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Abstract. We extend our previous work on the exploration of static inetia
networks to evolving, and therefore dynamic, pathways. @y#yeour visualiza-
tion software to data from a simulation of early metabolidiereby, we show
that our technique allows us to test and argue for or agaiffsteht scenarios for
the evolution of metabolic pathways. This supports a pnodoand efficient anal-
ysis of the structure and properties of the generated migtatetworks and its
underlying components, while giving the user a vivid imgies of the dynamics
of the system. The analysis process is inspired by Ben Shmeah’s mantra of
information visualization. For the overview, user-defirdddgrams give insight
into topological changes of the graph as well as changeseimttibute set as-
sociated with the participating enzymes, substances autioes. This way, “in-
teresting features” in time as well as in space can be rezedniA linked view
implementation enables the navigation into more detadgeérs of perspective
for in-depth analysis of individual network configurations

1 Introduction

Metabolic networks, the set of chemical compounds and ihé&dractions that con-
stitute life in the most basic sense, are the best studidddigal networks. With the
plethora of genomic, proteomic and metabolomic data av&ila becomes possible to
study cell behavior. However, to understand the underlgiintciples of life and gaining
further insights about the metabolism of cells for the usbigtechnological applica-
tions, e.g., pharmaceutical target prediction or metal®migineering, we need tools to
model and analyze the metabolic processes, pathways, andrke. There exist suc-
cessful means for the reconstruction of metabolic netwénd® annotated genomes
[1], the analysis of these networks in terms of elementatiyyays [2], and description
of their behavior with the help of ODE models [3]. Furtherigig into the development
of kinetic models of metabolic networks addressing rateslafithe involved enzymes
is provided in [4]. The situation becomes more difficult whea want to explain the
evolutionary mechanisms of these systems, i.e., the fasmaf metabolic pathways
or the emergence of complex network properties. Althougberal scenarios exist that
provide some insight into the evolution of metabolic patpsv§b], only few aspects
are well understood. Especially, the first steps in earlyalmgtsm evade observation
by conventional approaches. To this end, Ullrich et al. }eloped a multi-level com-
putational model to study the transition to life: the evidntof metabolic pathways
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from catalyzed chemical reactions. The simulation apgraamplements components
on different scales in a more realistic manner than has beea sb far.

In this work we introduce a plug-in for exploring dynamic ghs extending the
existing graph visualization software previously desedilin [7]. The implementation
of the extension was primarily driven by the given data amdréguirements stated by
the scientists providing it. These include

1. Overview of the complete series of evolving metabolicvoeks, i.e. involvement
of metabolites, reactions and enzymes, and evaluationygbtaperties, e.g. quan-
tity (concentration) and activity (participation in pathys)

2. Analysis of dynamics in the network’s topology and atitdset. Compare net-
works of different time steps and analyze topology dynarnniceore detail.

3. Elementary pathway analysis of selected network genesatTime series analysis
of attributes associated with selected node.

For the analysis of the simulation results, an efficient afigation system tailored
to suit our needs is of utmost importance. The main functidh@software introduced
in this article lies in the analysis of metabolic networksgeneral and studying the
evolution and dynamic behavior of metabolism in particuldnis is achieved by pro-
viding an insightful overview on different scales (e.g.,the metabolite-, pathway-,
or network-level) and different angles (e.g., dynamicoaiogy vs. attribute dynam-
ics) of the vast amount of extracted information. Being ablebserve all components
(individually or together) for the entire simulation tine éne representation gives us
a much deeper understanding of the system’s dynamics thastatistical analysis or
static view can provide. By means of one sample simulatianskow the possibilities
of the tool and which potential general insights we can gain.

2 Redated Work

To deal with large biochemical networks several methodstaot$ have been devel-
oped. Simple approaches try to visualize the complete m&tato the screen and use
zooming and panning for navigation. Examples are commaplgdsawing or network
analysis tools [9, 10]. Other approaches, such as KGML-EIL, iinprove the naviga-
tion between single pathways by providing an hierarchieahraiew and functions to
zoom into the top nodes of the hierarchy, or by extending titbyay by connected
pathways within the same frame. Our own recent developnmgnteflized a grid-
based visualization approach for metabolic networks stpddoy a focus&context
view. This view is based on a Table Lens method [12], whichvigies multiple foci
and together with the grid-layout the preservation of ther'ssnental map, see below.
A good overview on open problems and challenges in bioldgieavork visualization
is provided by the papers [7,13]. They provide a comprelverist of related work,
however not focused on the visualization of dynamic biocleahpathways. Oldiges et
al. [14] address the specific problem of metabolic networkleh@isualization. How-
ever, their article is particularly related to the numédramaalysis of dynamic biochem-
ical systems with less emphasis on the visual analysis aflyhamics of the network
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topology. To the best of our knowledge, there is no otheraligation tool that focuses
on this specific task.

In general, the visualization of dynamic graphs is a weltwkn area in the graph
drawing community [15]. Dynamic graph drawing addressesptoblem to layout
graphs, which evolve over time by adding and deleting edgdsiades. This results in
an additional esthetic criterion known pgeserving the mental mgfi6]. Ad-hoc ap-
proaches compute a new layout for the entire graph afterteaelstep using algorithms
developed for static graph layout, see for example thossepted in the book [9]. In
most cases this approach produces layouts which violatemérgal map. In our own
work, we follow the basic idea of the so-callédresighted LayoufFL) of dynamic
graphs [17]. Given a sequencerofraphs, a global layout is computed, which induces
a layout for each of tha graphs. The FL-algorithm is generic in the sense that itgake
a static graph drawing algorithm as a parameter. It optimakserves the mental map.
An algorithm for drawing a sequence of graphs online, i.daere the graph sequence
to be laid out is not known in advance, was presented by Fashend Tal [18].

The general design of our plug-in is based on standard comteti and multiple
view visualization techniques. An excellent starting pdar related work of this kind
of visualization techniques is the annual conference seneCoordinated & Multiple
Views in Exploratory Visualization (CMV) or the work of Rotie [19]. In our case, the
coordination between the different views is mainly done hyshing techniques. The
work of Moody et al. [20] focuses on the visualization of dgma networks in general
and the evolution of social networks in particular. The auttstate two common ap-
proaches: plotting network summary statistics as line lggagver time and examining
separate images of the network at each point in time. Our Wwaskbeen inspired by
these two techniques.

3 TheModd

In this section we introduce a computational model of eadyaholism for studying the
emergence and evolution of catalyzed chemical reactiomarks. The model consists
of a graph-based artificial chemistry allowing for reatidtinetic behavior and a proto
cell-like entity that inhabits the artificial chemistry aticht is exposed to changes (e.qg.,
mutations, source) and selection against other proto. cells

The artificial chemistry of this model is motivated by the wtigt’s intuition of
molecules and chemical reactions. Consequently, moleare modeled as labeled
graphs, with atoms as nodes and bonds as edges. Given tléseatation, it is easy to
see that chemical reactions can be understood as grapfotraasions, or in computer
science terms, as simple graph rewriting rules. Metab@twarks are expanded using
a stochastic network generator inspired by Faulon [21].dhmiplicity, reaction rates
were computed here based on topological indices (Wienebeuii22]) of the educt
and product molecules of the reactions. The simulationstéke molecules as steady
input, namely, the sequential and cyclic form of glucose.

The proto cell contains a simple cyclic genome with seveNfRgenes encoding
for a particular reaction type (graph rewriting rule) thgbua sophisticated genotype-
phenotype mapping [23]. The genome is subject to mutatieletidn, duplication and
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horizontal gene transfer events. Therefore, reactionscaar, change and disappear
from the proto cell or even get copied to a neighbor. In eaategsion, only half
of all proto cells is selected and generates an identicay.cbipere is steady influx
of metabolites from the environment and out flux of producedamolites in way of
biomass production. The constitution of either may changiind the course of the
simulation.

The metabolism of a proto cell is evaluated by analyzing thielsiometric matrix
and fulfilling steady-state and inequality constraints dmpute the set of elementary
pathways [1].

4 TheData

The simulation is run as an adaptive walk over 100 generstionthe analysis of the
simulation results, several types of information on défarlevels are processed. Most
importantly, the structure of the metabolic network in favfra bipartite labeled graph
is stored in a GraphML [24] file. Metabolites and reactiorestiie nodes of the graph.
An edge leading from a metabolite to a reaction indicatesttimrespective metabo-
lite is an educt in the reaction, an edge from a reaction tartebolite node marks
the metabolite as product. The labels for reactions areuenidentifiers giving insight
to their function. The metabolite label is its canonical K8 string [25], a unique
structural representation that is easily readable for ¢tsnfurther, the concentration
(number of molecules) for each metabolite is included inntbvork information.

In addition to the network information, flux information—ettset of elementary
pathways through the network—is made available to our Viizat#on tool in a simple
text file. Extremal nodes are listed. These represent thabubites transferred into the
cell and those that are used as biomass or excreted into ¥irerement, respectively.
For each reaction it is noted whether it is present in a paeielementary pathway or
not (0 or 1).

All types of information are generated for each generat&imce the simulation has
several parameters and input options, the data can be wemsdiin size and number of
files as well as complexity. Here lies also one important teétthis visualization tool.
Choosing an "interesting” simulation run for further arg/from the range of possible
simulations. The visualization of all levels and generagioombined allows an efficient
decision process that is of particular importance in a dguekent and testing stage.

5 TheVisualization Framewor k

In this chapter we focus on different visualization techusis implemented to support
the data analysis process. In this context, mental map e is a key require-
ment for analyzing dynamic networks [16]. Changes in theplgrdrawing from one
network generation to the next should be minimal if the togalal changes are small.
We achieve the requirement of mental map preservation bgwiolg the idea of [17]
and create a foresighted layout by constructing3kee Union graptG = ( ) with
V= UL Vi andE = U1 Ei where(\;, Ei) = G; are the networks aftegenerauons (see
Figure 1). After the preceding cycle removal, we lay Gutising Sugiyama’s method
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for directed acyclic graphs [26, 27]. This layout methodugable for our visualiza-
tion, because the constructed graph contains very few gyafel the general direction
of fluxes through the network is suggested by the graph dgwi, from top (source)
to bottom (sink). To emphasize the importance of extremdése-metabolites existing
in the cell with no reaction producing them (source metabsjiand metabolites with
no reaction consuming them (biomass production)—we cdrthem to a global source
or sink node, i.e, the resulting acyclic graph becomes aafledst-graph[9]. The set
union graph contains the elements of all time steps. Lagguthis graph ensures the
nodes’ positions to remain constant when changing to ardiftenetwork generation.

Fig. 1. Set Union Graph laid out using Sugiyama layout algorithme Tdémction nodes (rectan-
gles) are colored according to their first appearance (iatleg blue: later).

The three requirements stated in the introduction meet Beri@erman’s mantra of
information visualization [28]. In the following we desbé the visual analysis process
based on the scherfi®verview first, zoom and filter, details on demand”

5.1 Overview

After construction of the Set Union Graph and associatiedltix information with the
graph elements, the primary objective of the overview igation is to give the user a
general idea of the network elements—metabolites, raatnd enzymes—involved,
their life time, and the development of fundamental attelsiassociated with the net-
work elements over time (see Figure 2). When presenting ¢téJ8ion Graph (a), a
given node coloring scheme distinguishes between oldenewer nodes. The time of
first occurrence of a node in the network determines its cdlog node appearing first
is red, the node appearing last is blue. Node colors in betwaee interpolated using
the color scale depicted in Figure 7(c), third from left. Thser may choose, whether
this scheme is applied to reaction nodes, to molecule nodésth.
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Fig. 2. Graphical User Interface of the Dynamic Graph Analysis plugOverview visualiza-
tion: Time Series Charts of selected attributes (d,e) displaipate dynamics over time. Interval
Charts (f,g) represent the dynamic topology of the grapleims of life times of metabolites,
enzymes, and reactions. In (g), horizontal bars depictiegibdes’ life time have been overlaid
with the attributeFluxes through nodeThe Graph Scene (a) shows the Set Union Graph with
the applied node coloring scheme. As Ewom and Filterthe user may select different network
generations (b) to apply the set operators for filtering elets

Further insight into the life times of metabolites and reats give the interval dia-
grams depicted in Figures 2(e,f). Except for the artifigigiiserted environment nodes
(global source and sink), each row represents a node in #phgHorizontal bars de-
pict the life time and may be overlaid with additional infaation, e.g. node degree,
fluxes through that node, and concentration for metabobttien. In addition to inter-
val diagrams, time series charts (d,e) summarize selettiéoutes and display their
dynamics over time. The user can again choose the subsetetro be taken into
account (metabolites, enzymes, or reactions) and théwkrset (hode number, node
degree, number of elementary fluxes through a node, and otvaten values), and
combine these time series in any way for comparison.

5.2 Zoom and Filter

In this analysis step, the user wants to detect “intereséatures” in the overview and
select individual networks for further inspection. Int&ieg in an evolving metabolic
network may be periods of stabilities or instabilities impdlogical sense—appearance
of new reactions or metabolites—as well as in terms of fluxabeh—changes of as-
sociated attributes.

The straightforward approach is to simply browse the time.liFor that purpose,
we have implemented a linked view connecting the diagrambebverview visual-
ization with the dynamic graph in the Graph Scene. The scsbeh of the software
given in Figure 3 gives an impression on that type of navagatlhe user may jump
directly to that time point of interest by clicking into anythe displayed diagrams to
further inspect the associated network. For each pointie tthe current attributes are
visualized in the nodes. For metabolites, the concentratidues are depicted by the
“filling level” of the node. Additionally, the node sizes ardge widths represent the
number of elementary pathways these elements participate i



Lecture Notes in Computer Science 7

— e —
= Y & Y e LX) :
. [T (] ] :
‘ SEEEE—— ‘f\ 3 ®®
|
L |

5
e 3

\4? l

w11 - T @

Fig. 3. Linked View realization facilitates browsing differentagsth snapshots in time. The blue
arrows indicate the current position in time, red arrowsdate the selected node in the current
generation. These components of the graphical user integfee also sensitive to user input and
can be used for navigation. Selecting a node in the GrapheScémns.) highlights the associated
row in the appropriate interval chart as well as the assedigbint in time in all charts. The
five diagrams given on the |.h.s. display the following ddiap: Life time diagram of reactions
overlaid with the number of pathways through each reactamfenLife time diagram of metabo-
lites overlaid with each node’s degree. Bottom: Time serfest giving number of nodes, edges,
and nodes-to-edges-ratio. Time series chart of summariadd degree (minimum, maximum,
average) over all metabolites. Node degree histogram afutrently displayed graph generation.

For comparing different network generations from a topmalgpoint of view, the
user may select a number of time steps and apply operatolearotle and edge sets
of the chosen graph to filter certain elements of the supgrtgi@et operators include
AND, OR andDIFF for the symmetrical difference between different netwarks
shots. This is used for detecting subset relations andtseleappearing or disappearing
elements (see Figure 2b).

Finally, we have extended the semantic zoom capability irviawalization tool. As
the user increases the level of detail, the chemical strestof metabolites is rendered
within the associated nodes (see Figure 4).

Fig.4. Semantic Zoom: Below a certain level-of-detail threshddy chemical structure of the
molecule is shown instead of the totals formula.
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5.3 Detailed View

In this section, the user takes a closer look on the emerg#rindividual elementary
pathways (fluxes) in a single network evolution step. The igito further investigate
elements being more or less likely to participate in pattamiyough the metabolic
network and to identify individual elementary pathways.described in the previous
section, the user has identified reactions and metabolitderped to form pathways as
well as key enzymes with high activity. Again, interactvjilays a crucial role in this
analysis step. There are two methods of operation: Firstisler can select any number
of elementary pathways to be highlighted in the Graph Scepdaying the current net-
work generation. Second, the previously identified key elets can be selected in the
Graph Scene for highlighting all associated elementarivpays. See the screen shot
given in Figure 5. We again implemented set operators ondleeted nodes applied
for the flux visualization. We found that this is a highly flelé and intuitive way to
detect pathways running through all the selected elemeAtdB-operator, at least one
of the selected elementsGR, or none of the selected elementsIOT.

Concerning the attribute dynamics associated with an eazy@action, or metabo-
lite, we take advantage of the linked view implementatiopicked in Figure 3 to dis-
play the attribute development of the selected node over.t8electing a different node
instantly updates the displayed time series of the chosebuae.

= =

Fig. 5. Details on Demand: Interactive flux analysis for one chosme step (here: t=99). In-
dividual elementary pathways can be selected for visuadizaAll pathways through molecule
C605are highlighted.
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Fig.6. A series of simulated metabolic networks after 11, 31, 64 400 generations. The
squares represent reactions, circles represent metshdlibde size and edge width encode for
the number of minimal pathways in which the respective dkigmvolved. Note the dark gray
“filling level” of the metabolite nodes depicting the curt@oncentration value.

6 Results

In this analysis we wanted to investigate the early stegsafidrmation and evolution of
metabolic pathways and interpret our findings in terms ofténg evolutionary scenar-
ios. We will focus on three popular theories, that can be amegbnicely to our results.
One of the first theories proposed on this matter is backwarétoograde evolution
[29], stating that pathways evolved upwards, in the needdfriig beneficial substrates
due to depletion of metabolites. Contrary, forward evolutj30] suggests the oppo-
site direction of pathways evolution. Due to ever furthesqassing of molecules for
energy production, pathways evolve in such a way that aheigzymes are upstream
along the pathway, while younger enzymes are further doeast. The third scenario
is the patchwork model [31], which explains the formatiomefv metabolic pathways
through recruiting of enzymes from already existing patysva

The four snapshots in Figure 6 showing the metabolic netabdkfferent points in
time are aligned to the union graph over all generationssTie can see that in the first
steps the reactions upstream in the network are added. Tinegss are formed further
in this forward direction. Looking at the last generatioasizally all pathways from
source to sink follow the forward evolution scenario, withey (red) enzymes being at
the top (upstream) and younger (blue) enzymes more at theb@tlownstream). This
observation is further established through the intervapgrfor all chemical reactions
in Figure 7. The reactions are here ordered according to fueition in the graph.
There is a clear trend of older reactions being on the top aodhger ones following
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Fig. 7. Life time diagram of metabolites (a) and reactions (b). Tpesition in the diagram (y-
axis) reflects the associated nodes’ positions in the grayptut. Reactions close to the source
metabolites are in upper positions, reactions close tatensetabolites are placed at the bottom.
In (c), our scenario (first bar) can be compared to the threligon models: retrograde evolution,
forward evolution, patchwork model.

more downstream. If we compare the colored bars (Figure Mayisng the enzyme
age distribution for our results and the three scenariogiorsd above, the pathway
evolution again seems to explain our results best. Thezgifomppears that in the early
phase of metabolic evolution, forward evolution is dominan

We turn now to the evolution of general properties of the toelia networks from
our simulation. The numbers of metabolites and chemicati@as (see Figure 8a) de-
velop with almost the same rate. This indicates that mosabmdites are only involved
in exactly one reaction. Combining this reasoning with theesvation that the max-
imal node degree of metabolites increases significantlyerttoain their average node
degree (see Figure 8b), we can conclude that our metabdliories evolved one or
only a few highly connected metabolites, so called hub-buadifes, and probably has a
scale-free node-degree distribution, typical for reaHdimetabolic networks. Another
observation is the steady increase of the average enzymecirity while the average
metabolite connectivity converges. The explanation fer lttter is the high number
of metabolites involved in only one reaction. A similar tdewill likely arise in more
complex stages for enzyme connectivity as well.

ey J

~(;)»w w (b)

Fig. 8. Tracking selected attributes over time. (a) Number of nalitds (green) and reaction
nodes (red). (b) Node degree (maximum and average) of nigeab(green) and enzyme nodes
(red).
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7 Conclusion and Future Work

We have presented an extension to our existing graph vistiaih system to support
the exploration and analysis of dynamic metabolic networke development process
was intensively accompanied by the scientists providirggdhta and was found to
be extremely helpful to understand the underlying mechasisf metabolic network

and biochemical pathway evolution. The visualization daelveal general properties
of the considered systems in terms of network topology, kBd answered specific

questions on the evolution of metabolic networks and thergemee of pathways within

the network.

We found that interactivity plays a crucial role in the arsidyprocess. It was suc-
cessfully implemented using the linked view method for iite navigation in time as
well as within a selected network configuration. We intendxamine more simulation
runs with different parameter configurations to compare¢isalts and to gain a deeper
understanding of metabolic network evolution.

For laying out the constructed set union graph, the Sugiyarmthod has proven
to produce the best results. The layout algorithm was aldeizhoice due to the fact
that the considered network contained only a few number disy and therefore, the
observed elementary pathways followed the general dineétom top (source nodes)
to bottom (sink nodes). The major disadvantage of this lagwethod is the amount of
space required for the drawing. The number of graph elenenite super graph was
small enough for a feasible application of this layout alyon. Datasets with more
generations can become very large and too complex for useggplied graph layout.
However, there is room for improvement, since many elemientise super graph do
not overlap in time and may therefore occupy the same pasiiducing the total space
for the layout.
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