI Bremen GmbH, Safe and Secure Cognitive Systems, Cartesium, Enrique Schmidt Str. 5, D–28359 Bremen, Germany (2009), http://arxiv.org/abs/0905.2435

  9. Benzmüller, C., Paulson, L.C.: Multimodal and intuitionistic logics in simple type theory. The Logic Journal of the IGPL (2010)

    Google Scholar 

  10. Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II — A Cooperative Automatic Theorem Prover for Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Benzmüller, C., Rabe, F., Sutcliffe, G.: THF0 — The Core TPTP Language for Classical Higher-Order Logic. In: Baumgartner, P., Armando, A., Gilles, D. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Blackburn, P., Marx, M.: Tableaux for quantified hybrid logic. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 38–52. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Braüner, T.: Natural deduction for first-order hybrid logic. Journal of Logic, Language and Information 14(2), 173–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5, 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fitting, M.: Interpolation for first order S5. Journal of Symbolic Logic 67(2), 621–634 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garson, J.: Modal logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2009 edition (2009)

    Google Scholar 

  18. Goldblatt, R.: Logics of Time and Computation, 2nd edn. Lecture Notes, vol. 7. Center for the Study of Language and Information, Stanford (1992)

    MATH  Google Scholar 

  19. Halleck, J.: John Halleck’s Logic Systems, http://www.cc.utah.edu/~nahaj/logic/structures/systems/index.html

  20. Henkin, L.: Completeness in the theory of types. Journal of Symbolic Logic 15, 81–91 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with difference and converse. Journal of Logic, Language and Information 18(4), 437–464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

    Google Scholar 

  23. Rabe, F., Pudlak, P., Sutcliffe, G., Shen, W.: Solving the $100 Modal Logic Challenge. Journal of Applied Logic (2008) (page to appear)

    Google Scholar 

  24. Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)

    MATH  Google Scholar 

  25. Sutcliffe, G.: TPTP, TSTP, CASC, etc. In: Diekert, V., Volkov, M., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 7–23. Springer, Heidelberg (2007)

    Google Scholar 

  26. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reasoning 43(4), 337–362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. Journal of Formalized Reasoning 3(1), 1–27 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Weber, T.: SAT-Based Finite Model Generation for Higher-Order Logic. Ph.D. thesis, Dept. of Informatics, T.U. München (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benzmüller, C. (2010). Verifying the Modal Logic Cube Is an Easy Task (For Higher-Order Automated Reasoners). In: Siegler, S., Wasser, N. (eds) Verification, Induction, Termination Analysis. Lecture Notes in Computer Science(), vol 6463. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17172-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17172-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17171-0

  • Online ISBN: 978-3-642-17172-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics