
Discriminative Markov Logic
Network Structure Learning based
on Propositionalization and χ2-test

Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

LIFO, Université d’Orléans

Rapport no RR-2010-03



Discriminative Markov Logic Network Structure
Learning based on Propositionalization and χ2-test

Quang-Thang DINH, Matthieu EXBRAYAT, Christel VRAIN

LIFO,Bat. 3IA, Université d’Orléans
Rue Lonard de Vinci, B.P. 6759, F-45067 ORLEANS Cedex 2, France

Abstract. In this paper we present a bottom-up discriminative algorithm to au-
tomatically learn Markov Logic Network structures. Our approach relies on a new
propositionalization method that transforms the learning dataset into an approxi-
mative representation in the form of a boolean table. Using this table, the algorithm
constructs a set of candidate clauses according to a χ2 independence test. To compute
and choose clauses, we successively use two different optimization criteria, namely
log-likelihood (LL) and conditional log-likelihood (CLL), in order to combine the
efficiency of LL optimization algorithms together with the accuracy of CLL ones.
First experiments show that our approach outperforms existing discriminative MLN
structure learning algorithms.

1 Introduction

Inductive Logic Programming (ILP) is a research field at the intersection of machine learning
and logic programming [26]. It aims at a formal framework as well as practical algorithms
for inductively learning relational descriptions from examples and background knowledge.
Propositionalization is the process of generating a number of useful attributes or features
starting from relational representations and then using traditional propositional algorithms
for learning and mining [27]. In the past few years, many approaches to propositionalization
have been developed. The majority of these directly transform a relational description into
an attribute-value one, though some also consider the intermediate level of multi-instance
descriptions [27]. One advantage of such propositionalization is that the whole set of tra-
ditional learning algorithms, including neural networks, statistics, support vector machines
and so on, can be applied to the approximation. The disadvantage is that the approximation
might be incomplete and that some information might get lost in the propositionalization
process.

Statistical relational learning (SRL) concerns the induction of probabilistic knowledge
for multi-relational structured data [28]. Markov Logic Networks (MLNs) [18] are a recently
developed SRL model that generalizes both full first-order logic and Markov Networks [22].
A Markov Network (MN) is a graph, where each vertex corresponds to a random variable.
Each edge indicates that two variables are conditionally dependent. Each clique of this
graph is associated to a weight. In the case of boolean random variables, this weight is a real
number, the value of which is directly log-proportional to the probability of the clique (i.e.
the conjunction of its random variables) to be true. A Markov Logic Network consists of a
set of pairs (Fi,wi), where Fi is a formula in First Order Logic (FOL), to which a weight wi

is associated. The higher wi, the more likely a grounding of Fi to be true. Given a MLN and
a set of constants C = {c1, c2, . . . c|C|}, a MN can be generated. The nodes (vertices) of this
MN correspond to all ground predicates that can be generated by grounding any formula Fi

with constants of C. This set can be restricted when constants and variables are typed.



Both generative and discriminative learning can be applied to MLNs. In this paper,
we propose a propositionalization-based discriminative approach in order to learn both the
structure and weights of a MLN. This approach consists of three main steps. First, we apply a
technique, which is intuitively similar to relational pathfinding [29] and relational cliché [30],
searching on the training dataset to form a set of essential features (i.e. the relations to the
learning predicate in discriminative fashion) and store it into an approximation boolean
table for the propositionalization problem. Second, starting from the approximation table,
we compose the set of candidate clauses. Finally, clauses are added into the MLN.

This paper is organized as follows: in Section 2 we bring back several notions of First
Order Logic, then we propose an overview of MLNs learning techniques in Section 3. Our
approach is presented in Section 4. Section 5 is devoted to experiments. Section 6 is the
conclusion of this paper.

2 Notions

Let us recall here some basic notions of First Order Logic which will be used throughout
this paper. We consider a function-free first order language composed of a set P of predicate
symbols, a set C of constants and a set of variables.

Definition 1. An atom is an expression p(t1, . . . , tk), where p is a predicate and ti are
either variables or constants.

Definition 2. A literal is either a positive or a negative atom; it is a ground literal (resp.
variable literal) when it contains no variable (only variables).

Definition 3. A clause is a disjunction of literals; a Horn clause contains at most a positive
literal. A template clause composes only of positive literals.

Definition 4. Two ground atoms (resp. two variable literals) are said to be connected if
they share at least one ground term or argument (one variable).

Definition 5. A clause (resp. a ground clause) is connected when there is an ordering of
its literals L1∧ . . .∧Lp, such that for each Lj, j = 2 . . . p, there exists a variable (a constant)
occurring both in Lj and in Li, with i < j.

Definition 6. A variabilization of an expression e (either a ground clause or a conjunc-
tion of ground clauses), denoted by var(e), is obtained by assigning a new variable to each
constant and replacing all its occurrences by this variable.

3 Learning of Markov Logic Networks

3.1 Generative learning of MLNs

Generative approaches aim at inducing a global organization of the world described by
the predicates, and thus optimize the joint probability distribution of all the variables.
Concerning MLNs, generative approaches optimize log-likelihood or pseudo-log-likelihood
as proposed in [18]. Weights might be learnt using iterative scaling [16]. However, using a
quasi-Newton optimization such as L-BFGS has recently shown to be much faster [19].

Regarding generative structure learning, the first algorithm proposed in [11] initially uses
CLAUDIEN [5] to learn the clauses of MLNs and then learns the weights by maximizing
pseudo-likelihood [18]. In [10], the authors propose a method involving either a beam search

3



or a shortest first search in the space of clauses guided by a weighted pseudo-log-likelihood
(WPLL) measure. These two systems follow a top-down paradigm where many potential
candidate structures are systematically generated without considering data and then eval-
uated using a statistical measure evaluating fitness to data. In [13], an algorithm called
BUSL follows a bottom-up approach in order to reduce the search space. This algorithm
uses a propositional Markov Network learning method to construct structure networks that
guide the construction of candidate clauses [13]. The structure of BUSL is composed of three
main phases: Propositionalization, Building clauses and Putting clauses into the MLN. In
the propositionalization phase, BUSL creates a boolean table MP for each predicate P in
the domain. When building clauses, BUSL applies Grow-Shrink Markov Network (GSMN)
algorithm (Bromberg et al, 2006) on MP to find every clique of the network, from which it
builds candidate clauses. Finally, BUSL considers clauses to put into the MLN one-by-one,
using WPLL measure for choosing clauses and L-BFGS algorithm for setting parameters.
The most recent proposed algorithms are Iterated Local Search (ILS) [1] and Learning via
Hyper-graph Lifting (LHL) [9]. ILS is based on the iterated local search meta-heuristic that
explores the space of structures through a biased sampling of the set of local optima. The
algorithm focuses the search not on the full space of solutions but on a smaller subspace
defined by the solutions that are locally optimal according to the optimization engine. LHL
is a different approach, that directly utilizes data in order to construct candidates. From the
training dataset, LHL builds a hyper-graph from which it forms clauses, that are evaluated
using WPLL [9]. Through experiments, both ILS and LHL have shown improvement over
the state-of-the-art algorithms. Although, as far as we know, there is no direct comparison
between ILS and LHL.

3.2 Discriminative learning of MLNs

Discriminative learning of MLNs relies on the optimization of the CLL of query given evi-
dence [18]. Let Y and X be the set of query atoms and evidence atoms, the CLL of Y given
X is: logP (Y = y|X = x) = log

∑n
j=1 logP (Yj = yj |X = x).

First proposals for MLN discriminative learning were based on the voted-perceptron
algorithm [20]. The second approach, called Preconditioned SCG (PSCG), based on the
scaled conjugate gradient (SCG) method, is shown to outperform the previous algorithm
both in terms of learning time and prediction accuracy [12]. Recently, a new discriminative
weight learning method for MLNs based on a max-margin framework was proposed achieving
higher F-scores than the the PSCG method [6].

However, all these algorithms only focus on parameter learning, the structure being
supposed given by an expert or previously learned. This can lead to suboptimal results when
these clauses do not capture the essential dependencies in the domain in order to improve
classification accuracy [3]. To the best of our knowledge, there only exists two systems, that
learn the structure of MLNs for a discriminative task. One first uses ALEPH [21] to learn
a large set of potential clauses, then learns the weights and prunes useless clauses guided
by weights [7]. The second method, called Iterated Local Search - Discriminative Structure
Learning (ILS-DSL), chooses the structure by maximizing CLL and sets the parameters by
maximizing WPLL [3]. Iterated Local Search is used for searching candidate clauses and for
every candidate structure, the quasi-Newton optimization method L-BFGS is used to set
weights optimizing WPLL.

4



Algorithm 1 Structure of DMSP
Input: database DB, Markov logic network MLN, query predicate QP, minWeight
Output: Learned MLN
1. Initialization of the set of candidate clauses: CanClauses = ∅
2. Propositionalization
Form a set of possible literals SL from DB,QP
Build a boolean table, a column for each element of SL, a row for each ground atom
3. Determine dependent literals and build a set STC of template clauses
4. Put clauses into the learned MLN from STC
Return(MLN)

4 DMSP

4.1 DMSP Structure

As inputs to our system, a query predicate QP , a positive real number minWeight and
a database, called DB in the following, defining positive/negative examples are given. A set
of clauses defining background knowledge may also be given. We aim at learning a MLN
that correctly discriminates between true and false groundings of QP .

Algorithm 1 gives the global structure of our method, called DMSP (Discriminative
MLN Structure learning based on Propositionalization). It can be separated into three steps:
Propositionalization, Building a set of candidate clauses and Learning the Markov networks.
• Propositionalization: In order to construct an approximation of the database, DMSP
first forms a set SL of variable literals starting from the learning predicate QP. Then it
builds a boolean table, each column corresponding to a variable literal and each row to only
one true/false ground atom of QP. We express how the set SL is formed in Subsection 4.2
and describe how entries of the boolean table are filled in Subsection 4.3.
• Building a set of candidate clauses: For each literal LQP ∈ SL, the χ2 test [23]
is applied on the boolean table to find a set SDL of variable literals, each of them being
dependent on LQP . A set of connected template clauses STC is then built from LQP and
every subset S ⊂ 2SLD. Candidate clauses are built from STC by keeping only Horn clauses
from any possible combination of variable literals in each connected template clause.
• Learning the Markov networks: Each candidate clause is assigned a weight by applying
L-BFGS weight learning algorithm to learn the weight of a temporary MLN composed of
the initial clauses and that candidate clause. If the weight of the candidate clause is greater
than minWeight, the score is measured by computing the CLL of the learning predicate
given the temporary MLN and DB. For each connected template clause, DMSP keeps at
most one Horn clause, which is the one with the highest CLL among those having a weight
higher than minWeight. The final candidate clauses are sorted by increasing number of
literals. Candidate clauses having the same number of literals are sorted by decreasing CLL.
DMSP then considers candidate clauses in turn. For each candidate clause c, it uses L-BFGS
to learn the weights for a MLN composed of the initial MLN plus the clauses kept at the
previous iterations and c. It then computes the current CLL measure. Clause c will be added
to the current structure whenever the CLL measure is improved. If c is not accepted, and if
there exists a clause pc in the current structure such that there exists a variable renaming
θ, pcθ ⊆ c. DMSP then checks if replacing pc by c allows a higher CLL. If it does, pc is
replaced by c. Finally, as adding a clause into a MLN might drop down the weight of clauses
added before, once all the clauses has been considered, DMSP tries to prune some clauses
of the MLN, as was done in [10].

5



4.2 Generating literals for propositionalization

Let us give here some more definitions, which will be used in this subsection.

Definition 7. A g-chain of ground literals (resp. v-chain of variable literals) of length k
starting from a ground literal g1 (variable literal v1) is an ordered list of k ground literals
< g1, ..., gk > (variable < v1, ..., vk >) such that for 1 < j ≤ k the jth ground (variable)
literal is connected to the (j-1)th via a previously unshared constant (variable). It is denoted
by g-chaink(g1) (v-chaink(v1)) : g-chaink(g1) =< g1, ..., gk > (v-
chaink(v1) =< v1, ..., vk >).

Definition 8. The link of two connected ground (variable) literals g and s, denoted by link(g,
s), is an ordered list composed of the name of the predicates of g and s followed by the
positions of the shared arguments.

Example 1. Let P(a,b) and Q(b,a) be two ground atoms connected by two shared arguments
a and b. Argument a occurs respectively at position 1 of P(a,b) and at position 2 of Q(b,a)
and argument b occurs respectively at position 2 of P(a,b) and at position 1 of Q(b,a). We
have: link(P(a,b), Q(b,a)) = {P Q (1 2) (2 1)}.

Definition 9. The link of a g-chain gc =< g1, ..., gk > (resp. v-chain vc =< v1, ..., vk > )
is an ordered list of link(gi, gi+1), 1 ≤ i < k (link(vi, vi+1), 1 ≤ i < k), denoted by g-link(gc)
(v-link(vc)):
g-link(gc) =< link(g1, g2)/.../link(gi, gi+1)/.../link(gk−1, gk) >
(v-link(vc) =< link(v1, v2)/.../link(vi, vi+1)/.../link(vk−1, vk) >).

The definitions of g-chain, v-chain ensure that a g-chain or a v-chain is also a connected
clause.

For each true ground atom e of the query predicate QP in the database DB, we build
the set of g-chains of length k starting from e. From them we build the set SL of variable
literals so that, for each g-chaink(e), there exists at least a v-chaink(ve), where ve and e
are formed from the same predicate, such that there exists an injective substitution θ, v-
chaink(ve)θ ≡ g − chaink(e).

To find the set SL of variable literals, we consider the remark in [24] that two clauses g
and s are equivalent under OI-subsumption if and only if g and s are equal with a renaming of
variable. We can find several g-chainsk(e), the variabilization of which are equivalent under
OI-subsumption to a v-chaink(ve), ve and e are built with the same predicate. In this case,
we only keep one variabilization. Moreover, if a g-link of some g-chainsk(e) is a prefix of
another one, it means that there exists at least one v-chaink(ve) and a variable renaming θ
such that g-chainsk(e)θ ⊆ v-chaink(ve), it is no longer considered for variabilizing. During
the process of variabilization to form vc, we try to reuse variables (also variable literals)
which have been used to variabilize previous v-chainsk in order to reduce the number of
variable literals, hence reduce the search space of the next steps in our method.

Algorithm 2 sketches our idea to build a set SL of variable literals given a database DB,
a query predicate QP and a positive integer k (to limit the maximum number of literals
per clause). The algorithm considers each true ground atom tga of the query predicate QP
and builds every g-chaink(tga). Function LinkOf(g-chaink(tga)) performs two operations.
First, it creates the g-link of g-chaink(tga), a g-chain of length k starting from the true
ground atom tga. We call this g-link gl. Second, it checks whether gl is already in the set of
g-links SOGL, containing the g-links already built. Variabilizing will occur only if gl does not
appear in the set SOGL. Regarding the variabilization problem, the replacement of constants
by variables can be done using various strategies such as simple variabilization, complete

6



Algorithm 2 Generating literals (DB, QP, k)
maxV ar = 0; mapV ar[ci] = 0, 1 ≤ i ≤ mc, where mc is the number of constants.
for each true ground atom tga of QP do

Find every g − chaink(tga)
if LinkOf(g − chaink(tga), SOGL) then
SOGL = SOGL ∪ g − link(g − chaink(tga))
SL = SL ∪ V ariabilize(g − chaink(tga),maxV ar,mapV ar)

end if
end for
Return(SL)

Algorithm 3 Variabilizing
Input: g − chaink(tga) =< g1(t11, ..., t

1
m1), ..., gk(tk1 , ..., t

k
mk

) > where timj
is the constant at posi-

tion mj of ground atom gi. A maximum number of variable has been used maxVar. A list maps
constants to its variables mapVar where mapVar[c] = -v implies that the constant c is replaced
by variable -v.
Output: var(g − chaink(tga)), maxVar, mapVar.
If (maxV ar = 0) then maxV ar = m1;
mapV ar[t1i ] = −i, 1 ≤ i ≤ m1;
for (i = 2; i ≤ k; i+ +) do

for (j = 1; j ≤ mi; j + +) do
if (mapV ar[tij ] = 0) then
maxV ar + +; mapV ar[tij ] = −maxV ar;

end if
end for

end for
θ =< t11/mapV ar[t

1
1], ..., tij/mapV ar[t

i
j ], ..., tkmk

/mapV ar[tkmk
] >;

v − chain = g − chaink(tga)θ;
RETURN(v − chain,maxV ar,mapV ar);

variabilization, etc. [25]. Here, we use the simple variabilization strategy to variabilize each
g− chaink(tga) ensuring that different constants in this g− chaink are replaced by different
variables. In more details, the algorithm uses the same variable literal for all starting true
ground atom tga in the process of variabilizing each g − chaink(tga), and for the others
in a g-chain, a new variable is only assigned to the new constant (a constant that has not
previously been assigned a variable). Algorithm 3 describes gradually this step.

We detail how to variabilize a g-chain in particular and illustrate step by step the process
of generating literals through Example 2 below.

Example 2. Let DB be a database composed of 15 ground atoms as follows:

advBy(ba,ad), stu(ba), prof(ad), pub(t1,ba),
pub(t2,ba), pub(t1,ad), pub(t2,ad), advBy(be,al), advBy(bo,al),

stu(be), prof(al), pub(t3,be), pub(t4,bo), pub(t4,al), pub(t5,al).

Fig. 1. Example of generating literals

7



Let k=4, QP={advBy}. For the sake of simplicity, in this example k will be ommited.
Figure 2a shows all possible g-chains of true ground atoms advBy(ba,ad) and advBy(be,al),
Figure 2b exhibits all g-links of g-chains shown in Figure 2a and Figure 2c gives variable
literals according to the process of variabilization. Corresponding to every g-chain, function
LinkOf creates a g-link. At the beginning, the g-link {advBy stu 1 1} corresponding to the
g-chain {advBy(ba, ad) stu(ba)} is created. It is the first considered g-chain therefore the
g-link is added into the set SOGL of g-links and the g − chain4 : {advBy(ba, ad) stu(ba)}
is variabilized to get the set of literals SL = {advBy(-1, -2), stu(-1)}, where the algorithm
uses the minus to denote whose variables and different constants in this g-chain are replaced
by different variables, respectively variables -1, -2 for constants ba, ad.

The algorithm next takes into account the g-chain {advBy(ba, ad) pub(t1, ba) pub(t1,
ad) prof(ad)} and creates the g-link gl={advBy pub 1 2/pub pub 1 1/pub prof 2 1}. Because
gl is not in the set SOGL, gl is added into SOGL and the g-chain is variabilized to get the set
of literals SL={ advBy(-1, -2), stu(-1), pub(-3, -1), pub(-3, -2), prof(-2)}. Considering then
the g-chain {advBy(ba, ad) pub(t2, ba) pub(t2, ad) prof(ad)}, the algorithm also creates the
g-link gl1={advBy pub 1 2/pub pub 1 1/pub prof 2 1} but gl1 is already present in the set
of g-links (gl1 and gl are the same), and then variabilizing for this g-chain is not useful. The
three stars sign (***) displayed in Figure 2c suggests that there is no variabilization for the
corresponding g-chain. As we can see from Figure 2c, this situation occurs quite frequently
in this example database. It must be noted that, in the case of the g-chain {advBy(be, al)
pub(t3, be) }, the g-link {advBy pub 1 2} is included as a prefix of a g-link and thus the
algorithm also does not variabilize this g-chain.

Let us consider now the g-chain {advBy(be, al) advBy(bo, al) pub(t4, bo) pub(t4, al)}.
The algorithm creates the g-link gl2={ advBy advBy 2 2 /advBy pub 1 2 / pub pub 1 1 }.
This g-link is then variabilized because gl2 has not occurred in the set of g-links. At the
beginning of the variabilization step, the variable literal advBy(-1,-2) is reused to map the
starting ground atom advBy(be,al) (as we mentioned before, the algorithm uses the same
variable literal for all starting true ground atoms of the query predicate), hence constants
be, al respectively are mapped to variables -1, -2. The two constants bo and t4 are new
considering constants, thus they are respectively assigned to new variables -5 and -6. After
this process, three new variable literals were created are advBy(-5,-2), pub(-6,-5), pub(-6,-2).

Having repeated this process until the last true ground atom of the query predicate
advBy, we get the set of 10 variable literals as follows:
SL={ advBy(-1,-2) stu(-1) pub(-3,-1) pub(-3,-2) prof(-2) pub(-4,-2) pub(-4,-1) adv(-5,-2)
pub(-6,-5) pub(-6,-2) }.

We end this subsection by introducing the following lemma:

Lemma 1. Let DB, QP, and k respectively be a database, a query predicate and a maximum
length. The set SL of variable literals created by Algorithm 2 is the minimum set such
that for each ground atom e of QP, for each g − chaink(e), there always exists at least a
variabilization: var(g − chaink(e)) ⊆ SL.

Proof: Assume that the set SL of variable literals created by Algorithm 2 is not the
minimum set. This means that there is a variable literal vl ∈ SL such that: for each
true ground atom e, for each g − chaink(e), there always exists at least a variabilization
var(g−chaink(e)) ⊆ SL\vl. Following the process of variabilization in Algorithm 2, there ex-
ists at least some g-chaink(e) such that g-chaink(e) is variabilized and vl ∈ var(g-chaink(e)).
The positions of variable literals appearing in var(g− chaink(e)) are fixed. Beside, different
variables in var(g− chaink(e)) map to different constants in g− chaink(e), therefore vl can
not be replaced by the other element in SL, so that we can not remove vl from SL.

8



Algorithm 4 Build propositional task(DB,SL,LQP , k)
Input: database DB, set SL of variable literals, learning variable literal LQP , length of link k
Output: transformed matrix Matrix
Matrix = ∅;
Find the set of v-links: SV L = {v − link(v − chaink(LQP ))};
for each true/false ground atom qga of QP do

fillchar(OneRowOfMatrix, 0);
Find the set of g-links: SGL = {g − link(g − chaink(qga))};
for each g-link gl ∈ SGL do

if ∃vl ∈ SV L s.t. gl ≡ vl then
Fill OneRowOfMatrix[L] = 1, ∀L, L is a variable literal appearing in vl

end if
end for
Matrix.append(OneRowOfMatrix)

end for
Return(Matrix)

advBy stu pub pub prof pub pub adv pub pub
Ground atoms (-1,-2) (-1) (-3,-1) (-3,-2) (-2) (-4,-2) (-4,-1) (-5,-2) (-6, -5) (-6,-2)

advBy(bo,al) 1 0 1 1 1 1 1 1 1 1
advBy(ba,ad) 1 1 1 1 1 1 1 0 1 1
advBy(be,al) 1 1 1 1 1 1 1 1 1 1
advBy(ba,be) 0 1 1 1 1 1 1 1 0 1
advBy(ad,ba) 0 0 1 1 0 1 1 0 1 1
advBy(ad,be) 0 0 1 1 0 1 1 0 0 1
. . . ... ... ... ... ... ... ... ... ... ...

Table 1. An example of the boolean table

When k tends to infinity, Algorithm 2 tends to generate a minimum set of variable literals
which subsumes the whole database under OI-subsumption.

4.3 Building the propositional problem

The second step in propositionalization consists in transforming the first order learning
problem into a propositional one. We build a boolean table, called Matrix, organized as
follows: each column corresponds to a variable literal; each row correspond to a true/false
ground atom of the query predicate. Matrix[r][c] is true means that there exists at least a
v-chain vc containing variable literal at column c, a g-chain gc starting from the ground
atom at row r, and a variabilization of gc such that var(gc) ⊆ vc.

Algorithm 4 sketches the steps to fill values of entries of table Matrix. For each variable
literal LQP of the learning predicate QP , DMSP finds the set SV L of v-links of v− chainsk

starting from LQP . For each true/false ground atom qga of QP , it finds every g-link gl of
g−chainsk starting from qga. If there exists some vl ∈ SV L such that vl and gl are similar,
then for the row of the Matrix corresponding to the ground atom qga, value at every column
L is set to true where L is a variable literal occurring in vl.

We illustrate this step by Example 3.

Example 3. Continuing from Example 2, let LQP = advBy(−1,−2). Algorithm 4 first finds
the set SV L of v-links of v-chains starting from advBy(-1,-2). For instance, for the v-chain

9



< advBy(−1,−2) stu(−1) >, it creates a v-link vl1 ={advBy stu 1 1}, and for the v-chain
< advBy(−1,−2) pub(−3,−1) pub(−3,−2) prof(−2) >, it creates a v-link vl2={advBy pub
1 2 / pub pub 1 1 / pub prof 2 1}. Let us consider now the ground atom advBy(bo,al).
Because advBy(bo, al) is the true ground atom, value at column advBy(-1, -2) and row
advBy(bo,al) of Matrix is 1 (true). Algorithm 4 also finds for every g-link of g-chains starting
from advBy(bo,al). For the g-chain < advBy(bo, al) pub(t4, bo) pub(t4, al) prof(al) >, it
creates a g-link gl={advBy pub 1 2 / pub pub 1 1 / pub prof 2 1}. This gl is similar to vl2, so
that values at columns advBy(-1,-2), pub(-3,-1), pub(-3,-2) and prof(-2) are filled by 1. There
does not exist any vc = v-chain(advBy(bo,al)) containing a ground atom of predicate stu
such that v-link(vc) is already in SV L, so that value at column stu(-1) and row advBy(bo,al)
is 0. For the false ground atom advBy(ad,ba), the value at column advBy(-1,-2) is 0. The
algorithm repeats this process until all true/false ground atoms of the query predicate advBy
have been considered to produce the approximation boolean table.

4.4 Comparing to BUSL

The outline of our method, at a first glance, is similar to the generative structure learning
algorithm BUSL [13]. Nevertheless, it differs deeply in all three steps: the way proposition-
alization is performed, the way to compose the set of candidate clauses and the way to put
clauses into the learned MLN:
• Propositionalization: The approximation tables respectively constructed by BUSL and
our method are different in the meaning of columns, hence in the meaning of values of entries.
Each column in the table MP of BUSL is a TNode which can be either a single literal or a
conjunction of several literals, while each column in the table Matrix of DMSP is a variable
literal. For instance, starting from the ground atom student(a), knowing advBy(b,a) and then
pub(t, b), BUSL would produce a TNode t = AdvBy(B,A), Pub(T, B) while DMSP would
produce two separated variable literals l1 = AdvBy(B,A) and l2 = Pub(T, B). The number
of TNodes in BUSL can be very high, depending on the number of atoms allowed per TN-
ode, the size of the database and the links existing between ground atoms. On the contrary,
DMSP produces just a minimum set of variable literals, enough for reflecting all possible
links between ground atoms. For the r-th ground atom of learning predicate, MP[r][t] = true
if and only if the conjunction of the set of literals in t is true, while Matrix[r][l] = true if
there exists at least a v-chaink starting from the r-th ground atom and containing l. These
differences influence the performance when applying χ2-test and GSMN.
• Composing set of candidate clauses: BUSL uses GSMN to determine edges amongst
TNodes and composes candidate clauses from cliques of TNodes. DMSP uses just the χ2 test
in order to get more links amongst variable literals. Moreover, candidate clauses in BUSL
must contain all the literals appearing in a TNode, meaning that, concerning our example,
both AdvBy(B,A) and Pub(T, B) occur together in the clause. This might not be flexible
enough as it might occur that a relevant clause contains only one of these two literals.
• Adding clauses into MLN: BUSL uses likelihood for both setting parameters and
choosing clauses, this can lead to sub-optimal results given prediction tasks. DMSP also sets
the parameters by maximum likelihood but chooses clauses by maximizing the CLL of the
query predicates instead of the joint likelihood of all predicates. The difference is also in the
order clauses are taken into account. BUSL uses the order of decreasing WPLL while DMSP
uses two orders; first the order of increasing the number of literals per clause and then the
order of decreasing CLL. The different orders lead to different structures.

10



5 Experiments

5.1 Datasets

We use three publicly-available datasets [11] called IMDB, UW-CSE and CORA respectively
in order of increasing number of constants as well as increasing number of true ground atoms
in the dataset. IMDB dataset describes a movie domain containing 1540 ground atoms of
10 predicates and 316 constants. In this dataset, we predict the probability of pairs of
person occurring in the relation WorkedUnder. UW-CSE dataset describes an academic
department consisting of 2673 ground atoms of 15 predicates and 1323 constants. We have
chosen the discriminative task of predicting who is advisor of who. CORA dataset is a
collection of citations to computer science papers including 70367 true/false ground atoms of
10 predicates and 3079 constants. We learn four discriminative MLNs, respectively according
to four predicates: sameBib, sameTitle, sameAuthor, sameVenue.

5.2 Systems and Methodology

DMSP is implemented over the Alchemy package [11]. We ourself perform experiments to
answer the following questions:
• Does DMSP outperform the state-of-the-art discriminative systems? (1)
• Can we compare DMSP to the state-of-the-art generative systems? (2)
• Does DMSP perform better than BUSL in discriminative tests (only for some query pred-
icate) in terms of CLL and AUC measures? (3)
• What should be done to improve DMSP? (4)
We choose three algorithms to compare to DMSP, which are ILS-DSL, ISL and BUSL. To
answer question 1, we compare DMSP to the state-of-the-art discriminative system ISL-
DSL. To answer question 2, we choose to run the state-of-the-art generative system ILS and
also refer to the results of LHL published in [9]. For question 3, we configure BUSL to run
only for single learning predicates. Comparative results will help us to indicate points for
question 4.

For all domains, we performed 5-fold cross-validation. We measured CLL and area under
the precision-recall curve (AUC). The CLL of a query predicate is the average log-probability
over all its groundings given evidence. The precision-recall curve is computed by varying the
threshold above which a ground atom is predicted to be true. Parameters for ILS-DSL,BUSL
and ILS were respectively set as in [3], [13] and [1]. To guarantee the fairness of comparison,
we set the maximum number of literals per clause to 5 for all systems as it is shown in [3].
We used the package provided in [4] to compute AUC. We ran our tests on a Dual-core
AMD 2.4 GHz CPU - 4GB RAM machine.

5.3 Results

We performed inference on the learned MLN for each dataset and for each test fold, using
Lazy-MC-SAT algorithm. Lazy-MC-SAT returns the probability for every grounding of the
learning predicate on the test fold, which is used to compute the average CLL over all the
groundings and the relative AUC.

Table 2 presents average CLL, AUC measures for learning predicates over test folds, for
all algorithms estimating on three datasets. They are average values of learning predicates;
WorkedUnder for IMDB, AdvisedBy for UW-CSE and SameBib, SameTitle, SameAuthor,
SameVenue for CORA. It must be noted that, while we used the same parameter setting,

11



Algorithms → DMSP ISL-DSL ISL BUSL

Datasets Predicates CLL AUC CLL AUC CLL AUC CLL AUC

IMDB WorkedUnder -0.022±0.011 0.382 -0.029±0.009 0.311 -0.036±0.010 0.329 -0.325±0.171 0.129

UW-CSE AdvisedBy -0.016±0.014 0.264 -0.028±0.019 0.194 -0.031±0.015 0.187 -0.044±0.015 0.204

SameBib -0.136±0.012 0.420 -0.141±0.011 0.461 -0.173±0.015 0.346 -0.325±0.017 0.229

CORA SameTitle -0.085±0.016 0.524 -0.134±0.015 0.427 -0.144±0.014 0.415 -0.284±0.013 0.418

SameAuthor -0.132±0.015 0.549 -0.188±0.016 0.500 -0.234±0.013 0.369 -0.356±0.013 0.347

SameVenue -0.109±0.011 0.375 -0.132±0.014 0.237 -0.145±0.014 0.250 -0.383±0.015 0.476

Table 2. CLL, AUC measures

our results do slightly differ from the ones in [3]. This comes from the fact that we conducted
inference using Lazy-MC-SAT instead of MC-SAT.

First, comparing DMSP and ILS-DSL, we can notice that DMSP performs better both in
terms of CLL and AUC for all datasets, except the AUC value for learning predicate SameBib
for CORA dataset. Since CLL determines the quality of the probability predictions output
by the algorithm, our algorithm outperforms this state-of-the-art discriminative algorithm
in the sense of the ability to predict correctly the query predicates given evidences. Since
AUC is useful to predict the few positives in the data, we can conclude that DMSP enhances
the ability of predicting the few positives. This is the answer for question 1.

Second, we take a look at DMSP and ILS. DMSP gets better values in both CLL and
AUC for all predicates for all datasets. Referring to results of LHL [9], DMSP gets better
CLL values and slightly worse AUC values. However, as described in [9], in the process of
evaluation the authors has omitted from datasets several equality predicates and evaluated
groundings for two predicates Actor and Director (IMDB), two predicates Student and Pro-
fessor (UW-CSE) together, which is a bit harder than we did. In spite of that, with the
better CLL values, we believe in the domination of DMSP compared to the state-of-the-art
generative structure learning for MLNs. This is the answer for question 2.

Third, let us consider the results of DMSP and BUSL. DMSP does improve highly CLL
values and is almost better in AUC values (only smaller for learning predicate SameVenue
for Cora dataset). We can answer for the question 3 that DMSP dominates BUSL in terms
of CLL and DMSP is competitive to BUSL in terms of AUC. However, as we mentioned
above, DMSP and BUSL have the differences in the all three steps. From these results, we
can not estimate precisely how each step affects the dominant of DMSP. We will further
investigate in this issue.

Last, let us consider algorithms all together. For all three datasets, DMSP achieves the
best CLL and only gets two smaller AUC values for SameBib and SameVenue (CORA). It
must be noted that, DMSP dominates the remainders on CLL values not only on averages but
also for every test folds for all datasets. It thus offers the best ability to predict correctly the
query predicates given evidences. Concerning AUC, DMSP performs only poorer for learning
predicate SameBib than ILS-DSL, and for learning predicate SameVenue than BUSL, it
enhances ability to predict the few positives in the test dataset. The smaller AUC of DMSP
for predicates SameBib and SameVenue can be due to the approach DMSP optimizes the
CLL during structure learning that may lead to overfitting.

Regarding consuming-time, DMSP runs somewhat faster than BUSL but slower than
both ILS and ILS-DSL. We do not present the consuming-time of all algorithms here because,
in theory, to set weights for clauses, all algorithms has involved L-BFGS, hence the times all
depend on the performance of L-BFGS. DMSP and ILS-DSL have to take more time than
ILS and BUSL for inference to compute CLL values. In practice, as revealed in [35], the

12



presence of a challenging clause like AdvisedBy(s, p)∧AdvisedBy(s, q)→ SamePerson(p, q)
will have great impact on optimization as well as on inference. Time-consuming therefore
depends mostly on the number of candidate clauses and the occurrence of literals together
in each clause. From practice we also verify that the time consuming for finding candidate
clauses is much less than the time for weights learning and inference. ILS-DSL is accelerated
by using the same approach as shown in [12] for setting the parameters of L-BFGS that
optimize the WPLL, and using heuristics to make the execution of Lazy-MC-SAT tractable
in a limited time. This is the reason why ILS-DSL is the fastest system, but it is maybe
one of reason to make less CLL and AUC. BUSL reduces consuming-time by considering
only cliques in the structure networks. DMSP saves time by solving only Horn clauses and
involving inference only when the weight of the considering clause is greater than minWeight.
This is why in this estimation, we only consider the CLL and AUC measures in evaluation.
We would like to notice that the MLN produced by DMSP might be an advantage, from the
logic point of view, as a Horn-clause MLN might integrate easier in further processing than
a MLN based on arbitrary-clauses.

These comparative results let us believe in the prospect of DSML. However, we need to
conduct further experiments in order to estimate thoroughly DMSP from which to improve
our algorithm. In more details, we plan to do the following tasks:
• Study a strategy to learn MLN improving both two measures CLL and AUC in a reasonable
time. It must also overcome overfitting.
• Compare the influence of two approximation boolean tables to the performance of DMSP
and BUSL, as well as the effect of χ2-test and GSMN on these two tables, from which we
can improve our propositionalization, not only for this task but also for ILP community.
• Compare DMSP directly to LHL and also compare all algorithms to richer and more
complex domains. It also includes the task of spreading our propositionalization method to
a generative fashion, the task of integrating a discriminative weight learning algorithm into
DMSP, in order to estimate our method more throughly.

6 Conclusion

Contributions presented in this paper are a novel algorithm for the discriminative learning
of MLN structure in general and a propositionalization method in particular. The discrim-
inative MLN structure learning algorithm performs a bottom-up approach which learns a
MLN automatically and directly from a training dataset by first building an approximation
problem from which it forges candidate clauses. Comparative results show that the proposed
algorithm dominates the state-of-the-art MLN structure learning algorithms.

References

1. Biba, M., Ferilli, S., Esposito, F.: Structure Learning of Markov Logic Networks through Iterated
Local Search. ECAI 2008. IOS Press (2008)

2. Muggleton, S., Building, W., Road, P.: Inverse entailment and Progol. New Generation Com-
puting Journal. Pp 245-286. SpringerLink (1995)

3. Biba, M., Ferilli S., Esposito, F.: Discriminative Structure Learning of Markov Logic Networks.
ILP ’08. Pp 59–76. Springer-Verlag (2008)

4. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. ICML’06.
Pp 233–240. ACM (2006)

5. Raedt, D. L., Dehaspe, L.: Clausal Discovery. Mach. Learn. Volume 26. 1997.
6. Huynh, N. T., Mooney, R. J.: Max-Margin Weight Learning for MLNs. ECML 2009.

13



7. Huynh, N. T., Mooney, R. J.: Discriminative structure and parameter learning for Markov logic
networks. ICML ’08. Pp 416–423. ACM (2008)

8. Henry, K., Bart, S., Yueyen, J.: A General Stochastic Approach to Solving Problems with Hard
and Soft Constraints. Pp 573–586. American Mathematical Society (1996)

9. Kok, S., Domingos, P.: Learning Markov logic network structure via hypergraph lifting. ICML
’09. Pp 505–512. ACM (2009)

10. Kok, S., Domingos, P.: Learning the structure of MLNs. ICML ’05. ACM (2005)
11. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Wang, J., Domingos,

P.: The Alchemy system for statistical relational AI. Dept. of Comp. Sci. and Eng., Univ. of
Washington. http://alchemy.cs.washington.edu. (2009)

12. Lowd, D., Domingos P.: Efficient Weight Learning for MLNs. PKDD 2007. (2007)
13. Mihalkova, L., Mooney, R. J.: Bottom-up learning of MLN structure. ICML 2007.
14. Mihalkova, L., Richardson, M.: Speeding up Inference In Statistical Relational Learning by

Clustering Similar Query Literals. ILP-09. (2009)
15. Møller, M. F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw.

Volume 6. Pp 525–533. Elsevier Science Ltd (1993)
16. Pietra, S. D., Pietra, V. D., Lafferty, J.: Inducing Features of Random Fields. Carnegie Mellon

University (1995)
17. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic

dependencies. AAAI (2006)
18. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. Vol. 62 (2006)
19. Sha, F., Pereira, F.: Shallow parsing with CRFs. NAACL ’03. (2003)
20. Singla, P., Domingos, P.: Discriminative training of MLNs. AAAI’05. (2005)
21. Ashwin, S.: The Aleph manual. http://web.comlab.ox.ac.uk/oucl/research/areas/

machlearn/Aleph. (2001)
22. Bishop, M. C.: Pattern Recognition and Machine Learning. Springer, 2007.
23. Facundo, B., Margaritis, D., Honavar, V.: Efficient Markov Network Structure Discovery Using

Independence Tests. SIAM Data Mining (2006).
24. Raedt, D. L.: Logical and Relational Learning. Springer, 2008.
25. Jorge, A. M. G.: Iterative Induction of Logic Programs - An approach to logic program synthesis

from incomplete specifications. PhD thesis. Univ. of Porto. 1998.
26. Kersting, K.: An inductive logic programming approach to SRL. PhD thesis. ISBN: 1-58603-

674-2. IOS Press, 2006.
27. Raedt, L. D.: Logical and relational learning. ISBN: 9783540200406. Springer, 2008.
28. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. The MIT Press, 2007.

ISBN, 0262072882. (2007).
29. Richards, B. L., Mooney, R. J.: Learning Relations by Pathfinding. AAAI 1992.
30. Silverstein, G., Pazzani, M.: Relational clichés: Constraining constructive induction during re-

lational learning. The 8-th International Workshop on ML. (1991).
31. Agresti, A.: Categorical Data Analysis (SE). John Wiley and Sons, Inc. (2002)
32. Poon, H., Domingos, P., Sumner, M.: A general method for reducing the complexity of relational

inference and its application to MCMC. AAAI’08. Pp 1075–1080. AAAI Press (2008)
33. Singla, P., Domingos, P.: Memory-efficient inference in relational domains. AAAI’06. (2006)
34. Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization.

Journal Math. Program., 1989. (1989).
35. Shavlik, J. and Natarajan, S.: Speeding up inference in Markov logic networks by preprocessing

to reduce the size of the resulting grounded network. IJCAI 2009.

14


