Skip to main content

An Extensible Modeling Language for the Representation of Work Processes in the Chemical and Process Industries

  • Chapter
Graph Transformations and Model-Driven Engineering

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5765))

  • 1537 Accesses

Abstract

Expressive models of the work processes performed in the chemical and process industries provide a basis for diverse applications like work process documentation, analysis, and enactment. In this contribution, we present a generic modeling language for different types of work processes to allow for their integrated representation in the life cycle of a chemical plant. Further, the generic language allows for extensions specific to certain types of work processes. For two important types – design and operational processes – such extensions have been elaborated. These extensions enable the adequate representation of the context of a work process that strongly depends on the process type: for instance, the specification of a chemical plant is a product of a design process, whereas the plant takes the role of a resource during an operational process. This contribution also briefly introduces a modeling tool developed by our group for applying the modeling language in industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement and Application. Artech House, Norwood (2001)

    Google Scholar 

  2. Davenport, T.H.: Process Innovation. Harvard Business School, Boston (1993)

    Google Scholar 

  3. Workflow Management Coalition (WfMC): Terminology & Glossary, Report No. WFMC-TC-1011 (1999), http://www.wfmc.org

  4. Nagl, M., Marquardt, W.: Collaborative and Distributed Chemical Engineering: from Understanding to Substantial Design Process Support; Results of the IMPROVE Project. LNCS, vol. 4970. Springer, Heidelberg (2008)

    Book  Google Scholar 

  5. Theißen, M., Hai, R., Marquardt, W.: Design Process Modeling in Chemical Engineering. J. Comput. Inf. Sci. Eng. 8(1), 011007 (9 pages) (2008)

    Article  Google Scholar 

  6. Theißen, M., Hai, R., Morbach, J., Schneider, R., Marquardt, W.: Scenario-based Analysis of Industrial Work Processes. In: Nagl, M., Marquardt, W. (eds.) Collaborative and Distributed Chemical Engineering. LNCS, vol. 4970, pp. 433–450. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Killich, S., Luczak, H., Schlick, C., Weienbach, M., Wiedenmaier, S., Ziegler, J.: Task Modelling for Cooperative Work. BIT 18(5), 325–338 (1999)

    Google Scholar 

  8. Eggersmann, M., Kausch, B., Luczak, H., Marquardt, W., Schlick, C., Schneider, N., Schneider, R., Theißen, M.: Work Process Models. In: Nagl, M., Marquardt, W. (eds.) Collaborative and Distributed Chemical Engineering. LNCS, vol. 4970, pp. 126–152. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Object Management Group (OMG): Unified Modeling Language, Version 2.0 (2005), http://www.omg.org/uml

  10. Theißen, M., Marquardt, W.: Decision Process Modeling in Chemical Engineering Design. In: 17th European Symposium on Computer Aided Process Engineering, pp. 383–388 (2007)

    Google Scholar 

  11. Marquardt, W., Theißen, M.: Integrated Modeling of Work Processes and Decisions in Chemical Engineering. In: Schlick, C.M. (ed.) Industrial Engineering and Ergonomics, pp. 265–279. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Aspen Technology, http://www.aspentech.com/products/aspen-batch-plus.cfm

  13. Bayer, B., Marquardt, W.: Towards Integrated Information Models for Data and Documents. Comput. Chem. Eng. 28, 1249–1266 (2004)

    Article  Google Scholar 

  14. Brandt, S., Morbach, J., Miatidis, M., Theißen, M., Jarke, M., Marquardt, W.: An Ontology-Based Approach to Knowledge Management in Design Processes. Comput. Chem. Eng. 32(1-2), 320–342 (2008)

    Article  Google Scholar 

  15. Object Management Group (OMG): Model Driven Architecture, http://www.omg.org/mda

  16. Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für Instrumentelle Mathematik (1962)

    Google Scholar 

  17. Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Basic Concepts, vol. 1, 2nd corrected printing. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  18. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities. In: Liggesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering. LNI, vol. 64, pp. 117–128. Gesellschaft für Informatik (2005)

    Google Scholar 

  19. van der Alst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. Inform. Syst. 30(4), 245–275 (2005)

    Article  Google Scholar 

  20. National Institute of Standards and Technology (NIST): The Process Specification Language (PSL): Overview and Version 1.0 Specification, Report No. NISTIR 6459. Gaithersburg, MD (2000)

    Google Scholar 

  21. Bock, C., Gruninger, M.: PSL: A Semantic Domain for Flow Models. SoSyM. 4, 209–231 (2005)

    Google Scholar 

  22. Object Management Group (OMG): Business Process Modeling Notation (BPMN) (2006), http://www.omg.org

  23. BEA Systems, IBM, Microsoft, SAP AG, Siebel Systems: Business Process Execution Language for Web Services, version 1.1 (2003), http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

  24. Workflow Management Coalition (WfMC): XPDL 2.0 Specification (2005), http://www.wfmc.org

  25. White, S.A.: XPDL and BPMN. In: Workflow Handbook 2003, pp. 221–238. Future Strategies Inc., Lighthouse Point (2003)

    Google Scholar 

  26. Mayer, R.J., Painter, C.M.K., de Witte, P.S.: IDEF Family of Methods for Concurrent Engineering and Business Re-Engineering Applications, http://www.idef.com/

  27. National Institute of Standards and Technology (NIST): Integrated Definition for Function Modeling (IDEF0), Report No. NISTIR 183. Gaithersburg, MD (1993)

    Google Scholar 

  28. Batres, R., Naka, Y.: Process Plant Ontologies Based on a Multi-dimensional Framework. In: Malone, M.F., Trainham, J.A., Carnahan, B. (eds.) Proceedings of the Fifth International Conference on Foundations of Computer-Aided Process Design, pp. 433–437 (2000)

    Google Scholar 

  29. Knowledge Systems Laboratory: Ontolingua, http://www.ksl.stanford.edu/software/ontolingua

  30. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Classification and Evaluation of Description Methods in Automation and Control Technology, VDI/VDE 3681 (2005)

    Google Scholar 

  31. International Electrotechnical Commission (IEC): Programmable controllers – Part 3: Programming languages, IEC 61131-3 Ed. 2.0 (2003)

    Google Scholar 

  32. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik: Formalised Process Descriptions, VDI/VDE 3682 (2005)

    Google Scholar 

  33. International Society of Automation (ISA): Batch control Part 1: Models and terminology, ANSI/ISA-S88.01-1995 (1995)

    Google Scholar 

  34. Viswanathan, S., Johnsson, C., Srinivasan, R., Venkatasubramanian, V., Ärzen, K.E.: Automating Operating Procedure Synthesis for Batch Processes: Part I. Knowledge Representation and Planning Framework. Comput. Chem. Eng. 22(11), 1673–1685 (1998)

    Article  Google Scholar 

  35. Gabbar, H.A., Aoyama, A., Naka, Y.: Recipe Formal Definition Language for Operating Procedures Synthesis. Comput. Chem. Eng. 28(9), 1809–1822 (2004)

    Article  Google Scholar 

  36. Chandrasekaran, B.: Design Problem Solving: A Task Analysis. AI Mag. 11(4), 59–71 (1990)

    Google Scholar 

  37. Gero, J.S., Kannengiesser, U.: A Function-Behavior-Structure Ontology of Processes. AI EDAM 21(4), 379–391 (2007)

    Google Scholar 

  38. Stone, R.B., Wood, K.L.: Development of a Functional Basis for Design. J. Mech. Des. 122(4), 359–370 (2000)

    Article  Google Scholar 

  39. Kitamura, Y., Riichiro, M.: Ontology-Based Systematization of Functional Knowledge. J. Eng. Des. 15(4), 327–351 (2004)

    Article  Google Scholar 

  40. Douglas, J.M.: A Hierarchical Decision Procedure for Process Synthesis. AICHE J. 31, 353–362 (1985)

    Article  Google Scholar 

  41. Douglas, J.M.: Conceptual Design of Chemical Processes. McGraw-Hill, New York (1988)

    Google Scholar 

  42. Gorti, S.R., Gupta, A., Kim, G.J., Sriram, R.D., Wong, A.: An Object-Oriented Representation for Product and Design Processes. Comput.-Aided Des. 30(7), 489–501 (1998)

    Article  MATH  Google Scholar 

  43. Bañares-Alcántara, R.: Design Support Systems for Process Engineering – I. Requirements and Proposed Solutions for a Design Process Representation. Comput. Chem. Eng. 19(3), 267–277 (1995)

    Google Scholar 

  44. Bayer, B.: Conceptual Information Modeling for Computer Aided Support of Chemical Process Design. Fortschritt-Berichte VDI: Reihe, vol. 3(787). VDI-Verlag, Düsseldorf (2003)

    Google Scholar 

  45. Eggersmann, M.: Analysis and Support of Work Processes within Chemical Engineering Design Processes. Fortschritt-Berichte VDI: Reihe, vol. 3(840). VDI-Verlag, Düsseldorf (2004)

    Google Scholar 

  46. Eggersmann, M., Gonnet, S., Henning, G., Krobb, C., Leone, H., Marquardt, W.: Modeling and Understanding Different Types of Process Design Activities. Lat. Am. Appl. Res. 33, 167–175 (2003)

    Google Scholar 

  47. World Wide Web Consortium: OWL Web Ontology Language. Reference. Recommendation (2004), http://www.w3.org/TR/owl-ref/

  48. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  49. Clark & Parsia.: Pellet OWL Reasoner (2010), http://clarkparsia.com/pellet/

  50. Theißen, M., Hai, R., Marquardt, W.: A Framework for Work Process Modeling in the Chemical Industries. Submitted to Comput. Chem. Eng. (2009)

    Google Scholar 

  51. Horridge, M., Patel-Schneider, P.F.: Manchester Syntax for OWL 1.1. In: Clark, K., Patel-Schneider, P.F. (eds.) OWL: Experiences and Directions 2008 DC, Fourth International Workshop, Washington, DC (2008)

    Google Scholar 

  52. Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Comm. ACM 26(11), 832–843 (2009)

    Article  MATH  Google Scholar 

  53. Marquardt, W., Morbach, J., Wiesner, A., Yang, A.D.: OntoCAPE - A Re-Usable Ontology for Chemical Process Engineering. Springer, Berlin (2010)

    Google Scholar 

  54. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  55. Morbach, J., Yang, A.D., Marquardt, W.: OntoCAPE - A Large Scale Ontology for Chemical Process Engineering. Eng. Appl. Artif. Intel. 20(2), 147–161 (2007)

    Article  Google Scholar 

  56. Morbach, J., Wiesner, A., Marquardt, W.: OntoCAPE 2.0 - A (Re)usable Ontology for Computer-Aided Process Engineering. Comput. Chem. Eng. 33, 1546–1556 (2009)

    Article  Google Scholar 

  57. Aoyama, A., Yamadai, I., Batres, R., Naka, Y.: Multi-Dimensional Object Oriented Approach for Automatic Generation of Control Recipes. Comput. Chem. Eng. 24(2-7), 519–524 (2000)

    Article  Google Scholar 

  58. Hai, R., Theißen, M., Marquardt, W.: An Ontology Based Approach for Operational Process Modeling. Submitted to Advanced Engineering Informatics (2010)

    Google Scholar 

  59. Morbach, J., Hai, R., Bayer, B., Marquardt, W.: Document models. In: Nagl, M., Marquardt, W. (eds.) Collaborative and Distributed Chemical Engineering. LNCS, vol. 4970, pp. 111–125. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  60. Stanford Center for Biomedical Informatics Research: The Protégé ontology editor and knowledge acquisition system, http://protege.stanford.edu

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hai, R., Theißen, M., Marquardt, W. (2010). An Extensible Modeling Language for the Representation of Work Processes in the Chemical and Process Industries. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds) Graph Transformations and Model-Driven Engineering. Lecture Notes in Computer Science, vol 5765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17322-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17322-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17321-9

  • Online ISBN: 978-3-642-17322-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics