Skip to main content

Towards Computational Understanding of Skill Levels in Simulation-Based Surgical Training via Automatic Video Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6455))

Abstract

Analysis of motion expertise is an important problem in many domains including sports and surgery. Recent years, surgical simulation has emerged at the forefront of new technologies for improving the education and training of surgical residents. In simulation-based surgical training, a key task is to rate the performance of the operator, which is done currently by senior surgeons. This is deemed as a costly practice and researchers have been working towards building automated systems to achieve computational understanding of surgical skills, largely through analysis of motion data captured by video or data of other modalities. This paper presents our study on understanding a fundamental issue in building such automated systems: how visual features computed from videos capturing surgical actions may be related to the motion expertise of the operator. Utilizing domain-speciffic knowledge, we propose algorithms for detecting visual features that support understanding the skill of the operator. A set of video streams captured from resident surgeons in two local hospitals were employed in our analysis. The experiments revealed useful observations on potential correlations between computable visual features and the motion expertise of the subjects, hence leading to insights into how to build automatic system for solving the problem of expertise evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fundamentals of Laparoscopic Surgery

    Google Scholar 

  2. Aggarwal, R., Grantcharov, T., Moorthy, K., Milland, T., Papasavas, P., Dosis, A., Bello, F., Darzi, A.: An evaluation of the feasibility, validity, and reliability of laparoscopic skills assessment in the operating room. Annals of surgery 245(6), 992–999 (2007)

    Article  Google Scholar 

  3. Aggarwal, R., Undre, S., Moorthy, K., Vincent, C., Darzi, A.: The simulated operating theatre: comprehensive training for surgical teams. Quality and Safety in Health Care 13(suppl. 1), i27 (2004)

    Article  Google Scholar 

  4. Eversbusch, A., Grantcharov, T.P.: Learning curves and impact of psychomotor training on performance in simulated colonoscopy: a randomized trial using a virtual reality endoscopy trainer. Surgical endoscopy 18(10), 1514–1518 (2004)

    Article  Google Scholar 

  5. Gallagher, A.G., Ritter, E.M., Champion, H., Higgins, G., Fried, M.P., Moses, G., Smith, C.D., Satava, R.M.: Virtual Reality Simulation for the Operating Room. Proficiency-Based Training as a Paradigm Shift in Surgical Skills Training. Annals of Surgery 241, 364–372 (2005)

    Article  Google Scholar 

  6. Healey, A.N., Undre, S., Vincent, C.A.: Developing observational measures of performance in surgical teams. Qual. Saf. Health Care 13, 33–40 (2004)

    Article  Google Scholar 

  7. Junejo, I., Dexter, E., Laptev, I., Pérez, P.: Cross-view action recognition from temporal self-similarities. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 293–306. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Lin, H.C., Shafran, I., Yuh, D., Hager, G.D.: Towards automatic skill evaluation: Detection and segmentation of robot-assisted surgical motions. Computer Aided Surgery 11(5), 220–230 (2006)

    Article  Google Scholar 

  9. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, vol. 3, p. 3. Citeseer (1981)

    Google Scholar 

  10. Mayes, S., Deka, J., Kahol, K., Smith, M., Mattox, J., Woodwards, A.: Evaluation Of Cognitive And Psychomotor Skills Of Surgical Residents at Various Stages in Residency. In: 5th Annual Meeting of American College of Obstetricians and Gynecologists (2007)

    Google Scholar 

  11. Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(3), 311–324 (2007)

    Article  Google Scholar 

  12. Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)

    Article  Google Scholar 

  13. Riffenburgh, R.H., Clunies-Ross, C.W.: Linear discriminant analysis. PhD thesis, Virginia Polytechnic Institute (1957)

    Google Scholar 

  14. Rosen, J., Brown, J.D., Chang, L., Sinanan, M.N., Hannaford, B.: Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete markov model. IEEE Transactions on Biomedical Engineering 53(3), 399–413 (2006)

    Article  Google Scholar 

  15. Satava, R.M., Gallagher, A.G., Pellegrini, C.A.: Surgical competence and surgical proficiency: definitions, taxonomy, and metrics. Journal of the American College of Surgeons 196(6), 933–937 (2003)

    Article  Google Scholar 

  16. Sutherland, L., Middleton, P., Anthony, A., Hamdorf, J., Cregan, P., Scott, D., Maddern, G.J.: Surgical Simulation: A Systematic Review. Annals of Surgery 243, 291–300 (2006)

    Article  Google Scholar 

  17. Wang, J.J., Singh, S.: Video analysis of human dynamics–a survey. Real-Time Imaging 9(5), 321–346 (2003)

    Article  Google Scholar 

  18. Wanzel, K.: Visual-spatial ability correlates with efficiency of hand motion and successful surgical performance. Surgery 134(5), 750–757 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Li, B. (2010). Towards Computational Understanding of Skill Levels in Simulation-Based Surgical Training via Automatic Video Analysis. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2010. Lecture Notes in Computer Science, vol 6455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17277-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17277-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17276-2

  • Online ISBN: 978-3-642-17277-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics