
The Edge of Graph Transformation —
Graphs for Behavioural Specification

Arend Rensink

Department of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. The title of this paper, besides being a pun, can be taken to mean either
the frontier of research in graph transformation, or the advantage of using graph
transformation. To focus on the latter: Why should anyone not already educated
in the field adopt graph transformation-based methods, rather than a mainstream
modelling language or a process algebra; or vice versa, what is holding poten-
tial users back? These questions can be further refined by focusing on particular
aspects like usability (available tools) or power (available theory).

In this paper, we take a fresh and honest look at these issues. Our perspective is
the use of graph transformation as a formalism for the specification and analysis
of system behaviour. There is no question that the general nature of graphs is at
once their prime selling point (essentially everything can be specified in terms
of graphs) and their main drawback (the manipulation of graphs is complex, and
many properties that are useful in more specialised formalisms no longer hold for
general graphs).

The outcome of this paper is a series of recommendations that can be used to
outline a research and development programme for the coming decade. This may
help to stimulate the continued and increasing acceptance of graph transforma-
tion within the rest of the scientific community, thereby ensuring research that is
relevant, innovative and on the edge.

1 Background

In this paper we take a look at the advantages and disadvantages of graph transformation
as an underlying formalism for the specification and analysis of system behaviour. For
this purpose we review criteria for such a basic formalism, and we discuss how well
graph transformation meets them in comparison with other formalisms.

We will start with a couple of observations. First of all, the field of graph trans-
formation is quite broad: there are many formalisms that differ in philosophy as well
as technical details, and yet all fall under the header of graph transformation — for
an overview see the series of handbooks [65,23,26]. One often used classification dis-
tinguishes the algorithmic approach, pioneered by Nagl [53] among others, from the
algebraic approach, pioneered by Ehrig among others [27]. We do not claim to be com-
prehensive in this paper; although we will not always state so explicitly, in our own
research we are leaning towards the algebraic interpretation as the one closest to other,
non-graph-based formalisms for behavioural specification, such as process algebra and
Petri nets. Our findings are undoubtedly coloured by this bias.

G. Engels et al. (Eds.): Nagl Festschrift, LNCS 5765, pp. 6–32, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Edge of Graph Transformation — Graphs for Behavioural Specification 7

The next observation is that the phrase “graph transformation for the specification of
system behaviour” is up for more than one interpretation.

Graph transformation as a modelling language. In this approach, system states are
directly captured through graphs, and system behaviour through graph transfor-
mation rules. Thus, graph transformation is on the interface with the user (design-
er/programmer). This is the approach assumed by many graph transformation tools:
prime examples are FUJABA [30], which has an elaborate graphical front-end for
this purpose, and AUGUR2 [44], which requires rather specialised graph transfor-
mation rules as input.

Graph transformation for operational semantics. In this interpretation, system be-
haviour is captured using another modelling language, for which there exists a
graph transformation-based semantics. Thus, graph transformation is hiding “un-
der the hood” of the other modelling language. There has been quite some research
in the definition of such operational semantics: for instance, for statecharts [45],
activity diagrams [35,28] and sequence diagrams [36,11] and for object-oriented
languages [12,41,64].

Note that this distinction can also be made outside the context of behavioural speci-
fication: for instance in model transformation, where again there are proposals to use
graph transformation as a modelling language, for instance in the form of Triple Graph
Grammars [70], or to define a semantics for QVT [47].

Both scenarios have their attractions; however, the criteria for the suitability of the
underlying formalism do depend on which of them is adhered to. For instance, in
the first scenario (graph transformation as a modelling language), the visual nature of
graphs is a big advantage: in fact, many articles promoting the use of graph transfor-
mation stress this point. On the other hand, this criterion is not at all relevant in the
second scenario (graph transformation for operational semantics) — at least not to the
average user of the actual modelling language, though it may still be important to par-
ties that have to draw up, understand or use the operational semantics. Instead, in this
second scenario, graph transformation is competing with formalisms with far less in-
tuitive appeal but more efficient algorithms, for instance based on trees (as in ordinary
Structural Operational Semantics) or other data structures. In this paper we consider
both scenarios.

In the next section, we first discuss some of the existing variations on graphs, em-
phasising their relative advantages. In Section 3 we proceed to step through a number
of criteria that are (to a varying degree) relevant in a formalism for behavioural speci-
fication and analysis, and we evaluate how well graph transformation does in meeting
these criteria. In Section 4, we evaluate the results and come to some recommendations
on topics for future research.

Disclaimer. It should perhaps be stressed that this paper represents a personal view,
based on past experience of the author, not all of which is well documented. Where
possible we will provide evidence for our opinions, but elsewhere we do not hesitate to
rely on our subjective impressions and intuitions.

8 A. Rensink

2 A Roadmap through the Graph Zoo

Whatever the precise scenario in which one plans to use graph transformation, the first
decision to take is the actual notion of graphs to be used. There are many possible
choices, and they can have appreciable impact. In this section we discuss some of the
dimensions of choice. In this, our perspective is coloured in favour of the so-called al-
gebraic approach. A related discussion, which distinguishes between glueing and con-
necting approaches, can be found in [6].

We limit ourselves to directed graphs, as these are ubiquitous in the realm of graph
transformation. In addition, essentially all our graphs are edge-labelled, though in some
cases the labels are indirectly assigned through typing. True node labels will only appear
in the context of typing, though a poor man’s substitute can be obtained by employing
special edges.1 We will not bother about the structure of labels: instead, a single set Lab
will serve as a universe of labels for all our graphs.

We will refrain from formally defining graph morphisms for all the notions of graph
under review, as the purpose of this section is not to give an exhaustive formal overview
but rather to convey intuitions.

2.1 Nodes for Entities, Edges for Relations

The natural interpretation of a graph, when drawn in a figure, is that the nodes represent
entities or concepts in the problem domain. Thus, each node has an identity that has
a meaning to the reader. In the context of the figure, the identities are determined by
the two-dimensional positions of the nodes, but obviously these are not the same as
the identities in the reader’s mind: instead, the reader mentally establishes a mapping
from the nodes to the entities in his interpretation. Typically, though not universally, this
mental mapping is an injection; or, if we think of the mental model as encompassing
only those entities that are depicted in the graph, it is a bijection.

The edges play quite a different role in such a natural interpretation. Edges serve to
connect nodes in particular ways: every edge stands for a relation between its end nodes,
where the edge label tells what kind of relation it is. Thus, one particular difference with
nodes is that edges do not themselves have an identity. This is reflected by the fact that,
in this interpretation, it does not make sense for two nodes to be related “more than
once” in the same way: in other words, there cannot be parallel edges, with the same
end nodes and the same label. One may also think of this as a logical interpretation,
in the sense that the collection of edges with a given label is analogous to a binary
predicate over the nodes.

This “natural” or “logical” interpretation is captured by the following definition.

Definition 1 (simple graph). A simple graph is a tuple 〈V, E〉, where V is an arbitrary
set of nodes and E ⊆ V × Lab × V is a set of edges. There are derived functions
src, tgt : E→V and lab: E→Lab projecting each edge onto, respectively, its first, third
and second component.

1 Note that this is not necessarily true outside our context of using graphs for behavioural mod-
elling: for instance, in the field of graph grammars, explicit node labels may be necessary to
distinguish non-terminals.

The Edge of Graph Transformation — Graphs for Behavioural Specification 9

Choosing this notion of graphs has important consequences for the corresponding no-
tion of transformation.

– Simple graphs do not fit smoothly into the algebraic framework. (This is not re-
ally surprising, as simple graphs are relational models rather than algebraic ones.)
Unless one severely restricts the addition and deletion of edges (namely, to rules
where an edge is only added or deleted if one of its end nodes is at the same time
also added or deleted), the theory of adhesive categories that is the flagship of alge-
braic graph transformation does not apply. Instead, algebraically the transformation
of simple graphs is captured better by so-called single pushout rewriting, which is
far less rich in results. See Section 2.7 below for a more extensive discussion on
these issues.

– Adding a relation may fail to change a graph. One of the basic operations of a graph
transformation rule is to add an edge between existing nodes. In simple graphs, if
an edge with that label already exists between those nodes, the rule is applicable but
the graph is unchanged. This is in some cases counter-intuitive. It may be avoided
by including a test for the absence of such an edge.

– Node deletion removes all incident edges. In the natural notion of simple graph
(single-pushout) rewriting mentioned above, nodes can always be deleted by a rule,
even if they have incoming or outgoing edges that the rule does not explicitly delete
as well. From the edges-are-relations point of view this can indeed be reasonable,
as the fact that there exist relations to a certain entity should not automatically
prevent that entity from being deleted; nevertheless, this means that the effect of a
rule cannot be predicted precisely without knowing the host graph as well. Again,
this may be avoided by including a test for the absence of such edges into the rule.

The closest alternative to simple graphs, which does not share the above characteristics,
is the following.

Definition 2 (multigraph). A multigraph is a tuple 〈V, E, src, tgt , lab〉, where V is an
arbitrary set of nodes, E an arbitrary set of edges, src, tgt : E → V are source and
target function and lab: E → Lab an edge labelling function.

Thus, in comparison to simple graphs, the source, target and labelling functions are now
explicitly given rather than derived from E, and E itself is no longer a Lab-indexed
binary relation but rather an arbitrary set. Thus, edges have their own identity, and
parallel edges are automatically supported.

In the algebraic approach, multigraphs (in contrast to simple graphs) fall smoothly
into the rich framework of adhesive categories and double-pushout rewriting. Among
other things, this ensures that rule application is always reversible, which implies that
the phenomena listed under the last two bullets above do not occur: if a rule adds an
edge then the graph always changes under rule application (an edge is always added,
possibly in parallel to an existing edge); and a node cannot be deleted unless all incident
edges are explicitly deleted as well.

2.2 Nodification

Ordinary graphs, be they simple or multi, have very little structure in themselves. If they
are used to encode models with rich structure, such as (for instance) design diagrams,

10 A. Rensink

0

true

inMultHigh

name

nameinMultLow

ordered

target

enrolled
outMultLow

outMultHigh

"Student"

"Course"

1

*

Course

Student

0..*

ordered 1..*

enrolled

Fig. 1. A UML association type and its graph representation

then it may occur that the entity/relation intuition discussed above cannot be rigorously
upheld. In particular, complex relationships, which should conceptually be represented
by edges, may very well contain more information than what can be expressed by a
single (binary) edge.

Example 1. For example, an association in a class diagram is conceptually a relation
between two classes, but in addition to a name it typically has multiplicities and other
modifiers (such as the fact that it is indexed or ordered). This is illustrated in Figure 1.

In such a case, the only solution is to introduce an additional node to capture the relation,
with edges to the original source and target node, as well as additional edges to capture
the remaining structure. We call this process nodification. Usually, one would prefer
to avoid nodification, as it blows up the graphs, which has an adverse effect on visual
appeal, understandability and complexity. This may be partially relieved by introducing
a concrete syntax layer (syntactic graph sugar, such as edges with multiple labels) on top
of the “real” graph structure, but that in itself also adds complexity to the framework.

Another context in which nodification occurs is in modelling relations among edges;
for instance, if typing or traceability information is to be added to the graph. Rather than
allowing “edges over edges”, i.e., edges whose source or target is not a node but another
edge, into the formalism itself, the typical solution is to nodify the edges between which
a relation is to be defined.

Clearly, to minimise nodification it is necessary to move to a graph formalism with
more inherent structure. A good candidate is hypergraphs.

2.3 Edges for Structure, Nodes for Glue

A hypergraph is a graph in which edges may have a different number of end nodes
than two. Hypergraphs come in the same two flavours as binary graphs: simple and
multi. However, especially multi-hypergraphs open up an intriguing alternative to the
entity/relation intuition explored in Section 2.1, which has been exploited for instance
in [2,3].2

2 To complicate matters further, one can also extend simple graphs to n-ary rather than just
binary relations. Though this is not a very popular model in graph transformation research, it
is a faithful representation of, for instance, higher-degree relations in UML [55].

The Edge of Graph Transformation — Graphs for Behavioural Specification 11

0

true

enrolled

*

1

0 Course

Student

6

2

3

5

4

0

1

0

Fig. 2. Hyperedge representation of the right-hand graph of Figure 1

Definition 3 (hypergraph). A hypergraph is a tuple 〈V, E, con , lab〉, where con : E →
V ∗ is a connection function mapping each edge to its sequence of tentacles, and
lab: E → Lab is an edge labelling function. A node in a hypergraph is called isolated if
it does not occur in the images of con .

Usually, labels are used to determine the arity, i.e., the number of tentacles, of edges;
that is, there is assumed to be an arity function α: Lab → Nat such that |con(e)| =
α(lab(e)) for all e ∈ E. Though there is not an explicit notion of edge source, we can
designate the first tentacle to be the source (which due to the possibility of nullary edges
implies that src is a partial function).

Obviously, a binary (multi)graph is just a special case of a hypergraph in which all
arities are 2. Edges with arity 0 and 1 are also potentially useful, to encode global
state attributes and node labels, respectively. For instance, a 0-ary edge labelled Error
(with no attached node) could be used to signify that the state is erroneous in some
way; 1-ary edges Student (with source nodes only) can be used to label nodes that
represent students. It is in the edges with higher arity, however, that extra structure
can be encoded. For instance, the association edge of Figure 1 can be represented by a
single, 7-ary edge, as shown in Figure 2. (In this figure we have followed the convention
to depict hyperedges also as rounded rectangles, with numbered arrows to the tentacles.
Thus, hyperedges look quite a bit like nodes.)

The shift in interpretation mentioned above lies in the fact that we may now regard
edges to be the primary carrier of information, rather than nodes as in the entity/relation
view. In particular, the entities can be thought of as represented by singular edges, like
the Course- and Student-edge in Figure 2. The nodes then only serve to glue together
the edges; in fact, they may be formally equated to the set of edge tentacles pointing to
them. In particular, in this interpretation, an isolated node is meaningless and may be
discarded (“garbage collected”) automatically.

One of the attractions in this new interpretation is that it is no longer necessary
to delete nodes: instead, it suffices to delete all incident edges, after which the node
becomes isolated and is garbage collected. Thus, a major issue in the algebraic graph
transformation approach becomes moot. (Formally speaking, for a rule that does not
delete nodes, pushout complements are ensured to exist always.)

Example 2. One of the main sources of programming errors in C that is difficult to cap-
ture formally is the manual deallocation of memory. It is easy to erroneously deallocate
memory cells that are still being pointed to from other parts of a program. However,

12 A. Rensink

a graph transformation rule that attempts to delete such a cell will either remove all
incident edges or be inapplicable altogether, depending on the way node deletion is
handled. Neither captures the desired effect.

Using the interpretation discussed above (the glue/structure view, as opposed to the
entity/relation view), however, this becomes straightforward to model: deallocation re-
moves the singular edge encapsulating the value of a memory cell, but this does not
give rise to node deletion as long as there is another (“stale”) edge pointing to the node.
However, any rule attempting to match such a stale edge and use its target node will fail
(because the target node no longer carries the expected value edge) and hence give rise
to a detectable error. The reallocation of improperly freed memory can be captured in
this way as well.

Summarising: the special features of hypergraphs (coming at the cost of a more com-
plex relation between edges and nodes) are:

– Nodification can be avoided in many cases, as hyperedges are rich enough to en-
code fairly complex structures.

– Node deletion can be avoided altogether if one follows the idea of garbage collect-
ing isolated nodes, called the glue/structure interpretation above.

2.4 The Awkwardness of Attributes

Graphs are great to model referential structures, but do not model associated data of
simple types (such as numbers, booleans and strings), usually called attributes, as con-
veniently. At first sight there is actually no problem at all: data values can easily be
incorporated into graphs by treating them as nodes, and an attribute corresponds to an
edge to such a data node. The problem is, however, that data values do not behave in
all respects like nodes: they are not created or deleted, instead every data value always
“exists” uniquely; moreover, the standard algebraic operations on these types can yield
values from an infinite domain, which therefore formally must be considered part of
every graph, even if it is not visualised.

Note that we have already implicitly used the representation of data values as nodes
in Figures 1 and 2, which contain instances of natural numbers, booleans and strings.

In the last few years, the algebraic approach has converged on a formalisation (see
[21]) in which data values are indeed special nodes, which are manipulated not through
ordinary graph rules but through an extension relying on the standard algebras of the
data types involved. Though satisfactory from a formal point of view, we still feel that
the result is hybrid and conceptually somewhat awkward. This is to be regretted espe-
cially since competing formal verification techniques all concentrate on the manipula-
tion of primitive data with very few higher-order structures (typically just arrays and
records), which are then used to encode referential structures. This makes the compari-
son of strengths and weaknesses very skewed.

Edge attributes and nodification. Another issue is whether attributes should be re-
stricted to nodes, or if edges should also be allowed to carry attributes. This is, in fact,
connected to the choice of simple graphs versus multigraphs: only in multigraphs does
the concept of edges with attributes make sense. Indeed, this capability in some cases

The Edge of Graph Transformation — Graphs for Behavioural Specification 13

0

Course

Student

”Jan”

Student

”Klaas” ”Marie”

Student

enrolled
i=1

enrolled
i=2

enrolled
i=3

Course
0

”Marie”

name

enrolled

Student

3

name

enrolled

”Klaas”

Student

2

”Jan”

name

enrolled

Student

1

name

0 0 0

0

1

0

2

1

1

0

2

1

name name

0

1

0

2

1

Fig. 3. Edge attributes or hyperedges for ordered edges

helps to avoid nodification, as we will show on an example below. However, the only
way to capture edge attributes formally is to allow (attribute) edges to start at (non-
attribute) edges. This makes the graph model more complex and less uniform, which
feels like a heavy price to pay.

Example 3. A concept that comes up quite often in graph modelling is that of a list or
sequence. For instance, the association shown in Figure 1 specifies that every Course has
an associated ordered set of enrolled students. This means that an instance model may
feature one Course with multiple associated Students, which are, moreover, ordered in
the context of that Course.

One way to capture the ordering is to use indexing of the elements; and for this, edge
attributes can be used. Apart from the label, every edge would receive a unique natural
number-valued attribute, say i, as depicted by the left hand graph in Figure 3. The right
hand side shows that the same effect can be achieved in hypergraphs.

The algorithmic alternative. The entire discussion above is driven by the intuition that
attributes are just edges, albeit pointing to nodes with some special characteristics. An-
other point of view entirely is that attributes are distinct enough from edges to merit a
different treatment altogether. For instance, attributes are not deleted and created, but
are read and assigned; in the same vein, the concept of multiplicity typically does not
apply to attributes.

In the algorithmic approach, there is in fact little objection to a separate treatment of
edges and attributes: the latter are typically treated as local variables of a node. It is only
in the algebraic approach that this meets objections. Depending on one’s perspective,
this can obviously be interpreted as a weakness of the algebraic approach, rather than
the awkwardness of attributes.

Summarising: regarding attributes, we find that

– The state-of-the-art algebraic formalisation of attributes feels awkward and cannot
compete with the ease of data manipulation in other verification techniques. On the
other hand, there is no alternative that shares the same theoretical embedding, so if
one values the algebraic approach then this is the only game in town.

14 A. Rensink

– Edge attributes come at a high conceptual cost, which may be justified because
they can help to avoid nodification. However, hypergraphs provide a more uniform
way to achieve the same thing.

– The algorithmic approach has no such difficulties in incorporating attributes: they
can be regarded as local variables of the nodes. This is a very pragmatic viewpoint,
justification for which may be found in the fact that it reflects the practice in other
modelling formalisms.

2.5 To Type or Not to Type

The graphs presented up to this point are not restricted in the way edges or edge labels
can be used. In practice, however, the modelling domain for which graphs are used
always constrains the meaningful combinations of edges. For instance, in the example
of Figure 3 it would not make sense to include enrolled-edges between Student-nodes.

Such constraints are usually formulated and imposed through so-called type graphs.
A type graph — corresponding to a metamodel in OMG terminology, see [54] — is itself
a graph, typically in the same formalism as the object graphs, but often with additional
elements in the form of inheritance and multiplicities (a formal interpretation of which
can be found in [5,80]). In the presence of a type graph, a given object graph G is only
considered to be correct if there exists a structure-preserving mapping τ , a typing, to the
type graph T . Structure preservation means (among other things) that τ maps G-nodes
to T -nodes and G-edges to T -edges.

In fact, we can include the typing itself into the definition of a graph. If, in addition,
we select the nodes and edges of the type graph T from the set of labels (i.e., VT ∪ET ⊆
Lab), then the typing subsumes the role of the edge labelling function: τ assigns a label
not only to every edge of G but to every node as well.

Inheritance. Normally, a typing must map every edge consistently with its source and
target node: that is, τ(srcG(e)) = srcT (τ(e)) and τ(srcG(e)) = srcT (τ(e)) for all
e ∈ EG. However, this can be made more flexible by including node inheritance. Node
inheritance is typically encoded as a partial order over the nodes of the type graph.
That is, there is a transitive and antisymmetric relation � ⊆ VT × VT ; if v � w
then we call v a subtype of w. Now it is sufficient if τ(srcG(e)) � srcT (τ(e)) and
τ(srcG(e)) � srcT (τ(e)).

Since the purpose is to ensure that we are only dealing with correctly typed graphs,
the matching as well as the application of transformation rules has to preserve types.
Without going into formal detail (for which we refer to [5]), the intuition is that the type
of a node in the rule’s left hand side must be a supertype of the type of the matching host
graph node. Thus, the rule can be defined abstractly (using general types) and applied
concretely (on concretely typed graphs).

Example 4. Figure 4 shows a type graph (on the left), where the open triangular arrow
visualises the subtyping relation B � A. Of the four graphs on the right, both (i) and (ii)
are correctly typed, and if (i) is the left hand side of a rule then it has two valid matches
into (ii). (iii) is incorrect because the source type of the b-edge (A) is not a subtype of
b’s source (B).

The Edge of Graph Transformation — Graphs for Behavioural Specification 15

a
C A C

a

(i)

B C

C

a

b

(ii)

A C
b

(iii)

B C
a

(iv)

B

A

1b

0..1

Fig. 4. A type graph (on the left) with correctly typed graphs (i) and (ii), and incorrectly typed
graphs (iii) and (iv)

The above deals with node type inheritance only. In addition one may also consider a
subtype or inheritance relation over edges. There is far less consensus on the usefulness
and, indeed, meaning of edge type inheritance; see, for instance, [80] for one possible
formalisation. In [42] we have shown that UML has three different notions of edge
subtyping (subsets, redefinitions and unions). We therefore think of edge subtyping as
a kind of special constraint, some more examples of which are briefly reviewed below.

Multiplicities. Also very common in type graphs are edge multiplicities. For instance,
Figure 4 shows outgoing edge multiplicities, expressing that every A-node has at most
one outgoing a-edge, and every B-node has exactly one outgoing b-edge. Graph (iv) is
incorrect because it does not satisfy the multiplicity constraint on the b-edge.

Multiplicities can be attached both to outgoing and to incoming edges, and they
specify “legal” ranges for the number of such edges in an object graph. In contrast to
node inheritance, however, in general it is not decidable whether all graphs that can
be constructed by a given transformation system are correct with respect to the edge
identities. In such cases, the multiplicity constraint must be regarded as a property of
which the correctness must be established through further analysis.

Special constraints. In general, as we have stated at the beginning of this subsection,
typing is a way to impose constraints on graphs. Inheritance allows to refine these con-
straints, and multiplicities provide a way to strengthen them. However, the story does
not end here: in the course of the years many special types of constraints have been
proposed that can be seen as type enrichments. One has only to look at the UML stan-
dard [55] to find a large collection of such special constraints: abstractness, opposition,
composition, uniqueness, ordering, as well as the edge subtype-related notions already
mentioned above. An attempt to categorise these and explain them in terms of the con-
straints they impose can be found in [42]. Ultimately one can resort to a logic such as
OCL to formulate application-specific constraints. It is our conviction that, where node
inheritance and multiplicities have long proved their universal applicability and added
value, one should be very reticent in adopting further, special type constraints.

Summarising: Regarding type graphs, we find that

– Type graphs impose overhead on the formalism as they have to be created, checked
and maintained while creating an actual transformation system. Small prototype

16 A. Rensink

graphs and rules can be developed faster if it is not a priori necessary to define a
type graph and maintain consistency with it.

– Type graphs strengthen the formalism as they allow to document and check repre-
sentation choices and provide a straightforward way to include node labels. More-
over, inheritance is a convenient mechanism for the generalisation of rules.

2.6 Special Graphs for Special Purposes

The classes of graphs we have discussed above impose very few artificial restrictions
on the combinations of nodes and edges that are allowed. In fact, the only restriction is
that in simple graphs parallel edges are disallowed. This lack of restrictions is usually
considered to be part of the appeal of graphs, since it imparts flexibility to the formal-
ism. (Of course, type graphs also impose restrictions, but those are user-defined rather
than imposed by the formalism.)

However, there is a price to pay for this flexibility, in terms of time and memory:
the algorithms and data structures for general graphs are more expensive than those
for more dedicated data structures such as trees and arrays. If, therefore, the modelling
domain at hand actually does not need this full generality, it makes sense to restrict to
special graphs. Here we take a look at deterministic graphs.

Definition 4 (determinism). We call a graph G deterministic if there is a Lab-indexed
family of partial functions (fa: NG ⇀ EG)a∈Lab, such that

labG(e) = a ∧ srcG(e) = v ⇔ fa(v) = e (1)

In other words, a graph is deterministic if, for every label a, every node has at most
one outgoing a-labelled edge. Note that this is meaningful for all types of graphs we
have discussed here (even hypergraphs) as they all have edge sources and edge labels.
In terms of type graphs (Section 2.5), determinism corresponds to the specification of
outgoing edge multiplicity 1 for all edges.

Advantages of determinism. Deterministic graphs offer advantages in time and memory
consumption:

– There are cheaper data structures available. For instance, every node we can keep
a fixed-sized list of outgoing edges, with one slot per edge label, holding the target
node identity. The slot defaults to a null value if there is no outgoing edge with that
label. For general graphs, instead we have to maintain a list of outgoing edges of
indeterminate length.

– There are cheaper algorithms available. For instance, matching an outgoing edge
will not cause a branch in the search space, as has been investigated in [16]. The
same point has been made in [17], where so-called V-structures are introduced
which share some characteristics of deterministic graphs.

Deterministic graphs in software modelling. In the domain of software modelling,
edges typically stand for fields of structures or objects. Every field of a given object
holds a value (which can be a primitive data value or a reference to another object).

The Edge of Graph Transformation — Graphs for Behavioural Specification 17

holder

b

a
a
i=1

a
i=2

a
i=3

A

B

C

(ii)

a

a

a

3

B

C

A

2

1

i=1
A

i=2
B

C
i=3

(i)

1

1

1

(iv)

2

2

2

0

0

0

0

0

0

(iii)

a

holder

holder
next

next

Fig. 5. (i) is a deterministic graph representing an object with fields a and b; (ii) is a non-
deterministic edge-attributed graph modelling an array a; (iii) is a deterministic node-attributed
graph, and (iv) a δ-deterministic hypergraph modelling the same array.

Such fields have names that are unique in the context of their holder (the structure or
object); the field names are used as edge labels. Thus, the resulting graphs are naturally
deterministic.

On the other hand, another common data structure is the array, which has indexed
slots also holding values. Deterministic graphs are not very suitable to model such struc-
tures: the natural model of an array with local name a is a node with multiple outgoing
a-edges, one for each slot of the array. A deterministic graph representation can be ob-
tained by using a linked-list principle, possibly with backpointers. Both solutions are
shown in Figure 5.

Maybe the most satisfactory solution is to use hypergraphs (in which the index is one
of the tentacles, as in Figure 3) and broaden the concept of determinism.

Definition 5 (δ-determinism). Let δ: Lab→Nat be a degree function such that δ(a) ≤
α(a) for all a ∈ Lab. A hypergraph G is called δ-deterministic if there is a Lab-indexed

family of functions (fa: V δ(a)
G → EG)a∈Lab such that for all e ∈ EG:

labG(e) = a ∧ con(e)↓δ(a) = v ⇔ fa(v) = e

Here v denotes a sequence of nodes, and−↓i for i ∈ Nat projects sequences to their first
i elements. Thus, edges are no longer completely determined by their label and source
node, but by their label and an initial subsequence of their tentacles (of length given by
δ). Though this needs further investigation, we believe that some of the advantages of
(strictly) deterministic graphs can be salvaged under this more liberal notion.

The standard notion of determinism (Definition 4) corresponds to degree 1 (δ(a) = 1
for all a ∈ Lab); graph (iv) in Figure 5 is δ-deterministic for δ(a) = 2 (and all other
δ-values equal to 1).

18 A. Rensink

2.7 The Pushout Scare

We feel it to be necessary to devote some words to an issue that, in our opinion, stands
in the way of a broader acceptance of graph transformation, namely the intimate and
inescapable connection of the algebraic approach to category theory. The only gener-
ally understood and accepted way to refer to the mainstream algebraic approach is the
double pushout approach; the main alternative is called the single pushout approach.
This automatically pulls the attention to the non-trivial pushout construction, a proper
understanding of which requires at least a week of study to grasp only the bare essential
concepts from category theory.

For those who stand above this theory, having mastered it long ago, it may be diffi-
cult to appreciate that this terminology repels potential users. In order to give more of
an incentive to researchers from other areas to investigate graph transformation as a po-
tentially useful technique, an alternative vocabulary must be developed, which does not
suggest that knowing category theory is a prerequisite for using graph transformation.
We propose the following:

Conservative graph transformation as an alternative term for the double pushout-
approach. The term “conservative” refers to the fact that the deletion of graph ele-
ments carries some implicit application conditions, namely that all incident edges
of deleted nodes are also explicitly deleted at the same time, and that the nodes and
edges a rule attempts to delete are disjoint from those it intends to preserve. Thus,
a rule may fail to be applicable even though a match exists.

Radical graph transformation as an alternative term for the single pushout-approach.
The term “radical” refers to the fact that rules are always applicable (in a category
where all pushouts exist, as they do for simple graphs) but the effect may go be-
yond what the rule explicitly specifies: dangling edges are deleted, and case of
non-injective matches, nodes and edges may deleted that the rule appears to pre-
serve.

2.8 Summary

In Table 1 we have summarised the five dimensions of the graph zoo discussed above.
The dimensions are orthogonal: all combinations can be defined — however, some
combinations make more sense than others. For instance, edge attribution in hyper-
graphs does not seem very useful, as additional tentacles provide a more uniform way
to achieve the same modelling power. Other unlikely combinations are node attribution
for hypergraphs, and edge attribution for simple graphs. Finally, note that the distinction
between simple and multigraphs disappears if we restrict to deterministic graphs.

It should be noted that, again, we do not claim comprehensiveness of this overview.
One dimension that we have omitted altogether is the notion of hierarchy, which by
many researchers is considered to be an important enough notion to deserve a direct en-
coding into graphs; see, for instance [19,56], but also the distributed graphs of Taentzer
[79,76] and Milner’s bigraphs [51,52]. No doubt there are other dimensions we have
missed.

The Edge of Graph Transformation — Graphs for Behavioural Specification 19

Table 1. Dimensions of the graph zoo

Dimension Value Meaning Advantages
Edge encoding simple no edge identity edges are relations; simple

multi edges have own identity better algebraic properties
Arity standard binary edges only uniform, simple

hyper arbitrary tentacle count avoids nodification
Attribution none no data attributes simple

nodes only node attributes necessary in practice
all node and edge attributes avoids nodification

Typing no no explicit typing simple, no overhead
yes type graph documentation, node labels, inheritance

Determinism no general graphs flexible
yes deterministic graphs more efficient

3 Criteria for Behavioural Specification and Analysis

We will now step through a number of criteria for any formalism that is intended for
specifying and analysing system behaviour. Behavioural analysis, in the sense used in
this paper, at least includes some notion of state space exploration, be it partial, com-
plete, abstract, concrete, guided, model checked, explicit, symbolic or a combination
of those. Graph transformation tools that offer some functionality of this kind are, for
instance, AUGUR2 [44], FUJABA [30] and GROOVE [58]; we want to stress, however,
that we are more interested in the potential of the formalism than in actual tools.

As announced in the introduction, we will make a distinction based on whether the
formalism is to be directly used as a modelling language, or as an underlying semantics
for another language. For each of the criteria, we judge how well graph transformation
does in comparison to other techniques — where we are thinking especially of SPIN

[38], a state-of-the-art explicit-state model checker that uses a special-purpose language
Promela for modelling.

3.1 Learning Curve

This term refers to the expected difficulties in learning to read and write specifications
in a formalism or calculus. Another term might be “conceptual complexity.” This in
itself depends on a number of factors, not the least of which is editor tool support;
but also general familiarity with the concepts of the formalism is important. Thus, a
language like Promela, with concepts that are at least partly familiar from everyday
programming languages, has a shallower learning curve than languages that heavily
rely on more esoteric mathematical concepts.

The learning curve of graph transformation. Given adequate tool support for graph
editing (which most graph transformation tools offer), the visual nature of specifica-
tions can appeal to intuition and make the first acquaintance with the formalism easy.
However, there are several complications that require a more thorough understanding
from the user, prime among which is the treatment of data attributes — see Section 2.4
for a more extensive discussion about this.

20 A. Rensink

In general, we believe that the learning curve is directly related to the simplicity of
the graph formalism: see Table 1 for our evaluation on this point. In particular, we have
observed many times that novice users are very fast in creating prototype specifica-
tions (in a wide variety of domains) using GROOVE [58], which has about the simplest
graph formalism imaginable. Hypergraphs, on the other hand, although offering several
benefits (as argued in the previous section) definitely have a steeper learning curve.

Though we have complained above (Section 2.7) about the intimate connection with
category theory, actually for the use of graph transformation in specifications an under-
standing of the underlying theory is not necessary; so we find that this does not put a
burden on the learning curve.

Relevance. The learning curve of a formalism is, of course, very relevant if it is to
be used directly as a modelling language: all users then have to be versed in reading
and writing specifications in that language. However, the learning curve is less relevant
if the formalism is to be used to define operational semantics. In the latter case, only
a limited number of users will have to understand the formalism, namely those who
have to understand or implement the semantics; and even fewer will have to write in it,
namely those who define the semantics.

3.2 Suitability

It seems very obvious that a formalism to be used for specifying the behaviour of soft-
ware systems should be especially suitable for capturing the specific features of soft-
ware. For instance, the dynamic nature of memory usage (both heap and stack) and the
referential (object) structures that are ubiquitous in most modern software should be
natively supported by the formalism.

Yet it turns out that even formalisms that are not at all suitable in this sense, for
instance because they only support fixed-size or very primitive data structures (like
Promela), nevertheless do quite well in software verification. A prime example is the
use of SAT-solvers for (bounded) software model checking (see [49,40]): the formulae
being checked are extremely primitive and only finite behaviour can be analysed, but
because the tools can deal with truly enormous datasets (they are very scalable, see
Section 3.4 below), the results are quite good.

Suitability of graph transformation. Precisely the dynamic nature of software and its
stress on referential structures make graph transformation an excellently suitable for-
malism. Indeed, this is one of it strongest points.

Relevance. Though, as pointed out above, there is a balance between suitability and
scalability, there is no question that suitability (in the sense used here) is a very relevant
criterion in judging a formalism.

3.3 Flexibility

Flexibility refers to the ease of modelling an arbitrary problem using a given formal-
ism, without having to resort to “coding tricks” to make it fit. That is, if the model
captures the problem without introducing extraneous elements, we call it suitable for

The Edge of Graph Transformation — Graphs for Behavioural Specification 21

the modelling domain (as in Section 3.2 above), whereas if it does so for a broad range
of domains, we call it flexible.

Flexibility of graph transformation. The flexibility of graph transformation is another
of its strong points. Indeed, besides software analysis we have seen uses for GROOVE

in the context of network protocol analysis, security scenarios, aspect-oriented software
development, dynamic reconfiguration and model transformation.3

Relevance. In the dedicated domain of behavioural specification and analysis, the (gen-
eral) flexibility of a formalism is less important than its (specific) suitability. Still, if the
formalism is directly to be used as a modelling language, the ability to model concepts
natively is very attractive. If, on the other hand, it is to be used for operational seman-
tics, the importance of being flexible goes down, as the domain of application is then
quite specialised.

3.4 Scalability

Scalability refers to the ability of a formalism to deal with large models. We typically
call a formalism highly scalable if its computational complexity is a small polynomial in
the model size. However, another notion of scalability refers to the understandability of
larger models, i.e., their complexity to the human mind. We call this “visual scalability.”

Visual scalability. Though small graphs (in the order of ten to twenty nodes) are typ-
ically easy to grasp and may provide a much more concise and understandable model
than an equivalent textual description, this advantage is lost for larger graphs. Indeed,
as soon as graphs start to be non-planar, even the best layouting algorithms cannot keep
them from becoming very hard to understand. The typical solution in such a case is to
decompose the graph into smaller ones, and/or to resort to a more text-based solution
by introducing identifiers instead of edges.

Computational scalability. This is another term for computational or algorithmic com-
plexity, which is a huge field of study on its own. In the context of behavioural analysis,
algorithmic complexity is of supreme importance, as the models tend to become very
large — this is the famous “state space explosion problem,” which refers to the fact that
state space tends to grow exponentially in the number of independent variables and in
the number of independent components. Virtually all of the work in model checking
is devoted to bringing down or cleverly representing the state space (through abstrac-
tion, compositionality or symbolic representation) or improving performance (through
improved, concurrent algorithms).

Scalability of graph transformation. In general, graph transformation does not scale
well, either visually or computationally. The former we have already argued above;
for the latter, observe that the matching of left hand sides into host graphs, which is a

3 As an aside, it should be mentioned that the flexibility of the graph transformation formalism
does not only lie in the graphs themselves but also in the transformation rules and their com-
pososition into complete system specifications. In the current paper we have decided to omit
this aspect altogether.

22 A. Rensink

necessary step in rule application, is an NP-complete problem in the size of the left hand
side, and polynomial in the size of the host graph where the size of the LHS (regarded
as a constant) is the exponent. However, there are two alleviating factors:

– By using incremental algorithms, the complexity of matching becomes constant, at
the price of more complex updating (i.e., part of the problem is shifted to the actual
transformation). In [9] it is shown that this improves performance dramatically.
Investigations in the context of verification are underway.

– In modelling software behaviour, typically matches do not have to be found: they
are already determined by the context — as should be expected, given that program-
ming languages are mostly deterministic (except for the effects of concurrency). In
this setting, the complexity of matching may also be constant time: see [16].

In the context of state space exploration, another issue is the identification of previously
encountered states. In general, this involves isomorphism checking of graphs, which is
another (probably) non-polynomial problem. However, in [59,15] it has been shown
that in practice isomorphism checking is feasible, and may give rise to sizable state
space reduction in case the model has a lot of symmetry.

Relevance. Visual scalability is very relevant if the users need to visualise large models.
Unless good decomposition mechanisms are available, this is indeed the case when the
formalism is used as a modelling language, but less so if it is used for operational
semantics.

As indicated above, computational scalability is supremely important, regardless of
the embedding of the formalism.

3.5 Maturity

With maturity we refer to the degree in which all questions pertaining to the use of a
formalism in the context of behavioural specification and analysis have been addressed
and answered. We distinguish theoretical and practical maturity.

Theoretical maturity. We have already referred above (see Section 3.4) to the many
existing techniques to combat the state space explosion problem: compositionality, ab-
straction and symbolic representations. We call a formalism theoretically mature if it is
known if and how these techniques are applicable in the context of the formalism.

Practical maturity. Practical maturity, in this context, refers to the degree to which
algorithms and data structures enabling the actual, efficient implementation of the for-
malism and corresponding analysis techniques have been investigated. Thus, we call a
formalism practically mature if there is literature describing and evaluating such algo-
rithms and data structures.

Maturity of graph transformation. Despite the impressive body of theoretical results in
algebraic graph rewriting (recently collected in [22]), we think the formalism is not yet
theoretically mature for the purpose of behavioural specification and analysis. Many of
the concepts mentioned under Section 3.4 have hardly been addressed so far.

The Edge of Graph Transformation — Graphs for Behavioural Specification 23

– Abstraction. Without some form of abstraction, it will never be possible to analyse
arbitrary graph transformation systems, as these are typically infinite-state. Since it
is not even decidable whether a given graph transformation system is finite-state,
this is a severe restriction. Thus, we regard the existence of viable abstraction tech-
niques as an absolute necessity for graph transformation to realise its full poten-
tial as a technique for behavioural specification and analysis. Consider: if all we
can analyse is a finite, bounded fragment of the entire state space, then there is
no advantage over existing model checking techniques in which the infinite-state
behaviour cannot even be specified.

The only fully worked out approach for abstraction, apart from several more
isolated attempts described in [61,7], is the abstraction refinement work of [43],
which is part of the Petri graph approach briefly mentioned in the discussion of
hypergraphs (Section 2.3). Although the results are impressive, the rule systems that
can be analysed are rather specialised (for instance, only rules that delete all edges
of the left hand side are allowed). There is much more potential for abstraction
techniques, as for instance the work on shape analysis (e.g., [66]) shows.

– Compositionality. This is another effective technique to combat state space explo-
sion, which finds its origin in process algebra (see, e.g., [50]). A formalism is com-
positional if specifications of large, composed systems can be themselves obtained
by composing models of subsystems (for instance, parallel components or individ-
ual objects). Those smaller models can then be analysed first; the results can be
used to draw conclusions about the complete system without having to construct
the entire state space explicitly.

Graph transformation is, by nature, non-compositional. Instead it typically takes
a whole-world view: the host graph describes the entire system. Though several
approaches have been studied to glue together rules, most notably the work on
rule amalgamation [75] (with the offshoot of distributed graph transformation in
[79]), the best studied approach we know in which the host graph may be only
partially known is the borrowed context work of [4]. This, however, falls short of
enabling compositionality, since the host graph always grows, and never shrinks, by
including a borrowed context; thus this does not truly reflect the behaviour of a sin-
gle component. A very recent development on compositional graph transformation
is [60].

– Symbolic representation. This refers to the implicit representation of a state space
through a formula that holds on all reachable states and fails to hold on all un-
reachable ones. It has been shown that, by representing such formulae as Binary
Decision Diagrams (BDDs), an enormous reduction with respect to an explicit state
space representation can be achieved; see, e.g., [10].

To the best of our knowledge, there have been no attempts whatsoever to de-
velop similar symbolic representations for graphs. Clearly, the difficulties are great,
as one of the main heuristics in the success of BDDs is finding a suitable ordering
of the state vector; it is not at all easy to see how this translates to graph transfor-
mation, where the states are graphs which do not give rise to an unambiguous lin-
earisation as vectors. For another thing, the graphs are not a priori bounded, which
is a requirement for standard BDDs. Nevertheless, observing the success of BDDs
in state-of-the-art model checking, they are certainly worth a deeper investigation.

24 A. Rensink

As for practical maturity, fairly recently there has been increased attention for fast al-
gorithms and data structures, especially for graph matching; for instance, see [32,39,9].
Another issue is isomorphism checking, which was studied in [59]. Furthermore, below
we report on tool support for graph transformation, in the context of which there are
continuous efforts to improve performance, stimulated by a series of tool contests.

Relevance. As we have indicated above, we believe that the theoretical maturity of the
field is one of the prime criteria for the success of graph transformation for behavioural
specification and analysis. It does not make a difference whether the formalism is to
be used directly as a specification language or as an underlying operational semantics.
As for practical maturity, this is also important, but it partially follows the theoretical
insights.

3.6 Tooling

The final criterion we want to scrutinise is tooling. We discuss two aspects.

Tool support. In order to do anything at all with graph transformation in practice, as
with any other formalism it is absolutely necessary to have tool support, in the sense
of individual tools to create graphs and rules and perform transformations. Such tools
should satisfy the normal usability requirements; in particular, they should be well
enough supported for “external users” to work with them, and there should be some
commitment to their stability and maintenance.

Standardisation. If we want to employ tools for graph transformation in a larger con-
text, where the results are also used for other purposes, it is vital to have a means to
communicate between tools. This requires a measure of interoperability, which in turn
requires standardisation.

In fact one may distinguish two types of interoperability: one involves the inter-
change of graphs and rules, and the other involves communicating with other tools that
are not graph-based. For the second type, the main issue is to adhere to externally de-
fined formats; this can be solved on an individual bases by each tool provider. We will
concentrate on the first type, which is a matter for the graph transformation community
as a whole.

Tooling for graph transformation. Starting with PROGRES [69] and AGG [29] in the
mid-80s, tool support for graph transformation has become increasingly available. We
know of at least ten groups involved in a long-lasting, concerted effort to produce and
maintain generally usable tools for graph transformation. Moreover, recently we have
started a series of tool contest with the primary aim of comparing existing tools, and
the secondary aim of creating a set of available case studies which can be used to try
out and compare new tools or new functionality; see [62,63,48]. All this points to an
extensive investment in tool support for graph transformation in general.

On the other hand, for the more specific purpose of behavioural specification and
(especially) analysis, we find that the situation is less encouraging. The main special
feature that is needed in this context is the ability to reason about all reachable graphs,

The Edge of Graph Transformation — Graphs for Behavioural Specification 25

usually by exploring and analysing the state space systematically, rather than to effi-
ciently apply a single sequence of rules (possibly with backtracking). Some (relatively)
early work exists in the form of CHECKVML [68] and Object-Based Graph Grammars
[18], both of which rely on a translation to the standard model checking tool SPIN [38]
for the state space exploration. Our own tool GROOVE [58] has a native implementation
of this functionality. A more recent development is AUGUR2 [44], which uses advanced
results from Petri net theory to create a finite over-approximation (called an unfolding),
already mentioned in the discussion on abstraction in Section 3.5, which can also cope
with infinite state spaces. A more small-scale effort, also based on over-approximation,
is reported in [8]. Yet another approach, based on backwards exploration and analysis,
is implemented in the tool GBT [31]; see [67] for some results. Finally, [57] uses as-
sertional (weakest-precondition) reasoning rather than state space exploration, which is
also capable of dealing with infinite-state systems.

The (relative) scarcity of graph transformation tools for analysis is borne out by the
fact that, in the last transformation tool contest [48], the “verification case” (concerning
the correctness of a leader election protocol) received only 4 submissions.

The situation with respect to standardisation is not so good. In the past there have been
serious attempts to define standards for the interchange of graphs (GXL , see [37]) and
of graph transformation systems (GTXL , see [77,46]), both of which are XML-based
standards; however, an honest assessment shows that there has not been much much
activity of late, and the standards are not supported by many tools. We do not know of a
single instance of such a standard being used to communicate between different tools.

A similar point is made in [34], where it is argued that the level on which GTXL has
attempted to standardise is too low-level.

Relevance. It goes without saying that tool support is absolutely necessary for the suc-
cess of graph transformation, if it is to be a viable formalism for behavioural specifica-
tion and analysis. It may be less immediately obvious that the same holds for standard-
isation, in the sense used here (restricted to graph and rule standards). Yet it should be
realised that there is a multitude of mature tools around, most of which are specialised
towards one particular goal. A common, agreed-upon standard would enable tool chain-
ing in which the strengths of each individual tool can be exploited to the maximum.

3.7 Summary

In Table 2 we summarise the results of this section, by scoring graph transformation on
the criteria discussed above, and also rating the relevance of the criteria. We have used
a scale consisting of the following five values, with a slightly different interpretation in
the first two and the last two columns:

−− “Very weak”, respectively “irrelevant.”
− “Meagre”, respectively “less relevant.”
0 “Reasonable”, respectively “partially relevant.”
+ “Good”, respectively “relevant.”

++ “Excellent”, respectively “very relevant.”

26 A. Rensink

Table 2. Summary of criteria

Criterion General
graphs

Special
graphs

Other
techniques

(SPIN)

Relevance
for use as
modelling
language

Relevance
for use as

operational
semantics

Learning curve 0 0 + + −
Suitability ++ + − + 0
Flexibility ++ 0 − + −
Scalability Visual −− − + −−

Computational − + ++ ++ ++

Maturity Theoretical 0 0 ++ ++ ++
Practical + + ++ + +

Tooling Support + + ++ ++ +
Standardisation − − − + ++

We have divided the criteria into those that are intrinsic to the formalism of graph trans-
formation (the top five) and those that can be improved by further effort (the bottom
four). We stress again that the scores are subjective.

Special graphs. The column “special graphs” in the table refers to the possibility of
limiting graphs to a subclass with better computational properties. Here we are think-
ing especially of deterministic graphs (see Section 2.6). In Section 3.4 we have already
cited [16] who point out that matching can be much more efficient for such graphs, in
particular if it is already known where in the graph the next transformation is to take
place, as is often the case when modelling software. Further evidence for the increased
performance for special graphs is provided by the tool FUJABA [30], where the graph
formalism is tuned for compilation to Java. For instance, the Sierpinski case study de-
scribed in [78] shows that this can give rise to extremely high-performance code.

Other techniques. As stated at the start of this section, we have taken SPIN (see [38])
as a prototypical example of an “other technique” for the specification and analysis of
system behaviour, because it is a well-known, mature tool that is actually being used
successfully in practice. To our opinion, the qualities of SPIN are rather complimentary
to those of graph transformation: it is not at all trivial to encode the desired behavioural
aspects of a system into Promela, which is built upon a fixed set of primitives such as
threads, channels and primitive data domains; however, once this task is done, the tool
performs amazingly well. Surprisingly, SPIN , too, suffers from a lack of standardisa-
tion; it gets by because Promela itself is, in effect, an “industrial” standard.

Evaluation. There is no single strong conclusion to be drawn from this table. Here are
some observations:

– Two of the criteria on which graph transformation does especially well, namely
suitability and flexibility, are much less relevant when using graph transformation
as an underlying semantics than when using it as a modelling language. The same
holds for a criterion in which graph transformation does especially badly, namely
visual scalability.

The Edge of Graph Transformation — Graphs for Behavioural Specification 27

– Though theoretical maturity and standardisation are rated as average or worse, im-
proving this is a matter of further research; the poor scalability, on the other hand,
is intrinsic to graphs.

– The improved computational scalability of deterministic graphs may be enough to
prefer those over arbitrary graphs, in the context of behavioural specification and
analysis, also given that their suitability is hardly less than for general graphs. This
is especially true if the formalism is to be used for operational semantics, since
there the loss of flexibility is less relevant.

4 Recommendations

In this section we formulate a series of personal recommendations, based on the obser-
vations made in this paper.

The right graphs. Though the overview in Section 2 is primarily intended (as the section
title says) to provide a roadmap through the possibly bewildering set of graph variations,
one can also use it for another purpose, namely to select the “right” graph formalism,
meaning the kind of graphs with the most advantages.

For us, the winner is hypergraphs (Section 2.3), based on the following observations:

+ Hypergraphs make nodification (see Section 2.2) unnecessary in many cases. Thus,
graphs can remain simpler (in terms of node and edge count), which directly helps
visual and computational scalability.

+ Using hypergraphs, node deletion can be avoided; instead, nodes can be “garbage
collected” whenever they have become isolated. Thus, in terms of the algebraic
approach, all pushout complements exist: in other words, the only condition for
rule applicability is the existence of a matching.

+ Hyperedges can combine data-valued and node-values tentacles, and thus provide
an elegant extension to attributed graphs.

− The variable arity of hyperedges is an added complication, both for the development
of theory and for tool support. (We believe that this is outweighed by the fact that
nodification can often be avoided.)

− The usual graphical convention for hypergraphs, where edges are depicted as node-
like boxes and their tentacles as arrows from those to the “real” nodes, is cumber-
some and unattractive. (We believe that alternative, more intuitive notations can be
devised.)

Terminology. In Section 2.7, we have made some recommendations for alternatives to
the scary category theoretical terminology of algebraic graph transformation: conser-
vative transformation for the double pushout approach, and radical transformation for
the single pushout approach. Even if these suggestions are not themselves taken up, we
hope to inspire a discussion on this point.

Theoretical maturity. In Section 3.5 we have identified several open issues, the solution
of which we believe to be of prime importance for the success of graph transformation
in the area of behavioural specification and analysis. To reiterate, they are abstraction,

28 A. Rensink

compositionality and symbolic representation. No doubt there are more such issues;
however, we propose to address these in the coming years.

Standardisation. Standardisation efforts in the past have led to an XML-based standard
for graph exchange, GXL (see [37]) and a related standard for the exchange of graph
transformation systems, GTXL (see [77,46]). However, as noted in Section 3.6, these
standards have not made as much impact as one would wish.

A good standard can bring many benefits:

– Each individual tool or application can use the standard for storing its own data
structures; there is no need for repeating the difficult process of defining a storage
format. (Note that this is only a benefit if the standard does not impose overhead
that is unnecessary from the perspective of the tool or application at hand.)

– In the same vein, standards can be used as a basis for the exchange of data be-
tween different tools; in other words, for the interoperability of tools. This, in fact,
is typically the main driving force behind the definition of standards. However, in-
teroperability is not automatically achieved even between tools that use a given
standard for storage, as they may fail to support the entire standard. Also, the task
of making a tool compliant to a standard is one that will be undertaken only if the
concrete benefits are clear; in practice it turns out that this is only rarely the case.

– If standards are human-readable, rather than just digestible to computers, then they
may serve understandability. A person would need only to get versed in one nota-
tion, used across formalisms or tools, to easily read and interpret all models and
specifications. Note, however, that the requirement of human-readability rules out
XML-based formats.

We propose to revive the standardisation effort; if not on the grand scale of GXL and
GTXL (which essentially have the ambition of encapsulating arbitrary graphs and graph
transformation systems), then possibly among a small set of tools whose creators share
the willingness to invest the necessary effort.

Cooperation. The last point we wish to make does not follow from any of the discussion
in this paper, but is rather a call, or challenge. From approximately 1990 onwards, there
has been almost continuous European level funding for graph transformation-based re-
search, in the form of COMPUGRAPH [20], SEMAGRAPH [74], APPLIGRAPH [1], GET-
GRATS [33], SEGRAVIS [72] and SENSORIA [73]. Though some of these projects have
a more theoretical focus and others a more practical, there seems little doubt that they
have together fostered strong ties within the community and benefited both theory and
practice of graph transformation.

However, the last of these projects (SENSORIA) is due to end in 2010. It is therefore
high time to take a new initiative. As should be clear from this paper, we strongly feel
that only by combining the best of theory and practice we can progress further. At least
in the area of behavioural specification and analysis, graph transformation will only be
able to prove its added value if we do not hesitate to tackle the open theoretical issues
and at the same time continue working on tool support and standardisation.

Who will take up this gauntlet?

The Edge of Graph Transformation — Graphs for Behavioural Specification 29

References

1. APPLIGRAPH: Applications of graph transformation (1994),
http://www.informatik.uni-bremen.de/theorie/appligraph/

2. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–
395. Springer, Heidelberg (2001)

3. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-state graph
transformation systems. Inf. Comput. 206(7), 869–907 (2008)

4. Baldan, P., Ehrig, H., König, B.: Composition and decomposition of dpo transformations
with borrowed context. In: [13], pp. 153–167

5. Bardohl, R., Ehrig, H., de Lara, J., Taentzer, G.: Integrating meta-modelling aspects with
graph transformation for efficient visual language definition and model manipulation. In:
Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 214–228.
Springer, Heidelberg (2004)

6. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software engineering
perspective. In: [24], pp. 431–433

7. Bauer, J., Boneva, I., Kurbán, M.E., Rensink, A.: A modal-logic based graph abstraction. In:
[25], pp. 321–335

8. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner ab-
straction. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 249–264.
Springer, Heidelberg (2007)

9. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark evaluation of incremental pat-
tern matching in graph transformation. In: [25], pp. 396–410

10. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: Logic in Computer Science (LICS), pp. 428–439. IEEE
Computer Society, Los Alamitos (1990)

11. Ciraci, S.: Graph Based Verification of Software Evolution Requirements. PhD thesis, Uni-
versity of Twente (2009)

12. Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating java code to graph transformation
systems. In: [24], pp. 383–398

13. Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): ICGT 2006.
LNCS, vol. 4178. Springer, Heidelberg (2006)

14. Corradini, A., Montanari, U. (eds.): Joint COMPUGRAPH/SEMAGRAPH Workshop on
Graph Rewriting and Computation (SEGRAGRA). Electronic Notes in Theoretical Com-
puter Science, vol. 2 (1995)

15. Crouzen, P., van de Pol, J.C., Rensink, A.: Applying formal methods to gossiping networks
with mCRL and GROOVE. ACM SIGMETRICS Performance Evaluation Review 36(3), 7–
16 (2008)

16. Dodds, M., Plump, D.: Graph transformation in constant time. In: [13], pp. 367–382
17. Dörr, H.: Efficient Graph Rewriting and Its Implementation. LNCS, vol. 922. Springer, Hei-

delberg (1995)
18. Dotti, F.L., Ribeiro, L., dos Santos, O.M., Pasini, F.: Verifying object-based graph grammars.

Software and System Modeling 5(3), 289–311 (2006)
19. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Comput. Syst.

Sci. 64(2), 249–283 (2002)
20. Ehrig, H.: Introduction to COMPUGRAPH. In: [14], pp. 89–100
21. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs

and graph transformation based on adhesive hlr categories. Fundam. Inform. 74(1), 31–61
(2006)

http://www.informatik.uni-bremen.de/theorie/appligraph/

30 A. Rensink

22. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transfor-
mation. Monographs in Theoretical Computer Science. Springer, Heidelberg (2006)

23. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph Grammars
and Computing by Graph Transformation. Applications, Languages and Tools, vol. II. World
Scientific, Singapore (1999)

24. Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.): ICGT 2004. LNCS, vol. 3256.
Springer, Heidelberg (2004)

25. Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.): ICGT 2008. LNCS, vol. 5214.
Springer, Heidelberg (2008)

26. Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Gram-
mars and Computing by Graph Transformation. Concurrency, Parallelism, and Distribution,
vol. III. World Scientific, Singapore (1999)

27. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic approach. In: 14th
Annual Symposium on Switching and Automata Theory, pp. 167–180. IEEE, Los Alamitos
(1973)

28. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis of UML activities using dynamic meta
modeling. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
76–90. Springer, Heidelberg (2007)

29. Ermel, C., Rudolf, M., Taentzer, G.: The AGG approach: language and environment. In: [23],
http://tfs.cs.tu-berlin.de/agg/

30. The FUJABA toolsuite (2006), http://www.fujaba.de
31. GBT — graph backwards tool, http://www.it.uu.se/research/group/mobility/adhoc/gbt
32. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: Grgen: A fast spo-based graph

rewriting tool. In: [13], pp. 383–397
33. GETGRATS: General theory of graph transformation systems (1997),

http://www.di.unipi.it/∼andrea/GETGRATS/
34. Gorp, P.V., Keller, A., Janssens, D.: Transformation language integration based on profiles

and higher order transformations. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008.
LNCS, vol. 5452, pp. 208–226. Springer, Heidelberg (2009)

35. Hausmann, J.H.: Dynamic Meta Modeling: A Semantics Description Technique for Visual
Modeling Languages. PhD thesis, University of Paderborn (2005)

36. Hausmann, J.H., Heckel, R., Sauer, S.: Towards dynamic meta modeling of UML extensions:
An extensible semantics for UML sequence diagrams. In: Human-Centric Computing Lan-
guages and Environments (HCC), pp. 80–87. IEEE Computer Society, Los Alamitos (2001)

37. Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL: A graph-based standard exchange format
for reengineering. Sci. Comput. Program. 60(2), 149–170 (2006)

38. Holzmann, G.: The SPIN Model Checker — Primer and Reference Manual. Addison-Wesley,
Reading (2004)

39. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced graph patterns.
In: Karsten Ehrig, H.G. (ed.) Graph Transformation and Visual Modeling Techniques (GT-
VMT). Electronic Communications of the EASST, vol. 6 (2007)

40. Ivancic, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based bounded model
checking for software verification. Theor. Comput. Sci. 404(3), 256–274 (2008)

41. Kastenberg, H., Kleppe, A., Rensink, A.: Defining object-oriented execution semantics us-
ing graph transformations. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 186–201. Springer, Heidelberg (2006)

42. Kleppe, A.G., Rensink, A.: On a graph-based semantics for UML class and object diagrams.
In: Ermel, C., Lara, J.D., Heckel, R. (eds.) Graph Transformation and Visual Modelling Tech-
niques (GT-VMT). Electronic Communications of the EASST, vol. 10. EASST (2008)

http://tfs.cs.tu-berlin.de/agg/
http://www.fujaba.de
http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.di.unipi.it/~andrea/GETGRATS/

The Edge of Graph Transformation — Graphs for Behavioural Specification 31

43. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of
graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 197–211. Springer, Heidelberg (2006)

44. König, B., Kozioura, V.: Augur 2 — a new version of a tool for the analysis of graph transfor-
mation systems. In: Bruni, R., Varró, D. (eds.) Graph Transformation and Visual Modeling
Techniques (GT-VMT 2006). Electronic Notes in Theoretical Computer Science, vol. 211,
pp. 201–210 (2008)

45. Kuske, S., Gogolla, M., Kreowski, H.J., Ziemann, P.: Towards an integrated graph-based
semantics for UML. Software and System Modeling 8(3), 403–422 (2009)

46. Lambers, L.: A new version of GTXL: An exchange format for graph transformation sys-
tems. In: Proceedings of the International Workshop on Graph-Based Tools (GraBaTs). Elec-
tronic Notes in Theoretical Computer Science, vol. 127, pp. 51–63 (March 2005)

47. Lengyel, L., Levendovszky, T., Vajk, T., Charaf, H.: Realizing qvt with graph rewriting-based
model transformation. In: Karsai, G., Taentzer, G. (eds.) Graph and Model Transformation
(GraMoT). Electronic Communications of the EASST, vol. 4 (2006)

48. Levendovszky, T., Rensink, A., Van Gorp, P.: 5th International Workshop on Graph-Based
Tools: The contest (grabats) (2009), http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009

49. McMillan, K.L.: Methods for exploiting sat solvers in unbounded model checking. In: For-
mal Methods and Models for Co-Design (MEMOCODE), p. 135. IEEE Computer Society,
Los Alamitos (2003)

50. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Englewood Cliffs (1989)
51. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR

2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)
52. Milner, R.: Pure bigraphs: Structure and dynamics. Inf. Comput. 204(1), 60–122 (2006)
53. Nagl, M.: Set theoretic approaches to graph grammars. In: Ehrig, H., Nagl, M., Rosenfeld,

A., Rozenberg, G. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 41–54. Springer, Hei-
delberg (1987)

54. OMG: Meta object facility (MOF) core specification, v2.0. Document formal/06-01-01, Ob-
ject Management Group (2006), http://www.omg.org/cgi-bin/doc?formal/06-01-01

55. OMG: Unified modeling language, superstructure, v2.2. Document formal/09-02-02, Object
Management Group (2009), http://www.omg.org/cgi-bin/doc?formal/09-02-02

56. Palacz, W.: Algebraic hierarchical graph transformation. J. Comput. Syst. Sci. 68(3), 497–
520 (2004)

57. Pennemann, K.H.: Development of Correct Graph Transformation Systems. PhD thesis, Uni-
versity of Oldenburg, Oldenburg (2009),
http://oops.uni-oldenburg.de/volltexte/2009/948/

58. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz, J.L., Nagl,
M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg
(2004)

59. Rensink, A.: Isomorphism checking in GROOVE. In: Zündorf, A., Varró, D. (eds.) Graph-
Based Tools (GraBaTs). Electronic Communications of the EASST, European Association
of Software Science and Technology, vol. 1 (September 2007)

60. Rensink, A.: Compositionality in graph transformation. In: Abramsky, S., et al. (eds.) ICALP
2010, Part II. LNCS, vol. 6199, pp. 309–320. Springer, Heidelberg (2010)

61. Rensink, A., Distefano, D.S.: Abstract graph transformation. In: Mukhopadhyay, S., Roy-
choudhury, A., Yang, Z. (eds.) Software Verification and Validation, Manchester. Electronic
Notes in Theoretical Computer Science, vol. 157, pp. 39–59 (May 2006)

62. Rensink, A., Taentzer, G.: Agtive 2007 graph transformation tool contest. In: [71], pp. 487–
492, http://www.informatik.uni-marburg.de/∼swt/agtive-contest

http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009
http://www.omg.org/cgi-bin/doc?formal/06-01-01
http://www.omg.org/cgi-bin/doc?formal/09-02-02
http://oops.uni-oldenburg.de/volltexte/2009/948/
http://www.informatik.uni-marburg.de/~swt/agtive-contest

32 A. Rensink

63. Rensink, A., Van Gorp, P.: Graph transformation tool contest 2008. Software Tools for Tech-
nology Transfer (2009) Special section; in preparation,
http://fots.ua.ac.be/events/grabats2008.

64. Rensink, A., Zambon, E.: A type graph model for java programs. In: Lee, D., Lopes, A.,
Poetzsch-Heffter, A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 237–242. Springer, Hei-
delberg (2009)

65. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transforma-
tions. Foundations, vol. 1. World Scientific, Singapore (1997)

66. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans.
Program. Lang. Syst. 24(3), 217–298 (2002)

67. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification of ad hoc
routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 18–32. Springer, Heidelberg (2008)

68. Schmidt, Á., Varró, D.: Checkvml: A tool for model checking visual modeling languages. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 92–95. Springer,
Heidelberg (2003)

69. Schürr, A.: Programmed graph replacement systems. In: [65], pp. 479–546
70. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: [25], pp. 411–425
71. Schürr, A., Nagl, M., Zündorf, A. (eds.): Applications of Graph Transformations with Indus-

trial Relevance (AGTIVE). LNCS, vol. 5088. Springer, Heidelberg (2008)
72. SEGRAVIS: Syntactic and semantics integration of visual modelling techniques (2002),

http://www.segravis.org/
73. SENSORIA: Software engineering for service-oriented overlay computers (2005),

http://www.sensoria-ist.eu
74. Sleep, M.R.: SEMAGRAPH: The theory and practice of term graph rewriting. In: [14], pp.

268–276
75. Taentzer, G.: Parallel high-level replacement systems. Theor. Comput. Sci. 186(1-2), 43–81

(1997)
76. Taentzer, G.: Distributed graphs and graph transformation. Applied Categorical Struc-

tures 7(4) (1999)
77. Taentzer, G.: Towards common exchange formats for graphs and graph transformation sys-

tems. In: Uniform Approaches to Graphical Process Specification Techniques (UNIGRA).
Electronic Notes in Theoretical Computer Science, vol. 44, pp. 28–40 (2001)

78. Taentzer, G., Biermann, E., Bisztray, D., Bohnet, B., Boneva, I., Boronat, A., Geiger, L.,
Geiß, R., Horvath, Á., Kniemeyer, O., Mens, T., Ness, B., Plump, D., Vajk, T.: Generation of
Sierpinski triangles: A case study for graph transformation tools. In: [71], pp. 514–539

79. Taentzer, G., Fischer, I., Koch, M., Volle, V.: Distributed graph transformation with applica-
tion to visual design of distributed systems. In: [26], ch. 6, pp. 269–340

80. Taentzer, G., Rensink, A.: Ensuring structural constraints in graph-based models with type
inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64–79. Springer, Heidel-
berg (2005)

http://fots.ua.ac.be/events/grabats2008
http://www.segravis.org/
http://www.sensoria-ist.eu

	The Edge of Graph Transformation—Graphs for Behavioural Specification
	Background
	A Roadmap through the Graph Zoo
	Nodes for Entities, Edges for Relations
	Nodification
	Edges for Structure, Nodes for Glue
	The Awkwardness of Attributes
	To Type or Not to Type
	Special Graphs for Special Purposes
	The Pushout Scare
	Summary

	Criteria for Behavioural Specification and Analysis
	Learning Curve
	Suitability
	Flexibility
	Scalability
	Maturity
	Tooling
	Summary

	Recommendations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

