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Abstract. We extend our previous work on the exploration of static metabolic
networks to evolving, and therefore dynamic, pathways. We apply our visualiza-
tion software to data from a simulation of early metabolism.Thereby, we show
that our technique allows us to test and argue for or against different scenarios for
the evolution of metabolic pathways. This supports a profound and efficient anal-
ysis of the structure and properties of the generated metabolic networks and its
underlying components, while giving the user a vivid impression of the dynamics
of the system. The analysis process is inspired by Ben Shneiderman’s mantra of
information visualization. For the overview, user-defineddiagrams give insight
into topological changes of the graph as well as changes in the attribute set as-
sociated with the participating enzymes, substances and reactions. This way, “in-
teresting features” in time as well as in space can be recognized. A linked view
implementation enables the navigation into more detailed layers of perspective
for in-depth analysis of individual network configurations.

1 Introduction

Metabolic networks, the set of chemical compounds and theirinteractions that con-
stitute life in the most basic sense, are the best studied biological networks. With the
plethora of genomic, proteomic and metabolomic data available it becomes possible to
study cell behavior. However, to understand the underlyingprinciples of life and gaining
further insights about the metabolism of cells for the use inbiotechnological applica-
tions, e.g., pharmaceutical target prediction or metabolic engineering, we need tools to
model and analyze the metabolic processes, pathways, and networks. There exist suc-
cessful means for the reconstruction of metabolic networksfrom annotated genomes
[1], the analysis of these networks in terms of elementary pathways [2], and description
of their behavior with the help of ODE models [3]. Further insight into the development
of kinetic models of metabolic networks addressing rate laws of the involved enzymes
is provided in [4]. The situation becomes more difficult whenwe want to explain the
evolutionary mechanisms of these systems, i.e., the formation of metabolic pathways
or the emergence of complex network properties. Although, several scenarios exist that
provide some insight into the evolution of metabolic pathways [5], only few aspects
are well understood. Especially, the first steps in early metabolism evade observation
by conventional approaches. To this end, Ullrich et al. [6] developed a multi-level com-
putational model to study the transition to life: the evolution of metabolic pathways

Andreas Kerren
In Proceedings of the International Symposium on Visual Computing (ISVC '10), pages 316-327, volume 6453 of LNCS, Las Vegas, Nevada, USA, 2010. 
© Springer, 2010. This is the authors' version of the work. It is posted here by permission of Springer for your personal use. Not for redistribution. The original publication is available at       www.springerlink.com. Springer Verlag.



2 Rohrschneider, Ullrich, Kerren, Stadler, Scheuermann

from catalyzed chemical reactions. The simulation approach implements components
on different scales in a more realistic manner than has been done so far.

In this work we introduce a plug-in for exploring dynamic graphs extending the
existing graph visualization software previously described in [7]. The implementation
of the extension was primarily driven by the given data and the requirements stated by
the scientists providing it. These include

1. Overview of the complete series of evolving metabolic networks, i.e. involvement
of metabolites, reactions and enzymes, and evaluation of key properties, e.g. quan-
tity (concentration) and activity (participation in pathways)

2. Analysis of dynamics in the network’s topology and attribute set. Compare net-
works of different time steps and analyze topology dynamicsin more detail.

3. Elementary pathway analysis of selected network generations. Time series analysis
of attributes associated with selected node.

For the analysis of the simulation results, an efficient visualization system tailored
to suit our needs is of utmost importance. The main function of the software introduced
in this article lies in the analysis of metabolic networks ingeneral and studying the
evolution and dynamic behavior of metabolism in particular. This is achieved by pro-
viding an insightful overview on different scales (e.g., onthe metabolite-, pathway-,
or network-level) and different angles (e.g., dynamics in topology vs. attribute dynam-
ics) of the vast amount of extracted information. Being ableto observe all components
(individually or together) for the entire simulation time in one representation gives us
a much deeper understanding of the system’s dynamics than any statistical analysis or
static view can provide. By means of one sample simulation, we show the possibilities
of the tool and which potential general insights we can gain.

2 Related Work

To deal with large biochemical networks several methods andtools have been devel-
oped. Simple approaches try to visualize the complete network on the screen and use
zooming and panning for navigation. Examples are common graph drawing or network
analysis tools [9, 10]. Other approaches, such as KGML-ED [11], improve the naviga-
tion between single pathways by providing an hierarchical overview and functions to
zoom into the top nodes of the hierarchy, or by extending the pathway by connected
pathways within the same frame. Our own recent development [7] realized a grid-
based visualization approach for metabolic networks supported by a focus&context
view. This view is based on a Table Lens method [12], which provides multiple foci
and together with the grid-layout the preservation of the user’s mental map, see below.
A good overview on open problems and challenges in biological network visualization
is provided by the papers [7, 13]. They provide a comprehensive list of related work,
however not focused on the visualization of dynamic biochemical pathways. Oldiges et
al. [14] address the specific problem of metabolic network model visualization. How-
ever, their article is particularly related to the numerical analysis of dynamic biochem-
ical systems with less emphasis on the visual analysis of thedynamics of the network
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topology. To the best of our knowledge, there is no other visualization tool that focuses
on this specific task.

In general, the visualization of dynamic graphs is a well-known area in the graph
drawing community [15]. Dynamic graph drawing addresses the problem to layout
graphs, which evolve over time by adding and deleting edges and nodes. This results in
an additional esthetic criterion known aspreserving the mental map[16]. Ad-hoc ap-
proaches compute a new layout for the entire graph after eachtime step using algorithms
developed for static graph layout, see for example those presented in the book [9]. In
most cases this approach produces layouts which violate themental map. In our own
work, we follow the basic idea of the so-calledForesighted Layout(FL) of dynamic
graphs [17]. Given a sequence ofn graphs, a global layout is computed, which induces
a layout for each of then graphs. The FL-algorithm is generic in the sense that it takes
a static graph drawing algorithm as a parameter. It optimally preserves the mental map.
An algorithm for drawing a sequence of graphs online, i.e., where the graph sequence
to be laid out is not known in advance, was presented by Frishman and Tal [18].

The general design of our plug-in is based on standard coordinated and multiple
view visualization techniques. An excellent starting point for related work of this kind
of visualization techniques is the annual conference series on Coordinated & Multiple
Views in Exploratory Visualization (CMV) or the work of Roberts [19]. In our case, the
coordination between the different views is mainly done by brushing techniques. The
work of Moody et al. [20] focuses on the visualization of dynamic networks in general
and the evolution of social networks in particular. The authors state two common ap-
proaches: plotting network summary statistics as line graphs over time and examining
separate images of the network at each point in time. Our workhas been inspired by
these two techniques.

3 The Model

In this section we introduce a computational model of early metabolism for studying the
emergence and evolution of catalyzed chemical reaction networks. The model consists
of a graph-based artificial chemistry allowing for realistic kinetic behavior and a proto
cell-like entity that inhabits the artificial chemistry andthat is exposed to changes (e.g.,
mutations, source) and selection against other proto cells.

The artificial chemistry of this model is motivated by the chemist’s intuition of
molecules and chemical reactions. Consequently, molecules are modeled as labeled
graphs, with atoms as nodes and bonds as edges. Given this representation, it is easy to
see that chemical reactions can be understood as graph transformations, or in computer
science terms, as simple graph rewriting rules. Metabolic networks are expanded using
a stochastic network generator inspired by Faulon [21]. Forsimplicity, reaction rates
were computed here based on topological indices (Wiener number [22]) of the educt
and product molecules of the reactions. The simulation takes two molecules as steady
input, namely, the sequential and cyclic form of glucose.

The proto cell contains a simple cyclic genome with several RNA- genes encoding
for a particular reaction type (graph rewriting rule) through a sophisticated genotype-
phenotype mapping [23]. The genome is subject to mutation, deletion, duplication and
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horizontal gene transfer events. Therefore, reactions canoccur, change and disappear
from the proto cell or even get copied to a neighbor. In each generation, only half
of all proto cells is selected and generates an identical copy. There is steady influx
of metabolites from the environment and out flux of produced metabolites in way of
biomass production. The constitution of either may change during the course of the
simulation.

The metabolism of a proto cell is evaluated by analyzing the stoichiometric matrix
and fulfilling steady-state and inequality constraints to compute the set of elementary
pathways [1].

4 The Data

The simulation is run as an adaptive walk over 100 generations. In the analysis of the
simulation results, several types of information on different levels are processed. Most
importantly, the structure of the metabolic network in formof a bipartite labeled graph
is stored in a GraphML [24] file. Metabolites and reactions are the nodes of the graph.
An edge leading from a metabolite to a reaction indicates that the respective metabo-
lite is an educt in the reaction, an edge from a reaction to themetabolite node marks
the metabolite as product. The labels for reactions are unique identifiers giving insight
to their function. The metabolite label is its canonical SMILES string [25], a unique
structural representation that is easily readable for chemists. Further, the concentration
(number of molecules) for each metabolite is included in thenetwork information.

In addition to the network information, flux information—the set of elementary
pathways through the network—is made available to our visualization tool in a simple
text file. Extremal nodes are listed. These represent the metabolites transferred into the
cell and those that are used as biomass or excreted into the environment, respectively.
For each reaction it is noted whether it is present in a particular elementary pathway or
not (0 or 1).

All types of information are generated for each generation.Since the simulation has
several parameters and input options, the data can be very diverse in size and number of
files as well as complexity. Here lies also one important merit of this visualization tool.
Choosing an ”interesting” simulation run for further analysis from the range of possible
simulations. The visualization of all levels and generations combined allows an efficient
decision process that is of particular importance in a development and testing stage.

5 The Visualization Framework

In this chapter we focus on different visualization techniques implemented to support
the data analysis process. In this context, mental map preservation is a key require-
ment for analyzing dynamic networks [16]. Changes in the graph drawing from one
network generation to the next should be minimal if the topological changes are small.
We achieve the requirement of mental map preservation by following the idea of [17]
and create a foresighted layout by constructing theSet Union graphĜ = (V̂, Ê) with
V̂ =

⋃n
i=1Vi andÊ =

⋃n
i=1Ei where(Vi ,Ei)= Gi are the networks afteri generations (see

Figure 1). After the preceding cycle removal, we lay outĜ using Sugiyama’s method
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for directed acyclic graphs [26, 27]. This layout method is suitable for our visualiza-
tion, because the constructed graph contains very few cycles, and the general direction
of fluxes through the network is suggested by the graph drawing, i.e., from top (source)
to bottom (sink). To emphasize the importance of extremal nodes—metabolites existing
in the cell with no reaction producing them (source metabolites) and metabolites with
no reaction consuming them (biomass production)—we connect them to a global source
or sink node, i.e, the resulting acyclic graph becomes a so-calledst-graph[9]. The set
union graph contains the elements of all time steps. Layouting this graph ensures the
nodes’ positions to remain constant when changing to a different network generation.

Fig. 1. Set Union Graph laid out using Sugiyama layout algorithm. The reaction nodes (rectan-
gles) are colored according to their first appearance (red: earlier, blue: later).

The three requirements stated in the introduction meet Ben Shneiderman’s mantra of
information visualization [28]. In the following we describe the visual analysis process
based on the scheme“Overview first, zoom and filter, details on demand”.

5.1 Overview

After construction of the Set Union Graph and associating the flux information with the
graph elements, the primary objective of the overview visualization is to give the user a
general idea of the network elements—metabolites, reactions and enzymes—involved,
their life time, and the development of fundamental attributes associated with the net-
work elements over time (see Figure 2). When presenting the Set Union Graph (a), a
given node coloring scheme distinguishes between older andnewer nodes. The time of
first occurrence of a node in the network determines its color. The node appearing first
is red, the node appearing last is blue. Node colors in between are interpolated using
the color scale depicted in Figure 7(c), third from left. Theuser may choose, whether
this scheme is applied to reaction nodes, to molecule nodes,or both.
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Fig. 2. Graphical User Interface of the Dynamic Graph Analysis plug-in. Overview visualiza-
tion: Time Series Charts of selected attributes (d,e) display attribute dynamics over time. Interval
Charts (f,g) represent the dynamic topology of the graph in terms of life times of metabolites,
enzymes, and reactions. In (g), horizontal bars depicting the nodes’ life time have been overlaid
with the attributeFluxes through node. The Graph Scene (a) shows the Set Union Graph with
the applied node coloring scheme. As forZoom and Filter, the user may select different network
generations (b) to apply the set operators for filtering elements.

Further insight into the life times of metabolites and reactions give the interval dia-
grams depicted in Figures 2(e,f). Except for the artificially inserted environment nodes
(global source and sink), each row represents a node in the graph. Horizontal bars de-
pict the life time and may be overlaid with additional information, e.g. node degree,
fluxes through that node, and concentration for metabolite nodes. In addition to inter-
val diagrams, time series charts (d,e) summarize selected attributes and display their
dynamics over time. The user can again choose the subset of nodes to be taken into
account (metabolites, enzymes, or reactions) and the attribute set (node number, node
degree, number of elementary fluxes through a node, and concentration values), and
combine these time series in any way for comparison.

5.2 Zoom and Filter

In this analysis step, the user wants to detect “interestingfeatures” in the overview and
select individual networks for further inspection. Interesting in an evolving metabolic
network may be periods of stabilities or instabilities in a topological sense—appearance
of new reactions or metabolites—as well as in terms of flux behavior—changes of as-
sociated attributes.

The straightforward approach is to simply browse the time line. For that purpose,
we have implemented a linked view connecting the diagrams ofthe overview visual-
ization with the dynamic graph in the Graph Scene. The screenshot of the software
given in Figure 3 gives an impression on that type of navigation. The user may jump
directly to that time point of interest by clicking into any of the displayed diagrams to
further inspect the associated network. For each point in time, the current attributes are
visualized in the nodes. For metabolites, the concentration values are depicted by the
“filling level” of the node. Additionally, the node sizes andedge widths represent the
number of elementary pathways these elements participate in.
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Fig. 3. Linked View realization facilitates browsing different graph snapshots in time. The blue
arrows indicate the current position in time, red arrows indicate the selected node in the current
generation. These components of the graphical user interface are also sensitive to user input and
can be used for navigation. Selecting a node in the Graph Scene (r.h.s.) highlights the associated
row in the appropriate interval chart as well as the associated point in time in all charts. The
five diagrams given on the l.h.s. display the following data.Top: Life time diagram of reactions
overlaid with the number of pathways through each reaction node. Life time diagram of metabo-
lites overlaid with each node’s degree. Bottom: Time serieschart giving number of nodes, edges,
and nodes-to-edges-ratio. Time series chart of summarizednode degree (minimum, maximum,
average) over all metabolites. Node degree histogram of thecurrently displayed graph generation.

For comparing different network generations from a topological point of view, the
user may select a number of time steps and apply operators on the node and edge sets
of the chosen graph to filter certain elements of the super graph. Set operators include
AND, OR, andDIFF for the symmetrical difference between different network snap-
shots. This is used for detecting subset relations and selecting appearing or disappearing
elements (see Figure 2b).

Finally, we have extended the semantic zoom capability in our visualization tool. As
the user increases the level of detail, the chemical structures of metabolites is rendered
within the associated nodes (see Figure 4).

Fig. 4. Semantic Zoom: Below a certain level-of-detail threshold,the chemical structure of the
molecule is shown instead of the totals formula.
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5.3 Detailed View

In this section, the user takes a closer look on the emergenceof individual elementary
pathways (fluxes) in a single network evolution step. The aimis to further investigate
elements being more or less likely to participate in pathways through the metabolic
network and to identify individual elementary pathways. Asdescribed in the previous
section, the user has identified reactions and metabolites preferred to form pathways as
well as key enzymes with high activity. Again, interactivity plays a crucial role in this
analysis step. There are two methods of operation: First, the user can select any number
of elementary pathways to be highlighted in the Graph Scene displaying the current net-
work generation. Second, the previously identified key elements can be selected in the
Graph Scene for highlighting all associated elementary pathways. See the screen shot
given in Figure 5. We again implemented set operators on the selected nodes applied
for the flux visualization. We found that this is a highly flexible and intuitive way to
detect pathways running through all the selected elements –AND operator, at least one
of the selected elements –OR, or none of the selected elements –NOT.

Concerning the attribute dynamics associated with an enzyme, reaction, or metabo-
lite, we take advantage of the linked view implementation depicted in Figure 3 to dis-
play the attribute development of the selected node over time. Selecting a different node
instantly updates the displayed time series of the chosen attribute.

Fig. 5. Details on Demand: Interactive flux analysis for one chosen time step (here: t=99). In-
dividual elementary pathways can be selected for visualization. All pathways through molecule
C6O5are highlighted.
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Fig. 6. A series of simulated metabolic networks after 11, 31, 67, and 100 generations. The
squares represent reactions, circles represent metabolites. Node size and edge width encode for
the number of minimal pathways in which the respective object is involved. Note the dark gray
“filling level” of the metabolite nodes depicting the current concentration value.

6 Results

In this analysis we wanted to investigate the early steps in the formation and evolution of
metabolic pathways and interpret our findings in terms of existing evolutionary scenar-
ios. We will focus on three popular theories, that can be compared nicely to our results.
One of the first theories proposed on this matter is backward or retrograde evolution
[29], stating that pathways evolved upwards, in the need of finding beneficial substrates
due to depletion of metabolites. Contrary, forward evolution [30] suggests the oppo-
site direction of pathways evolution. Due to ever further processing of molecules for
energy production, pathways evolve in such a way that ancient enzymes are upstream
along the pathway, while younger enzymes are further downstream. The third scenario
is the patchwork model [31], which explains the formation ofnew metabolic pathways
through recruiting of enzymes from already existing pathways.

The four snapshots in Figure 6 showing the metabolic networkat different points in
time are aligned to the union graph over all generations. Thus, we can see that in the first
steps the reactions upstream in the network are added. The pathways are formed further
in this forward direction. Looking at the last generation, basically all pathways from
source to sink follow the forward evolution scenario, with older (red) enzymes being at
the top (upstream) and younger (blue) enzymes more at the bottom (downstream). This
observation is further established through the interval graph for all chemical reactions
in Figure 7. The reactions are here ordered according to their position in the graph.
There is a clear trend of older reactions being on the top and younger ones following
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Fig. 7. Life time diagram of metabolites (a) and reactions (b). Their position in the diagram (y-
axis) reflects the associated nodes’ positions in the graph layout. Reactions close to the source
metabolites are in upper positions, reactions close to the sink metabolites are placed at the bottom.
In (c), our scenario (first bar) can be compared to the three evolution models: retrograde evolution,
forward evolution, patchwork model.

more downstream. If we compare the colored bars (Figure 7c) showing the enzyme
age distribution for our results and the three scenarios mentioned above, the pathway
evolution again seems to explain our results best. Therefore, it appears that in the early
phase of metabolic evolution, forward evolution is dominant.

We turn now to the evolution of general properties of the metabolic networks from
our simulation. The numbers of metabolites and chemical reactions (see Figure 8a) de-
velop with almost the same rate. This indicates that most metabolites are only involved
in exactly one reaction. Combining this reasoning with the observation that the max-
imal node degree of metabolites increases significantly more than their average node
degree (see Figure 8b), we can conclude that our metabolic networks evolved one or
only a few highly connected metabolites, so called hub-metabolites, and probably has a
scale-free node-degree distribution, typical for real-world metabolic networks. Another
observation is the steady increase of the average enzyme connectivity while the average
metabolite connectivity converges. The explanation for the latter is the high number
of metabolites involved in only one reaction. A similar trend will likely arise in more
complex stages for enzyme connectivity as well.
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Fig. 8. Tracking selected attributes over time. (a) Number of metabolites (green) and reaction
nodes (red). (b) Node degree (maximum and average) of metabolites (green) and enzyme nodes
(red).
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7 Conclusion and Future Work

We have presented an extension to our existing graph visualization system to support
the exploration and analysis of dynamic metabolic networks. The development process
was intensively accompanied by the scientists providing the data and was found to
be extremely helpful to understand the underlying mechanisms of metabolic network
and biochemical pathway evolution. The visualization could reveal general properties
of the considered systems in terms of network topology, but also answered specific
questions on the evolution of metabolic networks and the emergence of pathways within
the network.

We found that interactivity plays a crucial role in the analysis process. It was suc-
cessfully implemented using the linked view method for intuitive navigation in time as
well as within a selected network configuration. We intend toexamine more simulation
runs with different parameter configurations to compare theresults and to gain a deeper
understanding of metabolic network evolution.

For laying out the constructed set union graph, the Sugiyamamethod has proven
to produce the best results. The layout algorithm was a suitable choice due to the fact
that the considered network contained only a few number of cycles, and therefore, the
observed elementary pathways followed the general direction from top (source nodes)
to bottom (sink nodes). The major disadvantage of this layout method is the amount of
space required for the drawing. The number of graph elementsin the super graph was
small enough for a feasible application of this layout algorithm. Datasets with more
generations can become very large and too complex for using the applied graph layout.
However, there is room for improvement, since many elementsin the super graph do
not overlap in time and may therefore occupy the same position reducing the total space
for the layout.
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