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Abstract. Terrain detection and classification are critical elements for NASA 
mission preparations and landing site selection. In this paper, we have investi-
gated several image features and classifiers for lunar terrain classification. The 
proposed histogram of gradient orientation effectively discerns the characteris-
tics of various terrain types. We further develop an open-source Lunar Image 
Labeling Toolkit to facilitate future research in planetary science. Experimental 
results show that the proposed system achieves 95% accuracy of classification 
evaluated on a dataset of 931 lunar image patches from NASA Apollo missions. 

1   Introduction 

Due to the rapid growth of image acquisition technology, large amount of planetary 
images from satellites are available for aerospace and planetary research. Understand-
ing the semantic content in orbital images is therefore important for further analysis in 
planetary science. For example, terrain classification can facilitate landing site selec-
tion in robotic or manned mission on the Moon or Mars. In this work, we focus on 
lunar image classification in images collected by Apollo missions. 

Lunar image classification is challenging because the shapes and colors of each 
type of terrain vary with locations, and the images are affected by dust and granular 
noise in the scanning process. Furthermore, the brightness and shadow caused by the 
angle of sunlight can significantly change the appearance of lunar surface. Inspired by 
previous work on face detection and object recognition [2]–[5], we combine both the 
techniques in image processing and the domain knowledge in planetary science to 
overcome the challenges. 

In this paper, we present an automatic lunar image classification system with the 
following contributions. First, we have investigated multiple combinations of features 
and classifiers and compare their effectiveness in classifying terrains including cra-
ters, flat areas, and shadows. Second, we show that the proposed image feature—
histogram of gradient orientation—is robust and effective for differentiating signa-
tures of different terrains on the Moon. The system is one of the early attempts [6]–[8] 
to address the challenges in lunar terrain classification, and can be applied to images 
from the Moon, Mars, or other planets in space missions (e.g. LCROSS and HiRISE). 
Third, to facilitate future research in planetary science and imagery, we develop an 



open-source Lunar Image Labeling Toolkit (LILT) with graphical user interface im-
plemented in Java. We hope researchers can utilize the LILT toolkit to efficiently 
annotate large amount of planetary images for supervised learning. 

The paper is organized as follows. We discuss related work in Section 2. In Section 
3, we describe the proposed system architecture including feature extraction and clas-
sification algorithms. We present the lunar image labeling toolkit in Section 4, and 
show the experimental results in Section 5. We conclude the paper in Section 6. 
 

2   Related Work 

Our work is inspired by several previous attempts to crater or geological feature de-
tection [6]–[8]. In [6], a feature template family is created by varying the resizing 
scale of continuously scalable detectors, and a testing image is classified as the most 
correlated template. The work has limitations when images are noisy or taken under 
varying sunlight angle. In [7], object-based analysis is used to extract textually or 
spectrally homogeneous regions. The method allows the identification of crater walls 
and crater floors separately; however, it requires high learning costs and is susceptible 
to noise. In [8], automatic crater detection is implemented using a boosting algorithm 
that select a small set of features characterizing the presence or absence of craters. 
The approach is validated by data sets of Mars surface captured by Mars Orbiter 
Camera. 

There has also been extensive work on face, human, or object recognition [1]. In 
[3], rectangle features are used as a weak classifier initially, and then enhanced by 
incremental training using AdaBoost. A cascade filter is further used to discard the 
background of images rapidly and refine the detection results. In [4], object recogni-
tion is modeled as a machine translation problem. K-means is used for clustering 

 
Fig. 1. System architecture of lunar image classification. 



followed by the EM algorithm for learning a lexicon of image words. Though some 
promising results are reported, it is mentioned that the approaches have certain limita-
tions and does not work well on some objects. Locally normalized histogram of gra-
dient orientations is adopted in [2] for person detection. The feature reduces false 
positive rates by an order of magnitude relative to the best Haar wavelet based detec-
tor from [5]. Inspired by these related works, we aim at lunar terrain classification and 
evaluate our system using various features and classifiers. 

3   System Design and Methods 

The system architecture is shown in Fig. 1. The goal of our system is to classify an 
input image patch to one of the four classes shown in Fig. 2. In this section, we de-
scribe each component of our approach in detail. 

3.1   Preprocessing 

First, all the images are converted to grayscale since lunar images mainly differ in 
luminance rather than color distributions. Then, for each input image, we apply Gaus-
sian blurring filter to the entire image to reduce high-frequency noise and camera 
artifacts. Gaussian filtering is done by the convolution of each pixel in the input im-
age with a Gaussian kernel and then summing to produce the output image. In ex-
periments, we empirically use the 3-by-3 filter window as the Gaussian kernel. 
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Fig. 2. Examples of lunar terrain types and the corresponding feature examples at the bottom: 
(a) crater with shadow (b) crater without shadow (c) shadow area (d) flat area. 



 

3.2   Image Feature Extraction 

Histogram of Gradient Orientation. Histogram of gradient orientation has been 
used in the field of human detection [2]. While gradient is useful for edge detection, 
using the magnitude of gradient as a feature is less robust due to the variability of 
luminance contrast. In contrast with magnitude, the orientation of gradient is of lower 
granularity and thus less susceptible to high-frequency noises. The computation of 
gradient orientation can be formulated as: 

€ 

v* = argmax  
v

L(n(pi,v)) − L(pi)  
(1) 

where 

€ 

v ∈ {(i, j)  −1≤ i ≤ 1,  −1≤ j ≤ 1,  i, j ∈ Z}  is the orientation of the gradient, 
which can be one of the following vectors: (1,0), (1,1), (0,1), (-1,1), (-1,0), (-1,-1), (0,-
1), (1,-1). pi denotes the coordinate of a pixel, and n(pi,v) denotes the neighboring 
pixel given by (pi+v). L(pi) is the luminance of the pixel pi. According to eq. (1), for 
each pixel pi in the input image patch, we compute the difference of luminance be-
tween the pixel pi and each of its eight neighboring pixels, n(pi,v). The direction with 
the maximum difference is the gradient orientation. After computing the orientation 
of gradient at each pixel, we sum up the occurrence of each orientation and form a 
statistical histogram. Since there are eight possible directions, the resulting histogram 
is an 8-dimensional vector as shown in Figure 2. 

The intuition behind the use of this feature is inspired by the characteristics of lu-
nar terrains. While craters are generally of circular shape, flat areas have no specific 
shape or edges, and shadow areas can have obvious edges from darkness to the area 
with sunlight. These characteristics can be distinguished by the gradient orientation 
histograms of image patches. 

Haar-like Features. Haar-like features are widely used in object and face detection. 
The features are computed by probing each image patch P with a set of 8 different 
masks shown in Figure 3. In these masks, the black and white areas represent -1 and 
+1, respectively. When we apply a Haar-like feature mask on a specific image patch 
P, the computation of a single normalized feature value can be formulated as: 

 

 
Fig. 3. The eight Haar-like masks used for feature extraction. 



€ 

f (P) = P(x)Ω(x)dx
[0,1]2
∫  (2) 

where Ω(x) denotes one of the Haar-like masks. The image patch P and the mask are 
images defined in the interval [0,1]2. The computation of these features is intensive 
but can be accelerated if the integral image is pre-computed. In our implementation, 
we applied the 8 distinct Haar-like feature masks and aggregated eight values into an 
8-dimensional feature vector. 

Luminance Histogram. The luminance histogram represents the luminance distribu-
tion of the image. The raw luminance histogram is of 256 bins. To reduce the dimen-
sion, we cluster every 32 successive luminance levels into one bin and obtain an 8-
dimensional feature vector as shown in Figure 2. 

3.3   Lunar Image Classification 

K-Nearest Neighbor Classifier. In our work, we adopt k-NN as one of our classifica-
tion algorithms. Specifically, for each testing image patch, we calculate the distance 
from each of the image patches in the training dataset. The distance is obtained by 
computing the L2-distance (i.e. Euclidean distance) between two feature vectors. 

Decision Tree Classifier. In addition to k-NN classifier, we also adopt the decision 
tree classifier. Specifically, a decision tree is tiered into three layers. The topmost 
tier’s decision tree decides if a particular patch belongs to the most common class in 
the training data. If positive, the classification is finished. Otherwise, the decision tree 
at the next tier is used to classify the patch as belonging to the second most common 
class in the training data or not. This process is repeated until a decision tree returns a 
positive result or all decision trees are exhausted. In cases where all decision trees are 
exhausted without obtaining a positive classification from any of the decision trees, 
the patch is assigned a default classification. The default classification in this case is 
the most common class in the training data. 

4   Lunar Image Labeling Tool 

Training image classifiers requires large amount of training data. Since there is no 
labeled lunar image database available, we decided to develop the Lunar Image La-
beling Toolkit (LILT) that allow us to annotate terrain types and facilitate future re-
search in the related field. The LILT toolkit is open-source and is available on our 
website1. 

                                                             
1 http://www.ece.cmu.edu/~hengtzec/projects/lunar/LILT.zip 



 
The graphical user interface for terrain type labeling is developed in Java Swing. 

Figure 4 shows the user interface that consists of a file navigation section, a class 
labeling section, and a display panel. A user can intuitively choose a class, drag the 
desired zone, or undo operations. We use the LILT toolkit to label 931 lunar image 
patches of interest from 66 raw images. The toolkit supports various input image 
formats such as PNG, TIFF, or JPEG, and outputs a ground-truth file containing file 
name, patch coordinates, and the terrain type of the image patch. 

5   Experimental Results 

We evaluate the system on a dataset that consists of 931 lunar image patches from 
NASA Apollo missions. 
 

 

5.1   Evaluation on Feature and Classifier Combinations 

First, we evaluate the performance using different combinations of image features and 
classification algorithms to find which ones are more effective. As shown in Table 1, 
luminance histogram does not work well in general because the luminance 

Table 1. Accuracy with different feature and classifier combinations. 
Method Decision Tree k-Nearest Neighbor 

Luminance Histogram 59.47% 56.76% 
Haar-like Feature 64.45% 68.47% 

Gradient Orientation 85.73% 95.56% 
 

 
Fig. 4. User interface of the Lunar Image Labeling Toolkit. 



distribution is not necessarily consistent across images of the same terrain type. One 
terrain type can be dark when the sunlight is blocked and bright otherwise. Haar-like 
features roughly capture the edges or texture changes and slightly improve the accu-
racy to around 65%, but fail to recognize terrains with highly varying sizes since the 
set of masks is fixed. Among the three features we have tested, histogram of gradient 
orientation yields the best performance, which is 85.73% using the decision tree, and 
95.56% using the k-nearest neighbor classifier. The results show that the histogram of 
gradient orientation effectively learns the signature of shapes and edge directions of 
different terrain types. Furthermore, since only the distribution of gradient orientation 
(rather than magnitude) is computed, the feature is more robust and scale-invariant. 

As for the comparison of classification algorithms, from Table I we can see that k-
NN generally performs better than decision trees. When using histogram of gradient 
orientation as features, k-NN improves the overall accuracy by approximately 10%. 
Therefore, we choose gradient orientation histogram and k-NN as our proposed 
method for subsequent experiments. 

 

 

5.2   Cross Validation 

We further conduct several experiments to test the best-performing system, which 
consists of gradient orientation histogram as feature and k-NN classifier, under differ-
ent parameter settings. As shown in Figure 5, the k-NN classifier performs best when 
k=1, and the accuracy decreases as k increases. One reason is that some craters with-
out shadows are of subtle edges and are more likely to be misclassified as flat areas; 
therefore, increasing k brings more potentially misleading patch candidates. As a 
result, we empirically set k to 1 for subsequent evaluations. Then, we test the per-
formance under the condition that only a small amount of training data is available. 

 
Fig. 5. Accuracy with different k in k-NN classifier. 

Table 2. Classification accuracy using different percentage of training data.  
Percentage of Training Data 10% 20% 30% 50% 90% 

Accuracy 93.58 94.26 94.81 95.03 95.51 
 



As shown in Table II, even using only 10% of training data (approximately 90 image 
patches), we still achieve 93.58% of accuracy. This shows the robustness of the pro-
posed method. We also performed 10-fold and leave-one-out cross validation with the 
results shown in Table III. The overall accuracy is 93.67% and 95.7%, respectively. 

6   Conclusions and Future Work 

In this paper, we have investigated image feature and classifiers for lunar terrain clas-
sification. Evaluated on a large dataset of 931 lunar image patches from Apollo mis-
sions, the proposed system using histogram of gradient orientation and k-NN classi-
fier achieved a high accuracy of 95.56%. We have also shown that the proposed ap-
proach outperforms Haar-like features and luminance histogram by around 30%. The 
system, along with the open-source Lunar Image Labeling Toolkit, can be applied to 
larger orbital image mining package for imagery from NASA space missions such as 
LCROSS and HiRISE. 

For future work, we plan to focus on automatic terrain patch detection using scale-
invariant image descriptors. Furthermore, we plan to extend the system architecture 
for recognizing a wider category of terrain types on the moon and other planets. We 
will also test the performance using multiple feature fusion and other generative or 
discriminative classifiers. 
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