Skip to main content

Extending Open Dynamics Engine for Robotics Simulation

  • Conference paper
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6472))

Abstract

Open Dynamics Engine (ODE) is the most popular rigid-body dynamics implementation for robotics simulation applications. While using it to simulate common robotic scenarios like mobile robot locomotion and simple grasping, we have identified the following shortcomings each of which adversely affect robot simulation: lack of computational efficiency, poor support for practical joint-dampening, inadequate solver robustness, and friction approximation via linearization. In this paper we describe extensions to ODE that address each of these problems. Because some of these objectives lie in opposition to others—e.g., speed versus verisimilitude—we have carried out experiments in order to identify the trade-offs involved in selecting from our extensions. Results from both elementary physics and robotic task-based scenarios show that speed improvements can be gained along with useful joint-dampening. If one is willing to accept an execution time cost, we are able to represent the full-friction cone, while simultaneously guaranteeing a solution from our numerical solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics 14, 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. In: Computational Optimization and Applications (2008)

    Google Scholar 

  3. Arechavaleta, G., López-Damian, E., Morales, J.L.: On the Use of Iterative LCP Solvers for Dry Frictional Contacts in Grasping. In: International Conference on Advanced Robotics, Munich, Germany, pp. 1–6 (June 2009)

    Google Scholar 

  4. Baraff, D.: Linear-time dynamics using Lagrange multipliers. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1996, pp. 137–146 (1996)

    Google Scholar 

  5. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia - GRAPHITE 2007, vol. 1(212), p. 281 (2007)

    Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  7. Browning, B., Tryzelaar, E.: ĂśberSim: A Realistic Simulation Engine for Robot Soccer. In: Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS 2003), Melbourne, Australia (July 2003)

    Google Scholar 

  8. Acosta Calderon, C.A., Mohan, R.E., Zhou, C.: Virtual-RE: A Humanoid Robotic Soccer Simulator. In: Proceedings of International Conference on Cyberworlds, Hangzhou, China, pp. 561–566 (September 2008)

    Google Scholar 

  9. NVIDIA Corporation. PhysX SDK (2008), http://www.nvidia.com/object/nvidia_physx.html

  10. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  11. Coumans, E.: Bullet Physics Engine For Rigid Body Dynamics, http://bulletphysics.org/

  12. Demur, K.: Robot Simulation — Robot programming with Open Dynamics Engine. Morikita Publishing Co. Ltd., Tokyo (2007)

    Google Scholar 

  13. Fijany, A.: New Factorization Techniques and Parallel O (Log N) Algorithms for Forward Dynamics Solution of Single Closed-Chain Robot Manipulators. Jet Propulsion Laboratory, California Institute of Technology

    Google Scholar 

  14. Finkenzeller, D., Baas, M., ThĂĽring, S., Yigit, S., Schmitt, A.: VISUM: A VR system for the interactive and dynamics Simulation of mechatronic systems. In: Fischer, X., Coutellier, D. (eds.) Research in Interactive Design: Proceedings of Virtual Concept 2003, Biarritz, France. Springer, Heidelberg (2003)

    Google Scholar 

  15. Friedmann, M., Petersena, K., von Stryk, O.: Adequate motion simulation and collision detection for soccer playing humanoid robots. Robotics and Autonomous Systems 57(8), 786–795 (2009)

    Article  Google Scholar 

  16. Garstenauer, H., Kurka, D.I.D.G.: A unified framework for rigid body dynamics. Degree Paper (2006)

    Google Scholar 

  17. Jung, D.: Opensim (2006), http://opensimulator.sourceforge.net

  18. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: Proc. of IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Sendai, Japan, pp. 2149–2154 (September 2004)

    Google Scholar 

  19. Laue, T., Spiess, K., Röfer, T.: SimRobot — A General Physical Robot Simulator and Its Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Lee, J., Oh, J.H.: Biped Walking Pattern Generation Using Reinforcement Learning. International Journal of Humanoid Robotics 6(1), 1–21 (2009)

    Article  Google Scholar 

  21. Lima, J.L., Goncalves, J.C., Costa, P.G., Moreira, A.P.: Realistic Behaviour Simulation of a Humanoid Robot. In: Proceedings of 8th Conference on Autonomous Robot Systems and Competitions, Aveiro, Portugal (April 2008)

    Google Scholar 

  22. Mangasarian, O.L., Leone, R.: Parallel gradient projection successive overrelaxation for symmetric linear complementarity problems and linear programs. Annals of Operations Research 14(1), 41–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Michel, O.: Webots: Professional Mobile Robot Simulation. International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

    Article  MathSciNet  Google Scholar 

  24. Moores, B.T., MacDonald, B.A.: A dynamics simulation architecture for robotic systems. In: Proc. of IEEE Intl. Conf. on Robotics and Automation (ICRA), Barcelona, Spain (April 2005)

    Google Scholar 

  25. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  26. Obst, O., Rollmann, M.: SPARK – A Generic Simulator for Physical Multiagent Simulations. In: Lindemann, G., Denzinger, J., Timm, I.J., Unland, R. (eds.) MATES 2004. LNCS (LNAI), vol. 3187, pp. 243–257. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Smith, R.: ODE: Open Dynamics Engine

    Google Scholar 

  28. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Review 42(1), 3–39 (2000)

    Google Scholar 

  29. Sugiura, N., Takahashi, M.: Development of a Humanoid Robot Simulator and Walking Motion Analysis. In: Workshop Proceedings of SIMPAR, International Conference on Simulation, Modeling and Programming for Autonomous Robots, Venice, Italy, pp. 151–158 (November 2008)

    Google Scholar 

  30. Tikhanoff, V., Fitzpatrick, P., Metta, G., Natale, L., Nori, F., Cangelosi, A.: An Open-Source Simulator for Cognitive Robotics Research: The Prototype of the iCub Humanoid Robot Simulator. In: Workshop on Performance Metrics for Intelligent Systems, National Institute of Standards and Technology, Washington DC, USA (August 2008)

    Google Scholar 

  31. Wolff, K., Wahde, M.: Evolution of Biped Locomotion Using Linear Genetic Programming, ch. 16, pp. 335–356. Itech Education and Publishing, Vienna (October 2007)

    Google Scholar 

  32. Yeh, T., Reinman, G., Patel, S.J., Faloutsos, P., Ageia Technologies: Fool Me Twice: Exploring and Exploiting Error Tolerance in Physics-Based Animation. In: Simulation (2006)

    Google Scholar 

  33. Zagal, J.C., Del Solar, J.R.: UchilSim: A Dynamically and Visually Realistic Simulator for the RoboCup Four Legged League. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 34–45. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drumwright, E., Hsu, J., Koenig, N., Shell, D. (2010). Extending Open Dynamics Engine for Robotics Simulation. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds) Simulation, Modeling, and Programming for Autonomous Robots. SIMPAR 2010. Lecture Notes in Computer Science(), vol 6472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17319-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17319-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17318-9

  • Online ISBN: 978-3-642-17319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics