Skip to main content

Distance Distribution and Average Shortest Path Length Estimation in Real-World Networks

  • Conference paper
Advanced Data Mining and Applications (ADMA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6440))

Included in the following conference series:

Abstract

The average shortest path length is one of the most important and frequent-invoked characteristics of real-world complex networks. However, the high time complexity of the algorithms prevents us to apply them to calculate the average shortest path lengths in real-world massive networks. In this paper, we present an empirical study of the vertex-vertex distance distributions in more than 30 artificial and real-world networks. To best of our knowledge, we are the first to find out the vertex-vertex distance distributions in these networks conform well to the normal distributions with different means and variations. We also investigate how to use the sampling algorithms to estimate the average shortest path lengths in these networks. Comparing our average shortest path estimating algorithm with other three different sampling strategies, the results show that we can estimate the average shortest path length quickly by just sampling a small number of vertices in both of real-world and artificial networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  2. Latora, V., Marchiori, M.: Efficient Behavior of Small-World Networks. Phys. Rev. Lett. 87, 198701 (2001)

    Article  Google Scholar 

  3. Zwick, U.: Exact and approximate distances in graphs—a survey. In: Proceeding of the 9th Annual European Symposium on Algorithms, pp. 33–48 (2001)

    Google Scholar 

  4. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM REVIEW 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT, Cambridge (2001)

    MATH  Google Scholar 

  6. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast Shortest Path Distance Estimation in Large Networks. In: Proceeding of CIKM, pp. 867–876 (2009)

    Google Scholar 

  7. Kleinberg, J., Slivkins, A., Wexler, T.: Triangulation and embedding using small sets of beacons. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 444–453. IEEE Computer Society, Washington (2004)

    Chapter  Google Scholar 

  8. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the world wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  9. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 251–262. ACM, New York (1999)

    Google Scholar 

  10. Lee, S.H., Kim, P.J., Jeong, H.: Statistical properties of sampled networks. Phys. Rev. E. 73, 16102 (2006)

    Article  Google Scholar 

  11. Airoldi, E.M., Carley, K.M.: Sampling algorithms for pure network topologies: stability and separability of metric embeddings. SIGKDD Explorations 7, 13–22 (2005)

    Article  Google Scholar 

  12. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging network. In: Proceeding of the 17th International Conference on World Wide Web, pp. 915–924 (2008)

    Google Scholar 

  15. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E. 78, 46110 (2008)

    Article  Google Scholar 

  16. Ye, Q., Zhu, T., Hu, D., et al.: Cell Phone Mini Challenge Award: Exploring Temporal Communication in Mobile Call Graphs. In: 3rd IEEE Symposium on Visual Analytics Science and Technology, pp. 207–208. IEEE Press, Columbus (2008)

    Google Scholar 

  17. Ye, Q., Wu, B., et al.: TeleComVis: Exploring Temporal Communities in Telecom Networks. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, pp. 755–758. Springer, Bled Slovenia (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ye, Q., Wu, B., Wang, B. (2010). Distance Distribution and Average Shortest Path Length Estimation in Real-World Networks. In: Cao, L., Feng, Y., Zhong, J. (eds) Advanced Data Mining and Applications. ADMA 2010. Lecture Notes in Computer Science(), vol 6440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17316-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17316-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17315-8

  • Online ISBN: 978-3-642-17316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics