Skip to main content

Robust Radial Distortion from a Single Image

  • Conference paper
Advances in Visual Computing (ISVC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6454))

Included in the following conference series:

Abstract

Many computer vision algorithms rely on the assumption of the pinhole camera model, but lens distortion with off-the-shelf cameras is significant enough to violate this assumption. Many methods for radial distortion estimation have been proposed, but they all have limitations. Robust automatic radial distortion estimation from a single natural image would be extremely useful for some applications. We propose a new method for radial distortion estimation based on the plumb-line approach. The method works from a single image and does not require a special calibration pattern. It is based on Fitzgibbon’s division model, robust estimation of circular arcs, and robust estimation of distortion parameters. In a series of experiments on synthetic and real images, we demonstrate the method’s ability to accurately identify distortion parameters and remove radial distortion from images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1330–1334 (2000)

    Article  Google Scholar 

  2. Strand, R., Hayman, E.: Correcting radial distortion by circle fitting. In: British Machine Vision Conference, BMVC (2005)

    Google Scholar 

  3. Friel, M., Hughes, C., Denny, P., Jones, E., Glavin, M.: Automatic calibration of fish-eye cameras from automotive video sequences. Intelligent Transport Systems, IET 4, 136–148 (2010)

    Article  Google Scholar 

  4. Hughes, C., Glavin, M., Jones, E., Denny, P.: Wide-angle camera technology for automotive applications: a review. Intelligent Transport Systems, IET 3, 19–31 (2009)

    Article  Google Scholar 

  5. Wang, A., Qiu, T., Shao, L.: A simple method of radial distortion correction with centre of distortion estimation. Journal of Mathematical Imaging and Vision 35, 165–172 (2009)

    Article  MathSciNet  Google Scholar 

  6. Devernay, F., Faugeras, O.: Straight lines have to be straight: Automatic calibration and removal of distortion from scenes of structured enviroments. Machine Vision and Applications 13, 14–24 (2001)

    Article  Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. Radiometry, 221–244 (1992)

    Google Scholar 

  9. Braüer-Burchardt, C.: A simple new method for precise lens distortion correction of low cost camera systems. In: German Pattern Recognition Symposium, pp. 570–577 (2004)

    Google Scholar 

  10. Barreto, J.P., Daniilidis, K.: Fundamental matrix for cameras with radial distortion. In: International Conference on Computer Vision (ICCV), pp. 625–632 (2005)

    Google Scholar 

  11. Hartley, R., Kang, S.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1309–1321 (2007)

    Article  Google Scholar 

  12. Fitzgibbon, A.W.: Simultaneous linear estimation of multiple view geometry and lens distortion. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 125–132 (2001)

    Google Scholar 

  13. Stein, G.P.: Lens distortion calibration using point correspondences. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 602–608 (1996)

    Google Scholar 

  14. Ramalingam, S., Sturm, P., Lodha, S.K.: Generic self-calibration of central cameras. Computer Vision and Image Understanding 114, 210–219 (2010)

    Article  Google Scholar 

  15. Thormählen, T., Broszio, H., Wassermann, I.: Robust line-based calibration of lens distortion from a single view. In: Computer Vision / Computer Graphics Collaboration for Model-based Imaging Rendering, Image Analysis and Graphical Special Effects, pp. 105–112 (2003)

    Google Scholar 

  16. Brown, D.C.: Close-range camera calibration. Photogrammetric Engineering 37, 855–866 (1971)

    Google Scholar 

  17. Swaminathan, R., Nayar, S.: Non-Metric Calibration of Wide-Angle Lenses and Polycameras. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 1172–1178 (2000)

    Article  Google Scholar 

  18. Alvarez, L., Gómez, L., Sendra, J.R.: An algebraic approach to lens distortion by line rectification. Journal of Mathematical Imaging and Vision 35, 36–50 (2009)

    Article  MathSciNet  Google Scholar 

  19. Brauer-Burchardt, C., Voss, K.: A new algorithm to correct fish-eye- and strong wide-angle-lens-distortion from single images. In: IEEE International Conference on Image Processing, vol. 1, pp. 225–228 (2001)

    Google Scholar 

  20. Tavakoli, H.R., Pourreza, H.R.: Automated center of radial distortion estimation, using active targets. In: Asian Conference on Computer Vision, ACCV (2010)

    Google Scholar 

  21. Chernov, N.: Circular and Linear Regression: Fitting Circles and Lines by Least Squares. Chapman & Hall, Boca Raton (2010)

    Book  Google Scholar 

  22. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  23. Al-Sharadqah, A., Chernov., N.: Error analysis for circle fitting algorithms. The Electronic Journal of Statistics 3, 886–911 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taubin, G.: Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 1115–1138 (1991)

    Article  Google Scholar 

  25. Tomasi, C.: Sample image for CPS 296.1 homework assignment (2007), http://www.cs.duke.edu/courses/spring06/cps296.1/homework/1/lab.gif

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bukhari, F., Dailey, M.N. (2010). Robust Radial Distortion from a Single Image. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17274-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17274-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17273-1

  • Online ISBN: 978-3-642-17274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics