Skip to main content

Arm-Hand Behaviours Modelling: From Attention to Imitation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6454))

Abstract

We present a new and original method for modelling arm-hand actions, learning and recognition. We use an incremental approach to separate the arm-hand action recognition problem into three levels. The lower level exploits bottom-up attention to select the region of interest, and attention is specifically tuned towards human motion. The middle level serves to classify action primitives exploiting motion features as descriptors. Each of the primitives is modelled by a Mixture of Gaussian, and it is recognised by a complete, real time and robust recognition system. The higher level system combines sequences of primitives using deterministic finite automata. The contribution of the paper is a compositional based model for arm-hand behaviours allowing a robot to learn new actions in a one time shot demonstration of the action execution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C 37(3), 311–324 (2007)

    Article  Google Scholar 

  2. Wildes, R.P., Bergen, J.R.: Qualitative spatiotemporal analysis using an oriented energy representation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 768–784. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. of the Optical Society of America A 2(2), 284–299 (1985)

    Article  Google Scholar 

  4. Braddick, O., OBrien, J., Wattam-Bell, J., Atkinson, J., Turner, R.: Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Current Biology 10, 731–734 (2000)

    Article  Google Scholar 

  5. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)

    Article  Google Scholar 

  6. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28, 976–990 (2010)

    Article  Google Scholar 

  7. Aggarwal, J.K., Cai, Q.: Human motion analysis: A review. Computer Vision and Image Understanding 73, 428–440 (1999)

    Article  Google Scholar 

  8. Bobick, A.F.: Movement, activity, and action: the role of knowledge in the perception of motion. Philosophical Transactions of the Royal Society of London 352, 1257–1265 (1997)

    Article  Google Scholar 

  9. Forsyth, D.A., Arikan, O., Ikemoto, L., O’Brien, J.F., Ramanan, D.: Computational studies of human motion: Part 1, tracking and motion synthesis. Foundations and Trends in Computer Graphics and Vision 1(2/3) (2005)

    Google Scholar 

  10. Krüger, V., Kragic, D., Geib, C.: The meaning of action a review on action recognition and mapping. Advanced Robotics 21, 1473–1501 (2007)

    Google Scholar 

  11. Casile, A., Dayan, E., Caggiano, V., Hendler, T., Flash, T., Giese, M.A.: Neuronal enc. of human kinematic invariants during action obs. Cereb Cortex 20(7), 1647–1655 (2010)

    Article  Google Scholar 

  12. Gabor, D.: Theory of communication. J. IEE 93(26, Part III), 429–460 (1946)

    Google Scholar 

  13. Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America 2(7), 1160–1169 (1985)

    Article  Google Scholar 

  14. Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58, 1233–1258 (1987)

    Google Scholar 

  15. Daugman, J.G.: Complete discrete 2-d Gabor tansforms by neural networks for image analysis and compression. IEEE Trans. on ASSP 36(7), 1169–1179 (1988)

    Article  MATH  Google Scholar 

  16. Wasserman, L.: All of Nonparametric Statistics. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  17. Heeger, D.J.: Optical flow using spatiotemporal filters. International Journal of Computer Vision 1(4), 279–302 (1988)

    Article  Google Scholar 

  18. Watson, A.B., Ahumada, A.J.J.: Model of human visual-motion sensing. Journal of the Optical Society of America A: Optics, Image Science, and Vision 2(2), 322–342 (1985)

    Article  Google Scholar 

  19. Horn, B.K.P., Shunk, B.G.: Determining optical flow. Art. Intel. 17, 185–203 (1981)

    Article  Google Scholar 

  20. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of DARPA Imaging Understanding Work, pp. 121–130 (1981)

    Google Scholar 

  21. Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., Schnörr, C.: Real-time optic flow computation with variational methods. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 222–229. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Luxburg, U.V.: A tutorial on spectral clustering. Statistics and Comp. 14, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  24. Hopcroft, J., Ullman, J.: Introduction to Automata Theory Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  25. Oncina, J., García, P.: Identifying regular languages in polynomial time. World Scientific Publishing, Singapore (1992)

    Google Scholar 

  26. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Probabilistic finite-state machines-part i-ii. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1013–1039 (2005)

    Article  Google Scholar 

  28. Dupont, P., Denis, F., Esposito, Y.: Links between probabilistic automata and hidden markov models: probability distributions, learning models and induction algorithms. Pattern Recognition 38(9), 1349–1371 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanello, S.R.F., Gori, I., Pirri, F. (2010). Arm-Hand Behaviours Modelling: From Attention to Imitation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6454. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17274-8_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17274-8_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17273-1

  • Online ISBN: 978-3-642-17274-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics